Spaces:
Sleeping
Sleeping
File size: 35,543 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 |
from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.decorators import call_highest_priority
from sympy.core.parameters import global_parameters
from sympy.core.function import AppliedUndef, expand
from sympy.core.mul import Mul
from sympy.core.numbers import Integer
from sympy.core.relational import Eq
from sympy.core.singleton import S, Singleton
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy, Symbol, Wild
from sympy.core.sympify import sympify
from sympy.matrices import Matrix
from sympy.polys import lcm, factor
from sympy.sets.sets import Interval, Intersection
from sympy.tensor.indexed import Idx
from sympy.utilities.iterables import flatten, is_sequence, iterable
###############################################################################
# SEQUENCES #
###############################################################################
class SeqBase(Basic):
"""Base class for sequences"""
is_commutative = True
_op_priority = 15
@staticmethod
def _start_key(expr):
"""Return start (if possible) else S.Infinity.
adapted from Set._infimum_key
"""
try:
start = expr.start
except NotImplementedError:
start = S.Infinity
return start
def _intersect_interval(self, other):
"""Returns start and stop.
Takes intersection over the two intervals.
"""
interval = Intersection(self.interval, other.interval)
return interval.inf, interval.sup
@property
def gen(self):
"""Returns the generator for the sequence"""
raise NotImplementedError("(%s).gen" % self)
@property
def interval(self):
"""The interval on which the sequence is defined"""
raise NotImplementedError("(%s).interval" % self)
@property
def start(self):
"""The starting point of the sequence. This point is included"""
raise NotImplementedError("(%s).start" % self)
@property
def stop(self):
"""The ending point of the sequence. This point is included"""
raise NotImplementedError("(%s).stop" % self)
@property
def length(self):
"""Length of the sequence"""
raise NotImplementedError("(%s).length" % self)
@property
def variables(self):
"""Returns a tuple of variables that are bounded"""
return ()
@property
def free_symbols(self):
"""
This method returns the symbols in the object, excluding those
that take on a specific value (i.e. the dummy symbols).
Examples
========
>>> from sympy import SeqFormula
>>> from sympy.abc import n, m
>>> SeqFormula(m*n**2, (n, 0, 5)).free_symbols
{m}
"""
return ({j for i in self.args for j in i.free_symbols
.difference(self.variables)})
@cacheit
def coeff(self, pt):
"""Returns the coefficient at point pt"""
if pt < self.start or pt > self.stop:
raise IndexError("Index %s out of bounds %s" % (pt, self.interval))
return self._eval_coeff(pt)
def _eval_coeff(self, pt):
raise NotImplementedError("The _eval_coeff method should be added to"
"%s to return coefficient so it is available"
"when coeff calls it."
% self.func)
def _ith_point(self, i):
"""Returns the i'th point of a sequence.
Explanation
===========
If start point is negative infinity, point is returned from the end.
Assumes the first point to be indexed zero.
Examples
=========
>>> from sympy import oo
>>> from sympy.series.sequences import SeqPer
bounded
>>> SeqPer((1, 2, 3), (-10, 10))._ith_point(0)
-10
>>> SeqPer((1, 2, 3), (-10, 10))._ith_point(5)
-5
End is at infinity
>>> SeqPer((1, 2, 3), (0, oo))._ith_point(5)
5
Starts at negative infinity
>>> SeqPer((1, 2, 3), (-oo, 0))._ith_point(5)
-5
"""
if self.start is S.NegativeInfinity:
initial = self.stop
else:
initial = self.start
if self.start is S.NegativeInfinity:
step = -1
else:
step = 1
return initial + i*step
def _add(self, other):
"""
Should only be used internally.
Explanation
===========
self._add(other) returns a new, term-wise added sequence if self
knows how to add with other, otherwise it returns ``None``.
``other`` should only be a sequence object.
Used within :class:`SeqAdd` class.
