File size: 19,092 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
"""
.. deprecated:: 1.8

  ``sympy.printing.theanocode`` is deprecated. Theano has been renamed to
  Aesara. Use ``sympy.printing.aesaracode`` instead. See
  :ref:`theanocode-deprecated` for more information.

"""
from __future__ import annotations
from typing import Any

from sympy.external import import_module
from sympy.printing.printer import Printer
from sympy.utilities.iterables import is_sequence
import sympy
from functools import partial

from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.exceptions import sympy_deprecation_warning


__doctest_requires__ = {('theano_function',): ['theano']}


theano = import_module('theano')


if theano:
    ts = theano.scalar
    tt = theano.tensor
    from theano.sandbox import linalg as tlinalg

    mapping = {
            sympy.Add: tt.add,
            sympy.Mul: tt.mul,
            sympy.Abs: tt.abs_,
            sympy.sign: tt.sgn,
            sympy.ceiling: tt.ceil,
            sympy.floor: tt.floor,
            sympy.log: tt.log,
            sympy.exp: tt.exp,
            sympy.sqrt: tt.sqrt,
            sympy.cos: tt.cos,
            sympy.acos: tt.arccos,
            sympy.sin: tt.sin,
            sympy.asin: tt.arcsin,
            sympy.tan: tt.tan,
            sympy.atan: tt.arctan,
            sympy.atan2: tt.arctan2,
            sympy.cosh: tt.cosh,
            sympy.acosh: tt.arccosh,
            sympy.sinh: tt.sinh,
            sympy.asinh: tt.arcsinh,
            sympy.tanh: tt.tanh,
            sympy.atanh: tt.arctanh,
            sympy.re: tt.real,
            sympy.im: tt.imag,
            sympy.arg: tt.angle,
            sympy.erf: tt.erf,
            sympy.gamma: tt.gamma,
            sympy.loggamma: tt.gammaln,
            sympy.Pow: tt.pow,
            sympy.Eq: tt.eq,
            sympy.StrictGreaterThan: tt.gt,
            sympy.StrictLessThan: tt.lt,
            sympy.LessThan: tt.le,
            sympy.GreaterThan: tt.ge,
            sympy.And: tt.and_,
            sympy.Or: tt.or_,
            sympy.Max: tt.maximum,  # SymPy accept >2 inputs, Theano only 2
            sympy.Min: tt.minimum,  # SymPy accept >2 inputs, Theano only 2
            sympy.conjugate: tt.conj,
            sympy.core.numbers.ImaginaryUnit: lambda:tt.complex(0,1),
            # Matrices
            sympy.MatAdd: tt.Elemwise(ts.add),
            sympy.HadamardProduct: tt.Elemwise(ts.mul),
            sympy.Trace: tlinalg.trace,
            sympy.Determinant : tlinalg.det,
            sympy.Inverse: tlinalg.matrix_inverse,
            sympy.Transpose: tt.DimShuffle((False, False), [1, 0]),
    }


class TheanoPrinter(Printer):
    """ Code printer which creates Theano symbolic expression graphs.

    Parameters
    ==========

    cache : dict
        Cache dictionary to use. If None (default) will use
        the global cache. To create a printer which does not depend on or alter
        global state pass an empty dictionary. Note: the dictionary is not
        copied on initialization of the printer and will be updated in-place,
        so using the same dict object when creating multiple printers or making
        multiple calls to :func:`.theano_code` or :func:`.theano_function` means
        the cache is shared between all these applications.

    Attributes
    ==========

    cache : dict
        A cache of Theano variables which have been created for SymPy
        symbol-like objects (e.g. :class:`sympy.core.symbol.Symbol` or
        :class:`sympy.matrices.expressions.MatrixSymbol`). This is used to
        ensure that all references to a given symbol in an expression (or
        multiple expressions) are printed as the same Theano variable, which is
        created only once. Symbols are differentiated only by name and type. The
        format of the cache's contents should be considered opaque to the user.
    """
    printmethod = "_theano"

    def __init__(self, *args, **kwargs):
        self.cache = kwargs.pop('cache', {})
        super().__init__(*args, **kwargs)

    def _get_key(self, s, name=None, dtype=None, broadcastable=None):
        """ Get the cache key for a SymPy object.

