File size: 16,070 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from sympy.codegen import Assignment
from sympy.codegen.ast import none
from sympy.codegen.cfunctions import expm1, log1p
from sympy.codegen.scipy_nodes import cosm1
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.core import Expr, Mod, symbols, Eq, Le, Gt, zoo, oo, Rational, Pow
from sympy.core.numbers import pi
from sympy.core.singleton import S
from sympy.functions import acos, KroneckerDelta, Piecewise, sign, sqrt, Min, Max, cot, acsch, asec, coth, sec
from sympy.logic import And, Or
from sympy.matrices import SparseMatrix, MatrixSymbol, Identity
from sympy.printing.pycode import (
    MpmathPrinter, PythonCodePrinter, pycode, SymPyPrinter
)
from sympy.printing.tensorflow import TensorflowPrinter
from sympy.printing.numpy import NumPyPrinter, SciPyPrinter
from sympy.testing.pytest import raises, skip
from sympy.tensor import IndexedBase, Idx
from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayDiagonal, ArrayContraction, ZeroArray, OneArray
from sympy.external import import_module
from sympy.functions.special.gamma_functions import loggamma


x, y, z = symbols('x y z')
p = IndexedBase("p")


def test_PythonCodePrinter():
    prntr = PythonCodePrinter()

    assert not prntr.module_imports

    assert prntr.doprint(x**y) == 'x**y'
    assert prntr.doprint(Mod(x, 2)) == 'x % 2'
    assert prntr.doprint(-Mod(x, y)) == '-(x % y)'
    assert prntr.doprint(Mod(-x, y)) == '(-x) % y'
    assert prntr.doprint(And(x, y)) == 'x and y'
    assert prntr.doprint(Or(x, y)) == 'x or y'
    assert prntr.doprint(1/(x+y)) == '1/(x + y)'
    assert not prntr.module_imports

    assert prntr.doprint(pi) == 'math.pi'
    assert prntr.module_imports == {'math': {'pi'}}

    assert prntr.doprint(x**Rational(1, 2)) == 'math.sqrt(x)'
    assert prntr.doprint(sqrt(x)) == 'math.sqrt(x)'
    assert prntr.module_imports == {'math': {'pi', 'sqrt'}}

    assert prntr.doprint(acos(x)) == 'math.acos(x)'
    assert prntr.doprint(cot(x)) == '(1/math.tan(x))'
    assert prntr.doprint(coth(x)) == '((math.exp(x) + math.exp(-x))/(math.exp(x) - math.exp(-x)))'
    assert prntr.doprint(asec(x)) == '(math.acos(1/x))'
    assert prntr.doprint(acsch(x)) == '(math.log(math.sqrt(1 + x**(-2)) + 1/x))'

    assert prntr.doprint(Assignment(x, 2)) == 'x = 2'
    assert prntr.doprint(Piecewise((1, Eq(x, 0)),
                        (2, x>6))) == '((1) if (x == 0) else (2) if (x > 6) else None)'
    assert prntr.doprint(Piecewise((2, Le(x, 0)),
                        (3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\
                                                        ' (3) if (x > 0) else None)'
    assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))'
    assert prntr.doprint(p[0, 1]) == 'p[0, 1]'
    assert prntr.doprint(KroneckerDelta(x,y)) == '(1 if x == y else 0)'

    assert prntr.doprint((2,3)) == "(2, 3)"
    assert prntr.doprint([2,3]) == "[2, 3]"

    assert prntr.doprint(Min(x, y)) == "min(x, y)"
    assert prntr.doprint(Max(x, y)) == "max(x, y)"


def test_PythonCodePrinter_standard():
    prntr = PythonCodePrinter()

    assert prntr.standard == 'python3'

    raises(ValueError, lambda: PythonCodePrinter({'standard':'python4'}))


def test_MpmathPrinter():
    p = MpmathPrinter()
    assert p.doprint(sign(x)) == 'mpmath.sign(x)'
    assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)'