"""
return None
def _mul(self, other):
"""
Should only be used internally.
Explanation
===========
self._mul(other) returns a new, term-wise multiplied sequence if self
knows how to multiply with other, otherwise it returns ``None``.
``other`` should only be a sequence object.
Used within :class:`SeqMul` class.
"""
return None
def coeff_mul(self, other):
"""
Should be used when ``other`` is not a sequence. Should be
defined to define custom behaviour.
Examples
========
>>> from sympy import SeqFormula
>>> from sympy.abc import n
>>> SeqFormula(n**2).coeff_mul(2)
SeqFormula(2*n**2, (n, 0, oo))
Notes
=====
'*' defines multiplication of sequences with sequences only.
"""
return Mul(self, other)
def __add__(self, other):
"""Returns the term-wise addition of 'self' and 'other'.
``other`` should be a sequence.
Examples
========
>>> from sympy import SeqFormula
>>> from sympy.abc import n
>>> SeqFormula(n**2) + SeqFormula(n**3)
SeqFormula(n**3 + n**2, (n, 0, oo))
"""
if not isinstance(other, SeqBase):
raise TypeError('cannot add sequence and %s' % type(other))
return SeqAdd(self, other)
@call_highest_priority('__add__')
def __radd__(self, other):
return self + other
def __sub__(self, other):
"""Returns the term-wise subtraction of ``self`` and ``other``.
``other`` should be a sequence.
Examples
========
>>> from sympy import SeqFormula
>>> from sympy.abc import n
>>> SeqFormula(n**2) - (SeqFormula(n))
SeqFormula(n**2 - n, (n, 0, oo))
"""
if not isinstance(other, SeqBase):
raise TypeError('cannot subtract sequence and %s' % type(other))
return SeqAdd(self, -other)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return (-self) + other
def __neg__(self):
"""Negates the sequence.
Examples
========
>>> from sympy import SeqFormula
>>> from sympy.abc import n
>>> -SeqFormula(n**2)
SeqFormula(-n**2, (n, 0, oo))
"""
return self.coeff_mul(-1)
def __mul__(self, other):
"""Returns the term-wise multiplication of 'self' and 'other'.
``other`` should be a sequence. For ``other`` not being a
sequence see :func:`coeff_mul` method.
Examples
========
>>> from sympy import SeqFormula
>>> from sympy.abc import n
>>> SeqFormula(n**2) * (SeqFormula(n))
SeqFormula(n**3, (n, 0, oo))
"""
if not isinstance(other, SeqBase):
raise TypeError('cannot multiply sequence and %s' % type(other))
return SeqMul(self, other)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return self * other
def __iter__(self):
for i in range(self.length):
pt = self._ith_point(i)
yield self.coeff(pt)
def __getitem__(self, index):
if isinstance(index, int):
index = self._ith_point(index)
return self.coeff(index)
elif isinstance(index, slice):
start, stop = index.start, index.stop
if start is None:
start = 0
if stop is None:
stop = self.length
return [self.coeff(self._ith_point(i)) for i in
range(start, stop, index.step or 1)]
def find_linear_recurrence(self,n,d=None,gfvar=None):
r"""
Finds the shortest linear recurrence that satisfies the first n
terms of sequence of order `\leq` ``n/2`` if possible.
If ``d`` is specified, find shortest linear recurrence of order
`\leq` min(d, n/2) if possible.
Returns list of coefficients ``[b(1), b(2), ...]`` corresponding to the
recurrence relation ``x(n) = b(1)*x(n-1) + b(2)*x(n-2) + ...``
Returns ``[]`` if no recurrence is found.
If gfvar is specified, also returns ordinary generating function as a
function of gfvar.
