File size: 8,128 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from sympy.core.function import (Derivative, Function)
from sympy.core.numbers import (I, Rational, oo, pi)
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne)
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import (Abs, conjugate)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.integrals.integrals import Integral
from sympy.matrices.dense import Matrix
from sympy.series.limits import limit

from sympy.printing.python import python

from sympy.testing.pytest import raises, XFAIL

x, y = symbols('x,y')
th = Symbol('theta')
ph = Symbol('phi')


def test_python_basic():
    # Simple numbers/symbols
    assert python(-Rational(1)/2) == "e = Rational(-1, 2)"
    assert python(-Rational(13)/22) == "e = Rational(-13, 22)"
    assert python(oo) == "e = oo"

    # Powers
    assert python(x**2) == "x = Symbol(\'x\')\ne = x**2"
    assert python(1/x) == "x = Symbol('x')\ne = 1/x"
    assert python(y*x**-2) == "y = Symbol('y')\nx = Symbol('x')\ne = y/x**2"
    assert python(
        x**Rational(-5, 2)) == "x = Symbol('x')\ne = x**Rational(-5, 2)"

    # Sums of terms
    assert python(x**2 + x + 1) in [
        "x = Symbol('x')\ne = 1 + x + x**2",
        "x = Symbol('x')\ne = x + x**2 + 1",
        "x = Symbol('x')\ne = x**2 + x + 1", ]
    assert python(1 - x) in [
        "x = Symbol('x')\ne = 1 - x",
        "x = Symbol('x')\ne = -x + 1"]
    assert python(1 - 2*x) in [
        "x = Symbol('x')\ne = 1 - 2*x",
        "x = Symbol('x')\ne = -2*x + 1"]
    assert python(1 - Rational(3, 2)*y/x) in [
        "y = Symbol('y')\nx = Symbol('x')\ne = 1 - 3/2*y/x",
        "y = Symbol('y')\nx = Symbol('x')\ne = -3/2*y/x + 1",
        "y = Symbol('y')\nx = Symbol('x')\ne = 1 - 3*y/(2*x)"]

    # Multiplication
    assert python(x/y) == "x = Symbol('x')\ny = Symbol('y')\ne = x/y"
    assert python(-x/y) == "x = Symbol('x')\ny = Symbol('y')\ne = -x/y"
    assert python((x + 2)/y) in [
        "y = Symbol('y')\nx = Symbol('x')\ne = 1/y*(2 + x)",
        "y = Symbol('y')\nx = Symbol('x')\ne = 1/y*(x + 2)",
        "x = Symbol('x')\ny = Symbol('y')\ne = 1/y*(2 + x)",
        "x = Symbol('x')\ny = Symbol('y')\ne = (2 + x)/y",
        "x = Symbol('x')\ny = Symbol('y')\ne = (x + 2)/y"]
    assert python((1 + x)*y) in [
        "y = Symbol('y')\nx = Symbol('x')\ne = y*(1 + x)",
        "y = Symbol('y')\nx = Symbol('x')\ne = y*(x + 1)", ]

    # Check for proper placement of negative sign
    assert python(-5*x/(x + 10)) == "x = Symbol('x')\ne = -5*x/(x + 10)"
    assert python(1 - Rational(3, 2)*(x + 1)) in [
        "x = Symbol('x')\ne = Rational(-3, 2)*x + Rational(-1, 2)",
        "x = Symbol('x')\ne = -3*x/2 + Rational(-1, 2)",
        "x = Symbol('x')\ne = -3*x/2 + Rational(-1, 2)"
    ]


def test_python_keyword_symbol_name_escaping():
    # Check for escaping of keywords
    assert python(
        5*Symbol("lambda")) == "lambda_ = Symbol('lambda')\ne = 5*lambda_"
    assert (python(5*Symbol("lambda") + 7*Symbol("lambda_")) ==
            "lambda__ = Symbol('lambda')\nlambda_ = Symbol('lambda_')\ne = 7*lambda_ + 5*lambda__")
    assert (python(5*Symbol("for") + Function("for_")(8)) ==
            "for__ = Symbol('for')\nfor_ = Function('for_')\ne = 5*for__ + for_(8)")


def test_python_keyword_function_name_escaping():
    assert python(
        5*Function("for")(8)) == "for_ = Function('for')\ne = 5*for_(8)"


def test_python_relational():
    assert python(Eq(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = Eq(x, y)"
    assert python(Ge(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x >= y"
    assert python(Le(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x <= y"
    assert python(Gt(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x > y"
    assert python(Lt(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x < y"
    assert python(Ne(x/(y + 1), y**2)) in [
        "x = Symbol('x')\ny = Symbol('y')\ne = Ne(x/(1 + y), y**2)",
        "x = Symbol('x')\ny = Symbol('y')\ne = Ne(x/(y + 1), y**2)"]


def test_python_functions():
    # Simple
    assert python(2*x + exp(x)) in "x = Symbol('x')\ne = 2*x + exp(x)"
    assert python(sqrt(2)) == 'e = sqrt(2)'
    assert python(2**Rational(1, 3)) == 'e = 2**Rational(1, 3)'
    assert python(sqrt(2 + pi)) == 'e = sqrt(2 + pi)'
    assert python((2 + pi)**Rational(1, 3)) == 'e = (2 + pi)**Rational(1, 3)'
    assert python(2**Rational(1, 4)) == 'e = 2**Rational(1, 4)'
    assert python(Abs(x)) == "x = Symbol('x')\ne = Abs(x)"
    assert python(
        Abs(x/(x**2 + 1))) in ["x = Symbol('x')\ne = Abs(x/(1 + x**2))",
            "x = Symbol('x')\ne = Abs(x/(x**2 + 1))"]