        Parameters
        ==========

        s : sympy.core.basic.Basic
            SymPy object to get key for.

        name : str
            Name of object, if it does not have a ``name`` attribute.
        """

        if name is None:
            name = s.name

        return (name, type(s), s.args, dtype, broadcastable)

    def _get_or_create(self, s, name=None, dtype=None, broadcastable=None):
        """
        Get the Theano variable for a SymPy symbol from the cache, or create it
        if it does not exist.
        """

        # Defaults
        if name is None:
            name = s.name
        if dtype is None:
            dtype = 'floatX'
        if broadcastable is None:
            broadcastable = ()

        key = self._get_key(s, name, dtype=dtype, broadcastable=broadcastable)

        if key in self.cache:
            return self.cache[key]

        value = tt.tensor(name=name, dtype=dtype, broadcastable=broadcastable)
        self.cache[key] = value
        return value

    def _print_Symbol(self, s, **kwargs):
        dtype = kwargs.get('dtypes', {}).get(s)
        bc = kwargs.get('broadcastables', {}).get(s)
        return self._get_or_create(s, dtype=dtype, broadcastable=bc)

    def _print_AppliedUndef(self, s, **kwargs):
        name = str(type(s)) + '_' + str(s.args[0])
        dtype = kwargs.get('dtypes', {}).get(s)
        bc = kwargs.get('broadcastables', {}).get(s)
        return self._get_or_create(s, name=name, dtype=dtype, broadcastable=bc)

    def _print_Basic(self, expr, **kwargs):
        op = mapping[type(expr)]
        children = [self._print(arg, **kwargs) for arg in expr.args]
        return op(*children)

    def _print_Number(self, n, **kwargs):
        # Integers already taken care of below, interpret as float
        return float(n.evalf())

    def _print_MatrixSymbol(self, X, **kwargs):
        dtype = kwargs.get('dtypes', {}).get(X)
        return self._get_or_create(X, dtype=dtype, broadcastable=(None, None))

    def _print_DenseMatrix(self, X, **kwargs):
        if not hasattr(tt, 'stacklists'):
            raise NotImplementedError(
               "Matrix translation not yet supported in this version of Theano")

        return tt.stacklists([
            [self._print(arg, **kwargs) for arg in L]
            for L in X.tolist()
        ])

    _print_ImmutableMatrix = _print_ImmutableDenseMatrix = _print_DenseMatrix

    def _print_MatMul(self, expr, **kwargs):
        children = [self._print(arg, **kwargs) for arg in expr.args]
        result = children[0]
        for child in children[1:]:
            result = tt.dot(result, child)
        return result

    def _print_MatPow(self, expr, **kwargs):
        children = [self._print(arg, **kwargs) for arg in expr.args]
        result = 1
        if isinstance(children[1], int) and children[1] > 0:
            for i in range(children[1]):
                result = tt.dot(result, children[0])
        else:
            raise NotImplementedError('''Only non-negative integer
           powers of matrices can be handled by Theano at the moment''')
        return result

    def _print_MatrixSlice(self, expr, **kwargs):
        parent = self._print(expr.parent, **kwargs)
        rowslice = self._print(slice(*expr.rowslice), **kwargs)
        colslice = self._print(slice(*expr.colslice), **kwargs)
        return parent[rowslice, colslice]

    def _print_BlockMatrix(self, expr, **kwargs):
        nrows, ncols = expr.blocks.shape
        blocks = [[self._print(expr.blocks[r, c], **kwargs)
                        for c in range(ncols)]
                        for r in range(nrows)]
        return tt.join(0, *[tt.join(1, *row) for row in blocks])


    def _print_slice(self, expr, **kwargs):
        return slice(*[self._print(i, **kwargs)
                        if isinstance(i, sympy.Basic) else i
                        for i in (expr.start, expr.stop, expr.step)])

    def _print_Pi(self, expr, **kwargs):
        return 3.141592653589793

    def _print_Exp1(self, expr, **kwargs):
        return ts.exp(1)

    def _print_Piecewise(self, expr, **kwargs):
        import numpy as np
        e, cond = expr.args[0].args  # First condition and corresponding value

        # Print conditional expression and value for first condition
        p_cond = self._print(cond, **kwargs)
        p_e = self._print(e, **kwargs)

        # One condition only
        if len(expr.args) == 1:
            # Return value if condition else NaN
            return tt.switch(p_cond, p_e, np.nan)

        # Return value_1 if condition_1 else evaluate remaining conditions
        p_remaining = self._print(sympy.Piecewise(*expr.args[1:]), **kwargs)
        return tt.switch(p_cond, p_e, p_remaining)

    def _print_Rational(self, expr, **kwargs):
        return tt.true_div(self._print(expr.p, **kwargs),
                           self._print(expr.q, **kwargs))

    def _print_Integer(self, expr, **kwargs):
        return expr.p

    def _print_factorial(self, expr, **kwargs):
        return self._print(sympy.gamma(expr.args[0] + 1), **kwargs)

    def _print_Derivative(self, deriv, **kwargs):
        rv = self._print(deriv.expr, **kwargs)
        for var in deriv.variables:
            var = self._print(var, **kwargs)
            rv = tt.Rop(rv, var, tt.ones_like(var))
        return rv

    def emptyPrinter(self, expr):
        return expr

    def doprint(self, expr, dtypes=None, broadcastables=None):
        """ Convert a SymPy expression to a Theano graph variable.