Examples
========
>>> from sympy import sequence, sqrt, oo, lucas
>>> from sympy.abc import n, x, y
>>> sequence(n**2).find_linear_recurrence(10, 2)
[]
>>> sequence(n**2).find_linear_recurrence(10)
[3, -3, 1]
>>> sequence(2**n).find_linear_recurrence(10)
[2]
>>> sequence(23*n**4+91*n**2).find_linear_recurrence(10)
[5, -10, 10, -5, 1]
>>> sequence(sqrt(5)*(((1 + sqrt(5))/2)**n - (-(1 + sqrt(5))/2)**(-n))/5).find_linear_recurrence(10)
[1, 1]
>>> sequence(x+y*(-2)**(-n), (n, 0, oo)).find_linear_recurrence(30)
[1/2, 1/2]
>>> sequence(3*5**n + 12).find_linear_recurrence(20,gfvar=x)
([6, -5], 3*(5 - 21*x)/((x - 1)*(5*x - 1)))
>>> sequence(lucas(n)).find_linear_recurrence(15,gfvar=x)
([1, 1], (x - 2)/(x**2 + x - 1))
"""
from sympy.simplify import simplify
x = [simplify(expand(t)) for t in self[:n]]
lx = len(x)
if d is None:
r = lx//2
else:
r = min(d,lx//2)
coeffs = []
for l in range(1, r+1):
l2 = 2*l
mlist = []
for k in range(l):
mlist.append(x[k:k+l])
m = Matrix(mlist)
if m.det() != 0:
y = simplify(m.LUsolve(Matrix(x[l:l2])))
if lx == l2:
coeffs = flatten(y[::-1])
break
mlist = []
for k in range(l,lx-l):
mlist.append(x[k:k+l])
m = Matrix(mlist)
if m*y == Matrix(x[l2:]):
coeffs = flatten(y[::-1])
break
if gfvar is None:
return coeffs
else:
l = len(coeffs)
if l == 0:
return [], None
else:
n, d = x[l-1]*gfvar**(l-1), 1 - coeffs[l-1]*gfvar**l
for i in range(l-1):
n += x[i]*gfvar**i
for j in range(l-i-1):
n -= coeffs[i]*x[j]*gfvar**(i+j+1)
d -= coeffs[i]*gfvar**(i+1)
return coeffs, simplify(factor(n)/factor(d))
class EmptySequence(SeqBase, metaclass=Singleton):
"""Represents an empty sequence.
The empty sequence is also available as a singleton as
``S.EmptySequence``.
Examples
========
>>> from sympy import EmptySequence, SeqPer
>>> from sympy.abc import x
>>> EmptySequence
EmptySequence
>>> SeqPer((1, 2), (x, 0, 10)) + EmptySequence
SeqPer((1, 2), (x, 0, 10))
>>> SeqPer((1, 2)) * EmptySequence
EmptySequence
>>> EmptySequence.coeff_mul(-1)
EmptySequence
"""
@property
def interval(self):
return S.EmptySet
@property
def length(self):
return S.Zero
def coeff_mul(self, coeff):
"""See docstring of SeqBase.coeff_mul"""
return self
def __iter__(self):
return iter([])
class SeqExpr(SeqBase):
"""Sequence expression class.
Various sequences should inherit from this class.
Examples
========
>>> from sympy.series.sequences import SeqExpr
>>> from sympy.abc import x
>>> from sympy import Tuple
>>> s = SeqExpr(Tuple(1, 2, 3), Tuple(x, 0, 10))
>>> s.gen
(1, 2, 3)
>>> s.interval
Interval(0, 10)
>>> s.length
11
See Also
========
sympy.series.sequences.SeqPer
sympy.series.sequences.SeqFormula
"""
@property
def gen(self):
return self.args[0]
@property
def interval(self):
return Interval(self.args[1][1], self.args[1][2])
@property
def start(self):
return self.interval.inf
@property
def stop(self):
return self.interval.sup
@property
def length(self):
return self.stop - self.start + 1
@property
def variables(self):
return (self.args[1][0],)
class SeqPer(SeqExpr):
"""
Represents a periodic sequence.