    assert p.doprint(S.Exp1) == 'mpmath.e'
    assert p.doprint(S.Pi) == 'mpmath.pi'
    assert p.doprint(S.GoldenRatio) == 'mpmath.phi'
    assert p.doprint(S.EulerGamma) == 'mpmath.euler'
    assert p.doprint(S.NaN) == 'mpmath.nan'
    assert p.doprint(S.Infinity) == 'mpmath.inf'
    assert p.doprint(S.NegativeInfinity) == 'mpmath.ninf'
    assert p.doprint(loggamma(x)) == 'mpmath.loggamma(x)'


def test_NumPyPrinter():
    from sympy.core.function import Lambda
    from sympy.matrices.expressions.adjoint import Adjoint
    from sympy.matrices.expressions.diagonal import (DiagMatrix, DiagonalMatrix, DiagonalOf)
    from sympy.matrices.expressions.funcmatrix import FunctionMatrix
    from sympy.matrices.expressions.hadamard import HadamardProduct
    from sympy.matrices.expressions.kronecker import KroneckerProduct
    from sympy.matrices.expressions.special import (OneMatrix, ZeroMatrix)
    from sympy.abc import a, b
    p = NumPyPrinter()
    assert p.doprint(sign(x)) == 'numpy.sign(x)'
    A = MatrixSymbol("A", 2, 2)
    B = MatrixSymbol("B", 2, 2)
    C = MatrixSymbol("C", 1, 5)
    D = MatrixSymbol("D", 3, 4)
    assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
    assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
    assert p.doprint(Identity(3)) == "numpy.eye(3)"

    u = MatrixSymbol('x', 2, 1)
    v = MatrixSymbol('y', 2, 1)
    assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)'
    assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y'

    assert p.doprint(ZeroMatrix(2, 3)) == "numpy.zeros((2, 3))"
    assert p.doprint(OneMatrix(2, 3)) == "numpy.ones((2, 3))"
    assert p.doprint(FunctionMatrix(4, 5, Lambda((a, b), a + b))) == \
        "numpy.fromfunction(lambda a, b: a + b, (4, 5))"
    assert p.doprint(HadamardProduct(A, B)) == "numpy.multiply(A, B)"
    assert p.doprint(KroneckerProduct(A, B)) == "numpy.kron(A, B)"
    assert p.doprint(Adjoint(A)) == "numpy.conjugate(numpy.transpose(A))"
    assert p.doprint(DiagonalOf(A)) == "numpy.reshape(numpy.diag(A), (-1, 1))"
    assert p.doprint(DiagMatrix(C)) == "numpy.diagflat(C)"
    assert p.doprint(DiagonalMatrix(D)) == "numpy.multiply(D, numpy.eye(3, 4))"

    # Workaround for numpy negative integer power errors
    assert p.doprint(x**-1) == 'x**(-1.0)'
    assert p.doprint(x**-2) == 'x**(-2.0)'

    expr = Pow(2, -1, evaluate=False)
    assert p.doprint(expr) == "2**(-1.0)"

    assert p.doprint(S.Exp1) == 'numpy.e'
    assert p.doprint(S.Pi) == 'numpy.pi'
    assert p.doprint(S.EulerGamma) == 'numpy.euler_gamma'
    assert p.doprint(S.NaN) == 'numpy.nan'
    assert p.doprint(S.Infinity) == 'numpy.inf'
    assert p.doprint(S.NegativeInfinity) == '-numpy.inf'

    # Function rewriting operator precedence fix
    assert p.doprint(sec(x)**2) == '(numpy.cos(x)**(-1.0))**2'


def test_issue_18770():
    numpy = import_module('numpy')
    if not numpy:
        skip("numpy not installed.")