        The ``dtypes`` and ``broadcastables`` arguments are used to specify the
        data type, dimension, and broadcasting behavior of the Theano variables
        corresponding to the free symbols in ``expr``. Each is a mapping from
        SymPy symbols to the value of the corresponding argument to
        ``theano.tensor.Tensor``.

        See the corresponding `documentation page`__ for more information on
        broadcasting in Theano.

        .. __: http://deeplearning.net/software/theano/tutorial/broadcasting.html

        Parameters
        ==========

        expr : sympy.core.expr.Expr
            SymPy expression to print.

        dtypes : dict
            Mapping from SymPy symbols to Theano datatypes to use when creating
            new Theano variables for those symbols. Corresponds to the ``dtype``
            argument to ``theano.tensor.Tensor``. Defaults to ``'floatX'``
            for symbols not included in the mapping.

        broadcastables : dict
            Mapping from SymPy symbols to the value of the ``broadcastable``
            argument to ``theano.tensor.Tensor`` to use when creating Theano
            variables for those symbols. Defaults to the empty tuple for symbols
            not included in the mapping (resulting in a scalar).

        Returns
        =======

        theano.gof.graph.Variable
            A variable corresponding to the expression's value in a Theano
            symbolic expression graph.

        """
        if dtypes is None:
            dtypes = {}
        if broadcastables is None:
            broadcastables = {}

        return self._print(expr, dtypes=dtypes, broadcastables=broadcastables)


global_cache: dict[Any, Any] = {}


def theano_code(expr, cache=None, **kwargs):
    """
    Convert a SymPy expression into a Theano graph variable.

    .. deprecated:: 1.8

      ``sympy.printing.theanocode`` is deprecated. Theano has been renamed to
      Aesara. Use ``sympy.printing.aesaracode`` instead. See
      :ref:`theanocode-deprecated` for more information.

    Parameters
    ==========

    expr : sympy.core.expr.Expr
        SymPy expression object to convert.

    cache : dict
        Cached Theano variables (see :class:`TheanoPrinter.cache
        <TheanoPrinter>`). Defaults to the module-level global cache.

    dtypes : dict
        Passed to :meth:`.TheanoPrinter.doprint`.

    broadcastables : dict
        Passed to :meth:`.TheanoPrinter.doprint`.

    Returns
    =======

    theano.gof.graph.Variable
        A variable corresponding to the expression's value in a Theano symbolic
        expression graph.

    """
    sympy_deprecation_warning(
        """
        sympy.printing.theanocode is deprecated. Theano has been renamed to
        Aesara. Use sympy.printing.aesaracode instead.""",
        deprecated_since_version="1.8",
    active_deprecations_target='theanocode-deprecated')

    if not theano:
        raise ImportError("theano is required for theano_code")

    if cache is None:
        cache = global_cache

    return TheanoPrinter(cache=cache, settings={}).doprint(expr, **kwargs)


def dim_handling(inputs, dim=None, dims=None, broadcastables=None):
    r"""
    Get value of ``broadcastables`` argument to :func:`.theano_code` from
    keyword arguments to :func:`.theano_function`.

    Included for backwards compatibility.

    Parameters
    ==========

    inputs
        Sequence of input symbols.

    dim : int
        Common number of dimensions for all inputs. Overrides other arguments
        if given.

    dims : dict
        Mapping from input symbols to number of dimensions. Overrides
        ``broadcastables`` argument if given.

    broadcastables : dict
        Explicit value of ``broadcastables`` argument to
        :meth:`.TheanoPrinter.doprint`. If not None function will return this value unchanged.

    Returns
    =======
    dict
        Dictionary mapping elements of ``inputs`` to their "broadcastable"
        values (tuple of ``bool``\ s).
    """
    if dim is not None:
        return dict.fromkeys(inputs, (False,) * dim)

    if dims is not None:
        maxdim = max(dims.values())
        return {
            s: (False,) * d + (True,) * (maxdim - d)
            for s, d in dims.items()
        }

    if broadcastables is not None:
        return broadcastables

    return {}


@doctest_depends_on(modules=('theano',))
def theano_function(inputs, outputs, scalar=False, *,
        dim=None, dims=None, broadcastables=None, **kwargs):
    """
    Create a Theano function from SymPy expressions.