The elements are repeated after a given period.
Examples
========
>>> from sympy import SeqPer, oo
>>> from sympy.abc import k
>>> s = SeqPer((1, 2, 3), (0, 5))
>>> s.periodical
(1, 2, 3)
>>> s.period
3
For value at a particular point
>>> s.coeff(3)
1
supports slicing
>>> s[:]
[1, 2, 3, 1, 2, 3]
iterable
>>> list(s)
[1, 2, 3, 1, 2, 3]
sequence starts from negative infinity
>>> SeqPer((1, 2, 3), (-oo, 0))[0:6]
[1, 2, 3, 1, 2, 3]
Periodic formulas
>>> SeqPer((k, k**2, k**3), (k, 0, oo))[0:6]
[0, 1, 8, 3, 16, 125]
See Also
========
sympy.series.sequences.SeqFormula
"""
def __new__(cls, periodical, limits=None):
periodical = sympify(periodical)
def _find_x(periodical):
free = periodical.free_symbols
if len(periodical.free_symbols) == 1:
return free.pop()
else:
return Dummy('k')
x, start, stop = None, None, None
if limits is None:
x, start, stop = _find_x(periodical), 0, S.Infinity
if is_sequence(limits, Tuple):
if len(limits) == 3:
x, start, stop = limits
elif len(limits) == 2:
x = _find_x(periodical)
start, stop = limits
if not isinstance(x, (Symbol, Idx)) or start is None or stop is None:
raise ValueError('Invalid limits given: %s' % str(limits))
if start is S.NegativeInfinity and stop is S.Infinity:
raise ValueError("Both the start and end value"
"cannot be unbounded")
limits = sympify((x, start, stop))
if is_sequence(periodical, Tuple):
periodical = sympify(tuple(flatten(periodical)))
else:
raise ValueError("invalid period %s should be something "
"like e.g (1, 2) " % periodical)
if Interval(limits[1], limits[2]) is S.EmptySet:
return S.EmptySequence
return Basic.__new__(cls, periodical, limits)
@property
def period(self):
return len(self.gen)
@property
def periodical(self):
return self.gen
def _eval_coeff(self, pt):
if self.start is S.NegativeInfinity:
idx = (self.stop - pt) % self.period
else:
idx = (pt - self.start) % self.period
return self.periodical[idx].subs(self.variables[0], pt)
def _add(self, other):
"""See docstring of SeqBase._add"""
if isinstance(other, SeqPer):
per1, lper1 = self.periodical, self.period
per2, lper2 = other.periodical, other.period
per_length = lcm(lper1, lper2)
new_per = []
for x in range(per_length):
ele1 = per1[x % lper1]
ele2 = per2[x % lper2]
new_per.append(ele1 + ele2)
start, stop = self._intersect_interval(other)
return SeqPer(new_per, (self.variables[0], start, stop))
def _mul(self, other):
"""See docstring of SeqBase._mul"""
if isinstance(other, SeqPer):
per1, lper1 = self.periodical, self.period
per2, lper2 = other.periodical, other.period
per_length = lcm(lper1, lper2)
new_per = []
for x in range(per_length):
ele1 = per1[x % lper1]
ele2 = per2[x % lper2]
new_per.append(ele1 * ele2)
start, stop = self._intersect_interval(other)
return SeqPer(new_per, (self.variables[0], start, stop))
def coeff_mul(self, coeff):
"""See docstring of SeqBase.coeff_mul"""
coeff = sympify(coeff)
per = [x * coeff for x in self.periodical]
return SeqPer(per, self.args[1])
class SeqFormula(SeqExpr):
"""
Represents sequence based on a formula.
Elements are generated using a formula.