    from sympy.functions.elementary.miscellaneous import (Max, Min)
    from sympy.utilities.lambdify import lambdify

    expr1 = Min(0.1*x + 3, x + 1, 0.5*x + 1)
    func = lambdify(x, expr1, "numpy")
    assert (func(numpy.linspace(0, 3, 3)) == [1.0, 1.75, 2.5 ]).all()
    assert  func(4) == 3

    expr1 = Max(x**2, x**3)
    func = lambdify(x,expr1, "numpy")
    assert (func(numpy.linspace(-1, 2, 4)) == [1, 0, 1, 8] ).all()
    assert func(4) == 64


def test_SciPyPrinter():
    p = SciPyPrinter()
    expr = acos(x)
    assert 'numpy' not in p.module_imports
    assert p.doprint(expr) == 'numpy.arccos(x)'
    assert 'numpy' in p.module_imports
    assert not any(m.startswith('scipy') for m in p.module_imports)
    smat = SparseMatrix(2, 5, {(0, 1): 3})
    assert p.doprint(smat) == \
        'scipy.sparse.coo_matrix(([3], ([0], [1])), shape=(2, 5))'
    assert 'scipy.sparse' in p.module_imports

    assert p.doprint(S.GoldenRatio) == 'scipy.constants.golden_ratio'
    assert p.doprint(S.Pi) == 'scipy.constants.pi'
    assert p.doprint(S.Exp1) == 'numpy.e'


def test_pycode_reserved_words():
    s1, s2 = symbols('if else')
    raises(ValueError, lambda: pycode(s1 + s2, error_on_reserved=True))
    py_str = pycode(s1 + s2)
    assert py_str in ('else_ + if_', 'if_ + else_')


def test_issue_20762():
    # Make sure pycode removes curly braces from subscripted variables
    a_b, b, a_11 = symbols('a_{b} b a_{11}')
    expr = a_b*b
    assert pycode(expr) == 'a_b*b'
    expr = a_11*b
    assert pycode(expr) == 'a_11*b'


def test_sqrt():
    prntr = PythonCodePrinter()
    assert prntr._print_Pow(sqrt(x), rational=False) == 'math.sqrt(x)'
    assert prntr._print_Pow(1/sqrt(x), rational=False) == '1/math.sqrt(x)'

    prntr = PythonCodePrinter({'standard' : 'python3'})
    assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
    assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1/2)'

    prntr = MpmathPrinter()
    assert prntr._print_Pow(sqrt(x), rational=False) == 'mpmath.sqrt(x)'
    assert prntr._print_Pow(sqrt(x), rational=True) == \
        "x**(mpmath.mpf(1)/mpmath.mpf(2))"

    prntr = NumPyPrinter()
    assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)'
    assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'

    prntr = SciPyPrinter()
    assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)'
    assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'

    prntr = SymPyPrinter()
    assert prntr._print_Pow(sqrt(x), rational=False) == 'sympy.sqrt(x)'
    assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'


def test_frac():
    from sympy.functions.elementary.integers import frac

    expr = frac(x)
    prntr = NumPyPrinter()
    assert prntr.doprint(expr) == 'numpy.mod(x, 1)'

    prntr = SciPyPrinter()
    assert prntr.doprint(expr) == 'numpy.mod(x, 1)'

    prntr = PythonCodePrinter()
    assert prntr.doprint(expr) == 'x % 1'

    prntr = MpmathPrinter()
    assert prntr.doprint(expr) == 'mpmath.frac(x)'

    prntr = SymPyPrinter()
    assert prntr.doprint(expr) == 'sympy.functions.elementary.integers.frac(x)'


class CustomPrintedObject(Expr):
    def _numpycode(self, printer):
        return 'numpy'

    def _mpmathcode(self, printer):
        return 'mpmath'


def test_printmethod():
    obj = CustomPrintedObject()
    assert NumPyPrinter().doprint(obj) == 'numpy'
    assert MpmathPrinter().doprint(obj) == 'mpmath'


def test_codegen_ast_nodes():
    assert pycode(none) == 'None'


def test_issue_14283():
    prntr = PythonCodePrinter()

