File size: 5,891 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from sympy.core.add import Add
from sympy.core.numbers import (Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (cos, sin, sinc, tan)
from sympy.series.fourier import fourier_series
from sympy.series.fourier import FourierSeries
from sympy.testing.pytest import raises
from functools import lru_cache

x, y, z = symbols('x y z')

# Don't declare these during import because they are slow
@lru_cache()
def _get_examples():
    fo = fourier_series(x, (x, -pi, pi))
    fe = fourier_series(x**2, (-pi, pi))
    fp = fourier_series(Piecewise((0, x < 0), (pi, True)), (x, -pi, pi))
    return fo, fe, fp


def test_FourierSeries():
    fo, fe, fp = _get_examples()

    assert fourier_series(1, (-pi, pi)) == 1
    assert (Piecewise((0, x < 0), (pi, True)).
            fourier_series((x, -pi, pi)).truncate()) == fp.truncate()
    assert isinstance(fo, FourierSeries)
    assert fo.function == x
    assert fo.x == x
    assert fo.period == (-pi, pi)

    assert fo.term(3) == 2*sin(3*x) / 3
    assert fe.term(3) == -4*cos(3*x) / 9
    assert fp.term(3) == 2*sin(3*x) / 3

    assert fo.as_leading_term(x) == 2*sin(x)
    assert fe.as_leading_term(x) == pi**2 / 3
    assert fp.as_leading_term(x) == pi / 2

    assert fo.truncate() == 2*sin(x) - sin(2*x) + (2*sin(3*x) / 3)
    assert fe.truncate() == -4*cos(x) + cos(2*x) + pi**2 / 3
    assert fp.truncate() == 2*sin(x) + (2*sin(3*x) / 3) + pi / 2

    fot = fo.truncate(n=None)
    s = [0, 2*sin(x), -sin(2*x)]
    for i, t in enumerate(fot):
        if i == 3:
            break
        assert s[i] == t

    def _check_iter(f, i):
        for ind, t in enumerate(f):
            assert t == f[ind]
            if ind == i:
                break

    _check_iter(fo, 3)
    _check_iter(fe, 3)
    _check_iter(fp, 3)

    assert fo.subs(x, x**2) == fo

    raises(ValueError, lambda: fourier_series(x, (0, 1, 2)))
    raises(ValueError, lambda: fourier_series(x, (x, 0, oo)))
    raises(ValueError, lambda: fourier_series(x*y, (0, oo)))


def test_FourierSeries_2():
    p = Piecewise((0, x < 0), (x, True))
    f = fourier_series(p, (x, -2, 2))

    assert f.term(3) == (2*sin(3*pi*x / 2) / (3*pi) -
                         4*cos(3*pi*x / 2) / (9*pi**2))
    assert f.truncate() == (2*sin(pi*x / 2) / pi - sin(pi*x) / pi -
                            4*cos(pi*x / 2) / pi**2 + S.Half)


def test_square_wave():
    """Test if fourier_series approximates discontinuous function correctly."""
    square_wave = Piecewise((1, x < pi), (-1, True))
    s = fourier_series(square_wave, (x, 0, 2*pi))

    assert s.truncate(3) == 4 / pi * sin(x) + 4 / (3 * pi) * sin(3 * x) + \
        4 / (5 * pi) * sin(5 * x)
    assert s.sigma_approximation(4) == 4 / pi * sin(x) * sinc(pi / 4) + \
        4 / (3 * pi) * sin(3 * x) * sinc(3 * pi / 4)


def test_sawtooth_wave():
    s = fourier_series(x, (x, 0, pi))
    assert s.truncate(4) == \
        pi/2 - sin(2*x) - sin(4*x)/2 - sin(6*x)/3
    s = fourier_series(x, (x, 0, 1))
    assert s.truncate(4) == \
        S.Half - sin(2*pi*x)/pi - sin(4*pi*x)/(2*pi) - sin(6*pi*x)/(3*pi)


def test_FourierSeries__operations():
    fo, fe, fp = _get_examples()

    fes = fe.scale(-1).shift(pi**2)
    assert fes.truncate() == 4*cos(x) - cos(2*x) + 2*pi**2 / 3

    assert fp.shift(-pi/2).truncate() == (2*sin(x) + (2*sin(3*x) / 3) +
                                          (2*sin(5*x) / 5))

    fos = fo.scale(3)
    assert fos.truncate() == 6*sin(x) - 3*sin(2*x) + 2*sin(3*x)

    fx = fe.scalex(2).shiftx(1)
    assert fx.truncate() == -4*cos(2*x + 2) + cos(4*x + 4) + pi**2 / 3

    fl = fe.scalex(3).shift(-pi).scalex(2).shiftx(1).scale(4)
    assert fl.truncate() == (-16*cos(6*x + 6) + 4*cos(12*x + 12) -
                             4*pi + 4*pi**2 / 3)

    raises(ValueError, lambda: fo.shift(x))
    raises(ValueError, lambda: fo.shiftx(sin(x)))
    raises(ValueError, lambda: fo.scale(x*y))
    raises(ValueError, lambda: fo.scalex(x**2))


def test_FourierSeries__neg():
    fo, fe, fp = _get_examples()

    assert (-fo).truncate() == -2*sin(x) + sin(2*x) - (2*sin(3*x) / 3)
    assert (-fe).truncate() == +4*cos(x) - cos(2*x) - pi**2 / 3


def test_FourierSeries__add__sub():
    fo, fe, fp = _get_examples()

    assert fo + fo == fo.scale(2)
    assert fo - fo == 0
    assert -fe - fe == fe.scale(-2)

    assert (fo + fe).truncate() == 2*sin(x) - sin(2*x) - 4*cos(x) + cos(2*x) \
        + pi**2 / 3
    assert (fo - fe).truncate() == 2*sin(x) - sin(2*x) + 4*cos(x) - cos(2*x) \
        - pi**2 / 3

    assert isinstance(fo + 1, Add)

    raises(ValueError, lambda: fo + fourier_series(x, (x, 0, 2)))


def test_FourierSeries_finite():

    assert fourier_series(sin(x)).truncate(1) == sin(x)
    # assert type(fourier_series(sin(x)*log(x))).truncate() == FourierSeries
    # assert type(fourier_series(sin(x**2+6))).truncate() == FourierSeries
    assert fourier_series(sin(x)*log(y)*exp(z),(x,pi,-pi)).truncate() == sin(x)*log(y)*exp(z)
    assert fourier_series(sin(x)**6).truncate(oo) == -15*cos(2*x)/32 + 3*cos(4*x)/16 - cos(6*x)/32 \
           + Rational(5, 16)
    assert fourier_series(sin(x) ** 6).truncate() == -15 * cos(2 * x) / 32 + 3 * cos(4 * x) / 16 \
           + Rational(5, 16)
    assert fourier_series(sin(4*x+3) + cos(3*x+4)).truncate(oo) ==  -sin(4)*sin(3*x) + sin(4*x)*cos(3) \
           + cos(4)*cos(3*x) + sin(3)*cos(4*x)
    assert fourier_series(sin(x)+cos(x)*tan(x)).truncate(oo) == 2*sin(x)
    assert fourier_series(cos(pi*x), (x, -1, 1)).truncate(oo) == cos(pi*x)
    assert fourier_series(cos(3*pi*x + 4) - sin(4*pi*x)*log(pi*y), (x, -1, 1)).truncate(oo) == -log(pi*y)*sin(4*pi*x)\
           - sin(4)*sin(3*pi*x) + cos(4)*cos(3*pi*x)