Examples
========
>>> from sympy import SeqFormula, oo, Symbol
>>> n = Symbol('n')
>>> s = SeqFormula(n**2, (n, 0, 5))
>>> s.formula
n**2
For value at a particular point
>>> s.coeff(3)
9
supports slicing
>>> s[:]
[0, 1, 4, 9, 16, 25]
iterable
>>> list(s)
[0, 1, 4, 9, 16, 25]
sequence starts from negative infinity
>>> SeqFormula(n**2, (-oo, 0))[0:6]
[0, 1, 4, 9, 16, 25]
See Also
========
sympy.series.sequences.SeqPer
"""
def __new__(cls, formula, limits=None):
formula = sympify(formula)
def _find_x(formula):
free = formula.free_symbols
if len(free) == 1:
return free.pop()
elif not free:
return Dummy('k')
else:
raise ValueError(
" specify dummy variables for %s. If the formula contains"
" more than one free symbol, a dummy variable should be"
" supplied explicitly e.g., SeqFormula(m*n**2, (n, 0, 5))"
% formula)
x, start, stop = None, None, None
if limits is None:
x, start, stop = _find_x(formula), 0, S.Infinity
if is_sequence(limits, Tuple):
if len(limits) == 3:
x, start, stop = limits
elif len(limits) == 2:
x = _find_x(formula)
start, stop = limits
if not isinstance(x, (Symbol, Idx)) or start is None or stop is None:
raise ValueError('Invalid limits given: %s' % str(limits))
if start is S.NegativeInfinity and stop is S.Infinity:
raise ValueError("Both the start and end value "
"cannot be unbounded")
limits = sympify((x, start, stop))
if Interval(limits[1], limits[2]) is S.EmptySet:
return S.EmptySequence
return Basic.__new__(cls, formula, limits)
@property
def formula(self):
return self.gen
def _eval_coeff(self, pt):
d = self.variables[0]
return self.formula.subs(d, pt)
def _add(self, other):
"""See docstring of SeqBase._add"""
if isinstance(other, SeqFormula):
form1, v1 = self.formula, self.variables[0]
form2, v2 = other.formula, other.variables[0]
formula = form1 + form2.subs(v2, v1)
start, stop = self._intersect_interval(other)
return SeqFormula(formula, (v1, start, stop))
def _mul(self, other):
"""See docstring of SeqBase._mul"""
if isinstance(other, SeqFormula):
form1, v1 = self.formula, self.variables[0]
form2, v2 = other.formula, other.variables[0]
formula = form1 * form2.subs(v2, v1)
start, stop = self._intersect_interval(other)
return SeqFormula(formula, (v1, start, stop))
def coeff_mul(self, coeff):
"""See docstring of SeqBase.coeff_mul"""
coeff = sympify(coeff)
formula = self.formula * coeff
return SeqFormula(formula, self.args[1])
def expand(self, *args, **kwargs):
return SeqFormula(expand(self.formula, *args, **kwargs), self.args[1])
class RecursiveSeq(SeqBase):
"""
A finite degree recursive sequence.
Explanation
===========
That is, a sequence a(n) that depends on a fixed, finite number of its
previous values. The general form is
a(n) = f(a(n - 1), a(n - 2), ..., a(n - d))
for some fixed, positive integer d, where f is some function defined by a
SymPy expression.
Parameters
==========
recurrence : SymPy expression defining recurrence
This is *not* an equality, only the expression that the nth term is
equal to. For example, if :code:`a(n) = f(a(n - 1), ..., a(n - d))`,
then the expression should be :code:`f(a(n - 1), ..., a(n - d))`.
yn : applied undefined function
Represents the nth term of the sequence as e.g. :code:`y(n)` where
:code:`y` is an undefined function and `n` is the sequence index.
n : symbolic argument
The name of the variable that the recurrence is in, e.g., :code:`n` if
the recurrence function is :code:`y(n)`.
initial : iterable with length equal to the degree of the recurrence
The initial values of the recurrence.