    # Univariate/Multivariate functions
    f = Function('f')
    assert python(f(x)) == "x = Symbol('x')\nf = Function('f')\ne = f(x)"
    assert python(f(x, y)) == "x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x, y)"
    assert python(f(x/(y + 1), y)) in [
        "x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x/(1 + y), y)",
        "x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x/(y + 1), y)"]

    # Nesting of square roots
    assert python(sqrt((sqrt(x + 1)) + 1)) in [
        "x = Symbol('x')\ne = sqrt(1 + sqrt(1 + x))",
        "x = Symbol('x')\ne = sqrt(sqrt(x + 1) + 1)"]

    # Nesting of powers
    assert python((((x + 1)**Rational(1, 3)) + 1)**Rational(1, 3)) in [
        "x = Symbol('x')\ne = (1 + (1 + x)**Rational(1, 3))**Rational(1, 3)",
        "x = Symbol('x')\ne = ((x + 1)**Rational(1, 3) + 1)**Rational(1, 3)"]

    # Function powers
    assert python(sin(x)**2) == "x = Symbol('x')\ne = sin(x)**2"


@XFAIL
def test_python_functions_conjugates():
    a, b = map(Symbol, 'ab')
    assert python( conjugate(a + b*I) ) == '_     _\na - I*b'
    assert python( conjugate(exp(a + b*I)) ) == ' _     _\n a - I*b\ne       '


def test_python_derivatives():
    # Simple
    f_1 = Derivative(log(x), x, evaluate=False)
    assert python(f_1) == "x = Symbol('x')\ne = Derivative(log(x), x)"

    f_2 = Derivative(log(x), x, evaluate=False) + x
    assert python(f_2) == "x = Symbol('x')\ne = x + Derivative(log(x), x)"

    # Multiple symbols
    f_3 = Derivative(log(x) + x**2, x, y, evaluate=False)
    assert python(f_3) == \
        "x = Symbol('x')\ny = Symbol('y')\ne = Derivative(x**2 + log(x), x, y)"

    f_4 = Derivative(2*x*y, y, x, evaluate=False) + x**2
    assert python(f_4) in [
        "x = Symbol('x')\ny = Symbol('y')\ne = x**2 + Derivative(2*x*y, y, x)",
        "x = Symbol('x')\ny = Symbol('y')\ne = Derivative(2*x*y, y, x) + x**2"]


def test_python_integrals():
    # Simple
    f_1 = Integral(log(x), x)
    assert python(f_1) == "x = Symbol('x')\ne = Integral(log(x), x)"

    f_2 = Integral(x**2, x)
    assert python(f_2) == "x = Symbol('x')\ne = Integral(x**2, x)"

    # Double nesting of pow
    f_3 = Integral(x**(2**x), x)
    assert python(f_3) == "x = Symbol('x')\ne = Integral(x**(2**x), x)"

    # Definite integrals
    f_4 = Integral(x**2, (x, 1, 2))
    assert python(f_4) == "x = Symbol('x')\ne = Integral(x**2, (x, 1, 2))"

    f_5 = Integral(x**2, (x, Rational(1, 2), 10))
    assert python(
        f_5) == "x = Symbol('x')\ne = Integral(x**2, (x, Rational(1, 2), 10))"

    # Nested integrals
    f_6 = Integral(x**2*y**2, x, y)
    assert python(f_6) == "x = Symbol('x')\ny = Symbol('y')\ne = Integral(x**2*y**2, x, y)"


def test_python_matrix():
    p = python(Matrix([[x**2+1, 1], [y, x+y]]))
    s = "x = Symbol('x')\ny = Symbol('y')\ne = MutableDenseMatrix([[x**2 + 1, 1], [y, x + y]])"
    assert p == s

def test_python_limits():
    assert python(limit(x, x, oo)) == 'e = oo'
    assert python(limit(x**2, x, 0)) == 'e = 0'

def test_issue_20762():
    # Make sure Python removes curly braces from subscripted variables
    a_b = Symbol('a_{b}')
    b = Symbol('b')
    expr = a_b*b
    assert python(expr) == "a_b = Symbol('a_{b}')\nb = Symbol('b')\ne = a_b*b"


def test_settings():
    raises(TypeError, lambda: python(x, method="garbage"))