    assert prntr.doprint(zoo) == "math.nan"
    assert prntr.doprint(-oo) == "float('-inf')"


def test_NumPyPrinter_print_seq():
    n = NumPyPrinter()

    assert n._print_seq(range(2)) == '(0, 1,)'


def test_issue_16535_16536():
    from sympy.functions.special.gamma_functions import (lowergamma, uppergamma)

    a = symbols('a')
    expr1 = lowergamma(a, x)
    expr2 = uppergamma(a, x)

    prntr = SciPyPrinter()
    assert prntr.doprint(expr1) == 'scipy.special.gamma(a)*scipy.special.gammainc(a, x)'
    assert prntr.doprint(expr2) == 'scipy.special.gamma(a)*scipy.special.gammaincc(a, x)'

    p_numpy = NumPyPrinter()
    p_pycode = PythonCodePrinter({'strict': False})

    for expr in [expr1, expr2]:
        with raises(NotImplementedError):
            p_numpy.doprint(expr1)
        assert "Not supported" in p_pycode.doprint(expr)


def test_Integral():
    from sympy.functions.elementary.exponential import exp
    from sympy.integrals.integrals import Integral

    single = Integral(exp(-x), (x, 0, oo))
    double = Integral(x**2*exp(x*y), (x, -z, z), (y, 0, z))
    indefinite = Integral(x**2, x)
    evaluateat = Integral(x**2, (x, 1))

    prntr = SciPyPrinter()
    assert prntr.doprint(single) == 'scipy.integrate.quad(lambda x: numpy.exp(-x), 0, numpy.inf)[0]'
    assert prntr.doprint(double) == 'scipy.integrate.nquad(lambda x, y: x**2*numpy.exp(x*y), ((-z, z), (0, z)))[0]'
    raises(NotImplementedError, lambda: prntr.doprint(indefinite))
    raises(NotImplementedError, lambda: prntr.doprint(evaluateat))

    prntr = MpmathPrinter()
    assert prntr.doprint(single) == 'mpmath.quad(lambda x: mpmath.exp(-x), (0, mpmath.inf))'
    assert prntr.doprint(double) == 'mpmath.quad(lambda x, y: x**2*mpmath.exp(x*y), (-z, z), (0, z))'
    raises(NotImplementedError, lambda: prntr.doprint(indefinite))
    raises(NotImplementedError, lambda: prntr.doprint(evaluateat))


def test_fresnel_integrals():
    from sympy.functions.special.error_functions import (fresnelc, fresnels)

    expr1 = fresnelc(x)
    expr2 = fresnels(x)

    prntr = SciPyPrinter()
    assert prntr.doprint(expr1) == 'scipy.special.fresnel(x)[1]'
    assert prntr.doprint(expr2) == 'scipy.special.fresnel(x)[0]'

    p_numpy = NumPyPrinter()
    p_pycode = PythonCodePrinter()
    p_mpmath = MpmathPrinter()
    for expr in [expr1, expr2]:
        with raises(NotImplementedError):
            p_numpy.doprint(expr)
        with raises(NotImplementedError):
            p_pycode.doprint(expr)

    assert p_mpmath.doprint(expr1) == 'mpmath.fresnelc(x)'
    assert p_mpmath.doprint(expr2) == 'mpmath.fresnels(x)'


def test_beta():
    from sympy.functions.special.beta_functions import beta

    expr = beta(x, y)

    prntr = SciPyPrinter()
    assert prntr.doprint(expr) == 'scipy.special.beta(x, y)'

    prntr = NumPyPrinter()
    assert prntr.doprint(expr) == '(math.gamma(x)*math.gamma(y)/math.gamma(x + y))'

    prntr = PythonCodePrinter()
    assert prntr.doprint(expr) == '(math.gamma(x)*math.gamma(y)/math.gamma(x + y))'

    prntr = PythonCodePrinter({'allow_unknown_functions': True})
    assert prntr.doprint(expr) == '(math.gamma(x)*math.gamma(y)/math.gamma(x + y))'