start : start value of sequence (inclusive)
Examples
========
>>> from sympy import Function, symbols
>>> from sympy.series.sequences import RecursiveSeq
>>> y = Function("y")
>>> n = symbols("n")
>>> fib = RecursiveSeq(y(n - 1) + y(n - 2), y(n), n, [0, 1])
>>> fib.coeff(3) # Value at a particular point
2
>>> fib[:6] # supports slicing
[0, 1, 1, 2, 3, 5]
>>> fib.recurrence # inspect recurrence
Eq(y(n), y(n - 2) + y(n - 1))
>>> fib.degree # automatically determine degree
2
>>> for x in zip(range(10), fib): # supports iteration
... print(x)
(0, 0)
(1, 1)
(2, 1)
(3, 2)
(4, 3)
(5, 5)
(6, 8)
(7, 13)
(8, 21)
(9, 34)
See Also
========
sympy.series.sequences.SeqFormula
"""
def __new__(cls, recurrence, yn, n, initial=None, start=0):
if not isinstance(yn, AppliedUndef):
raise TypeError("recurrence sequence must be an applied undefined function"
", found `{}`".format(yn))
if not isinstance(n, Basic) or not n.is_symbol:
raise TypeError("recurrence variable must be a symbol"
", found `{}`".format(n))
if yn.args != (n,):
raise TypeError("recurrence sequence does not match symbol")
y = yn.func
k = Wild("k", exclude=(n,))
degree = 0
# Find all applications of y in the recurrence and check that:
# 1. The function y is only being used with a single argument; and
# 2. All arguments are n + k for constant negative integers k.
prev_ys = recurrence.find(y)
for prev_y in prev_ys:
if len(prev_y.args) != 1:
raise TypeError("Recurrence should be in a single variable")
shift = prev_y.args[0].match(n + k)[k]
if not (shift.is_constant() and shift.is_integer and shift < 0):
raise TypeError("Recurrence should have constant,"
" negative, integer shifts"
" (found {})".format(prev_y))
if -shift > degree:
degree = -shift
if not initial:
initial = [Dummy("c_{}".format(k)) for k in range(degree)]
if len(initial) != degree:
raise ValueError("Number of initial terms must equal degree")
degree = Integer(degree)
start = sympify(start)
initial = Tuple(*(sympify(x) for x in initial))
seq = Basic.__new__(cls, recurrence, yn, n, initial, start)
seq.cache = {y(start + k): init for k, init in enumerate(initial)}
seq.degree = degree
return seq
@property
def _recurrence(self):
"""Equation defining recurrence."""
return self.args[0]
@property
def recurrence(self):
"""Equation defining recurrence."""
return Eq(self.yn, self.args[0])
@property
def yn(self):
"""Applied function representing the nth term"""
return self.args[1]
@property
def y(self):
"""Undefined function for the nth term of the sequence"""
return self.yn.func
@property
def n(self):
"""Sequence index symbol"""
return self.args[2]
@property
def initial(self):
"""The initial values of the sequence"""
return self.args[3]
@property
def start(self):
"""The starting point of the sequence. This point is included"""
return self.args[4]
@property
def stop(self):
"""The ending point of the sequence. (oo)"""
return S.Infinity
@property
def interval(self):
"""Interval on which sequence is defined."""
return (self.start, S.Infinity)
def _eval_coeff(self, index):
if index - self.start < len(self.cache):
return self.cache[self.y(index)]
for current in range(len(self.cache), index + 1):
# Use xreplace over subs for performance.
# See issue #10697.
seq_index = self.start + current
current_recurrence = self._recurrence.xreplace({self.n: seq_index})
new_term = current_recurrence.xreplace(self.cache)
self.cache[self.y(seq_index)] = new_term
return self.cache[self.y(self.start + current)]
def __iter__(self):
index = self.start
while True:
yield self._eval_coeff(index)
index += 1
def sequence(seq, limits=None):
"""
Returns appropriate sequence object.