    .. deprecated:: 1.8

      ``sympy.printing.theanocode`` is deprecated. Theano has been renamed to
      Aesara. Use ``sympy.printing.aesaracode`` instead. See
      :ref:`theanocode-deprecated` for more information.

    The inputs and outputs are converted to Theano variables using
    :func:`.theano_code` and then passed to ``theano.function``.

    Parameters
    ==========

    inputs
        Sequence of symbols which constitute the inputs of the function.

    outputs
        Sequence of expressions which constitute the outputs(s) of the
        function. The free symbols of each expression must be a subset of
        ``inputs``.

    scalar : bool
        Convert 0-dimensional arrays in output to scalars. This will return a
        Python wrapper function around the Theano function object.

    cache : dict
        Cached Theano variables (see :class:`TheanoPrinter.cache
        <TheanoPrinter>`). Defaults to the module-level global cache.

    dtypes : dict
        Passed to :meth:`.TheanoPrinter.doprint`.

    broadcastables : dict
        Passed to :meth:`.TheanoPrinter.doprint`.

    dims : dict
        Alternative to ``broadcastables`` argument. Mapping from elements of
        ``inputs`` to integers indicating the dimension of their associated
        arrays/tensors. Overrides ``broadcastables`` argument if given.

    dim : int
        Another alternative to the ``broadcastables`` argument. Common number of
        dimensions to use for all arrays/tensors.
        ``theano_function([x, y], [...], dim=2)`` is equivalent to using
        ``broadcastables={x: (False, False), y: (False, False)}``.

    Returns
    =======
    callable
        A callable object which takes values of ``inputs`` as positional
        arguments and returns an output array for each of the expressions
        in ``outputs``. If ``outputs`` is a single expression the function will
        return a Numpy array, if it is a list of multiple expressions the
        function will return a list of arrays. See description of the ``squeeze``
        argument above for the behavior when a single output is passed in a list.
        The returned object will either be an instance of
        ``theano.compile.function_module.Function`` or a Python wrapper
        function around one. In both cases, the returned value will have a
        ``theano_function`` attribute which points to the return value of
        ``theano.function``.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.printing.theanocode import theano_function

    A simple function with one input and one output:

    >>> f1 = theano_function([x], [x**2 - 1], scalar=True)
    >>> f1(3)
    8.0

    A function with multiple inputs and one output:

    >>> f2 = theano_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True)
    >>> f2(3, 4, 2)
    5.0

    A function with multiple inputs and multiple outputs:

    >>> f3 = theano_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True)
    >>> f3(2, 3)
    [13.0, -5.0]

    See also
    ========

    dim_handling

    """
    sympy_deprecation_warning(
        """
        sympy.printing.theanocode is deprecated. Theano has been renamed to Aesara. Use sympy.printing.aesaracode instead""",
        deprecated_since_version="1.8",
    active_deprecations_target='theanocode-deprecated')

    if not theano:
        raise ImportError("theano is required for theano_function")

    # Pop off non-theano keyword args
    cache = kwargs.pop('cache', {})
    dtypes = kwargs.pop('dtypes', {})

    broadcastables = dim_handling(
        inputs, dim=dim, dims=dims, broadcastables=broadcastables,
    )

    # Print inputs/outputs
    code = partial(theano_code, cache=cache, dtypes=dtypes,
                   broadcastables=broadcastables)
    tinputs = list(map(code, inputs))
    toutputs = list(map(code, outputs))

    #fix constant expressions as variables
    toutputs = [output if isinstance(output, theano.Variable) else tt.as_tensor_variable(output) for output in toutputs]

    if len(toutputs) == 1:
        toutputs = toutputs[0]

    # Compile theano func
    func = theano.function(tinputs, toutputs, **kwargs)

    is_0d = [len(o.variable.broadcastable) == 0 for o in func.outputs]

    # No wrapper required
    if not scalar or not any(is_0d):
        func.theano_function = func
        return func

    # Create wrapper to convert 0-dimensional outputs to scalars
    def wrapper(*args):
        out = func(*args)
        # out can be array(1.0) or [array(1.0), array(2.0)]

        if is_sequence(out):
            return [o[()] if is_0d[i] else o for i, o in enumerate(out)]
        else:
            return out[()]

    wrapper.__wrapped__ = func
    wrapper.__doc__ = func.__doc__
    wrapper.theano_function = func
    return wrapper