    prntr = MpmathPrinter()
    assert prntr.doprint(expr) ==  'mpmath.beta(x, y)'

def test_airy():
    from sympy.functions.special.bessel import (airyai, airybi)

    expr1 = airyai(x)
    expr2 = airybi(x)

    prntr = SciPyPrinter()
    assert prntr.doprint(expr1) == 'scipy.special.airy(x)[0]'
    assert prntr.doprint(expr2) == 'scipy.special.airy(x)[2]'

    prntr = NumPyPrinter({'strict': False})
    assert "Not supported" in prntr.doprint(expr1)
    assert "Not supported" in prntr.doprint(expr2)

    prntr = PythonCodePrinter({'strict': False})
    assert "Not supported" in prntr.doprint(expr1)
    assert "Not supported" in prntr.doprint(expr2)

def test_airy_prime():
    from sympy.functions.special.bessel import (airyaiprime, airybiprime)

    expr1 = airyaiprime(x)
    expr2 = airybiprime(x)

    prntr = SciPyPrinter()
    assert prntr.doprint(expr1) == 'scipy.special.airy(x)[1]'
    assert prntr.doprint(expr2) == 'scipy.special.airy(x)[3]'

    prntr = NumPyPrinter({'strict': False})
    assert "Not supported" in prntr.doprint(expr1)
    assert "Not supported" in prntr.doprint(expr2)

    prntr = PythonCodePrinter({'strict': False})
    assert "Not supported" in prntr.doprint(expr1)
    assert "Not supported" in prntr.doprint(expr2)


def test_numerical_accuracy_functions():
    prntr = SciPyPrinter()
    assert prntr.doprint(expm1(x)) == 'numpy.expm1(x)'
    assert prntr.doprint(log1p(x)) == 'numpy.log1p(x)'
    assert prntr.doprint(cosm1(x)) == 'scipy.special.cosm1(x)'

def test_array_printer():
    A = ArraySymbol('A', (4,4,6,6,6))
    I = IndexedBase('I')
    i,j,k = Idx('i', (0,1)), Idx('j', (2,3)), Idx('k', (4,5))

    prntr = NumPyPrinter()
    assert prntr.doprint(ZeroArray(5)) == 'numpy.zeros((5,))'
    assert prntr.doprint(OneArray(5)) == 'numpy.ones((5,))'
    assert prntr.doprint(ArrayContraction(A, [2,3])) == 'numpy.einsum("abccd->abd", A)'
    assert prntr.doprint(I) == 'I'
    assert prntr.doprint(ArrayDiagonal(A, [2,3,4])) == 'numpy.einsum("abccc->abc", A)'
    assert prntr.doprint(ArrayDiagonal(A, [0,1], [2,3])) == 'numpy.einsum("aabbc->cab", A)'
    assert prntr.doprint(ArrayContraction(A, [2], [3])) == 'numpy.einsum("abcde->abe", A)'
    assert prntr.doprint(Assignment(I[i,j,k], I[i,j,k])) == 'I = I'

    prntr = TensorflowPrinter()
    assert prntr.doprint(ZeroArray(5)) == 'tensorflow.zeros((5,))'
    assert prntr.doprint(OneArray(5)) == 'tensorflow.ones((5,))'
    assert prntr.doprint(ArrayContraction(A, [2,3])) == 'tensorflow.linalg.einsum("abccd->abd", A)'
    assert prntr.doprint(I) == 'I'
    assert prntr.doprint(ArrayDiagonal(A, [2,3,4])) == 'tensorflow.linalg.einsum("abccc->abc", A)'
    assert prntr.doprint(ArrayDiagonal(A, [0,1], [2,3])) == 'tensorflow.linalg.einsum("aabbc->cab", A)'
    assert prntr.doprint(ArrayContraction(A, [2], [3])) == 'tensorflow.linalg.einsum("abcde->abe", A)'
    assert prntr.doprint(Assignment(I[i,j,k], I[i,j,k])) == 'I = I'