Explanation
===========
If ``seq`` is a SymPy sequence, returns :class:`SeqPer` object
otherwise returns :class:`SeqFormula` object.
Examples
========
>>> from sympy import sequence
>>> from sympy.abc import n
>>> sequence(n**2, (n, 0, 5))
SeqFormula(n**2, (n, 0, 5))
>>> sequence((1, 2, 3), (n, 0, 5))
SeqPer((1, 2, 3), (n, 0, 5))
See Also
========
sympy.series.sequences.SeqPer
sympy.series.sequences.SeqFormula
"""
seq = sympify(seq)
if is_sequence(seq, Tuple):
return SeqPer(seq, limits)
else:
return SeqFormula(seq, limits)
###############################################################################
# OPERATIONS #
###############################################################################
class SeqExprOp(SeqBase):
"""
Base class for operations on sequences.
Examples
========
>>> from sympy.series.sequences import SeqExprOp, sequence
>>> from sympy.abc import n
>>> s1 = sequence(n**2, (n, 0, 10))
>>> s2 = sequence((1, 2, 3), (n, 5, 10))
>>> s = SeqExprOp(s1, s2)
>>> s.gen
(n**2, (1, 2, 3))
>>> s.interval
Interval(5, 10)
>>> s.length
6
See Also
========
sympy.series.sequences.SeqAdd
sympy.series.sequences.SeqMul
"""
@property
def gen(self):
"""Generator for the sequence.
returns a tuple of generators of all the argument sequences.
"""
return tuple(a.gen for a in self.args)
@property
def interval(self):
"""Sequence is defined on the intersection
of all the intervals of respective sequences
"""
return Intersection(*(a.interval for a in self.args))
@property
def start(self):
return self.interval.inf
@property
def stop(self):
return self.interval.sup
@property
def variables(self):
"""Cumulative of all the bound variables"""
return tuple(flatten([a.variables for a in self.args]))
@property
def length(self):
return self.stop - self.start + 1
class SeqAdd(SeqExprOp):
"""Represents term-wise addition of sequences.
Rules:
* The interval on which sequence is defined is the intersection
of respective intervals of sequences.
* Anything + :class:`EmptySequence` remains unchanged.
* Other rules are defined in ``_add`` methods of sequence classes.
Examples
========
>>> from sympy import EmptySequence, oo, SeqAdd, SeqPer, SeqFormula
>>> from sympy.abc import n
>>> SeqAdd(SeqPer((1, 2), (n, 0, oo)), EmptySequence)
SeqPer((1, 2), (n, 0, oo))
>>> SeqAdd(SeqPer((1, 2), (n, 0, 5)), SeqPer((1, 2), (n, 6, 10)))
EmptySequence
>>> SeqAdd(SeqPer((1, 2), (n, 0, oo)), SeqFormula(n**2, (n, 0, oo)))
SeqAdd(SeqFormula(n**2, (n, 0, oo)), SeqPer((1, 2), (n, 0, oo)))
>>> SeqAdd(SeqFormula(n**3), SeqFormula(n**2))
SeqFormula(n**3 + n**2, (n, 0, oo))
See Also
========
sympy.series.sequences.SeqMul
"""
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs
args = list(args)
# adapted from sympy.sets.sets.Union
def _flatten(arg):
if isinstance(arg, SeqBase):
if isinstance(arg, SeqAdd):
return sum(map(_flatten, arg.args), [])
else:
return [arg]
if iterable(arg):
return sum(map(_flatten, arg), [])
raise TypeError("Input must be Sequences or "
" iterables of Sequences")
args = _flatten(args)
args = [a for a in args if a is not S.EmptySequence]
# Addition of no sequences is EmptySequence
if not args:
return S.EmptySequence
if Intersection(*(a.interval for a in args)) is S.EmptySet:
return S.EmptySequence
# reduce using known rules
if evaluate:
return SeqAdd.reduce(args)
args = list(ordered(args, SeqBase._start_key))
return Basic.__new__(cls, *args)
@staticmethod
def reduce(args):
"""Simplify :class:`SeqAdd` using known rules.
Iterates through all pairs and ask the constituent
sequences if they can simplify themselves with any other constituent.
Notes
=====
adapted from ``Union.reduce``
"""
new_args = True
while new_args:
for id1, s in enumerate(args):
new_args = False
for id2, t in enumerate(args):
if id1 == id2:
continue
new_seq = s._add(t)
# This returns None if s does not know how to add
# with t. Returns the newly added sequence otherwise
if new_seq is not None:
new_args = [a for a in args if a not in (s, t)]
new_args.append(new_seq)
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return SeqAdd(args, evaluate=False)
def _eval_coeff(self, pt):
"""adds up the coefficients of all the sequences at point pt"""
return sum(a.coeff(pt) for a in self.args)
class SeqMul(SeqExprOp):
r"""Represents term-wise multiplication of sequences.
Explanation
===========
Handles multiplication of sequences only. For multiplication
with other objects see :func:`SeqBase.coeff_mul`.
Rules:
* The interval on which sequence is defined is the intersection
of respective intervals of sequences.
* Anything \* :class:`EmptySequence` returns :class:`EmptySequence`.
* Other rules are defined in ``_mul`` methods of sequence classes.
Examples
========
>>> from sympy import EmptySequence, oo, SeqMul, SeqPer, SeqFormula
>>> from sympy.abc import n
>>> SeqMul(SeqPer((1, 2), (n, 0, oo)), EmptySequence)
EmptySequence
>>> SeqMul(SeqPer((1, 2), (n, 0, 5)), SeqPer((1, 2), (n, 6, 10)))
EmptySequence
>>> SeqMul(SeqPer((1, 2), (n, 0, oo)), SeqFormula(n**2))
SeqMul(SeqFormula(n**2, (n, 0, oo)), SeqPer((1, 2), (n, 0, oo)))
>>> SeqMul(SeqFormula(n**3), SeqFormula(n**2))
SeqFormula(n**5, (n, 0, oo))
See Also
========
sympy.series.sequences.SeqAdd
"""
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs
args = list(args)
# adapted from sympy.sets.sets.Union
def _flatten(arg):
if isinstance(arg, SeqBase):
if isinstance(arg, SeqMul):
return sum(map(_flatten, arg.args), [])
else:
return [arg]
elif iterable(arg):
return sum(map(_flatten, arg), [])
raise TypeError("Input must be Sequences or "
" iterables of Sequences")
args = _flatten(args)
# Multiplication of no sequences is EmptySequence
if not args:
return S.EmptySequence
if Intersection(*(a.interval for a in args)) is S.EmptySet:
return S.EmptySequence
# reduce using known rules
if evaluate:
return SeqMul.reduce(args)
args = list(ordered(args, SeqBase._start_key))
return Basic.__new__(cls, *args)
@staticmethod
def reduce(args):
"""Simplify a :class:`SeqMul` using known rules.
Explanation
===========
Iterates through all pairs and ask the constituent
sequences if they can simplify themselves with any other constituent.
Notes
=====
adapted from ``Union.reduce``
"""
new_args = True
while new_args:
for id1, s in enumerate(args):
new_args = False
for id2, t in enumerate(args):
if id1 == id2:
continue
new_seq = s._mul(t)
# This returns None if s does not know how to multiply
# with t. Returns the newly multiplied sequence otherwise
if new_seq is not None:
new_args = [a for a in args if a not in (s, t)]
new_args.append(new_seq)
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return SeqMul(args, evaluate=False)
def _eval_coeff(self, pt):
"""multiplies the coefficients of all the sequences at point pt"""
val = 1
for a in self.args:
val *= a.coeff(pt)
return val
|