File size: 136,938 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
from sympy import MatAdd, MatMul, Array
from sympy.algebras.quaternion import Quaternion
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.combinatorics.permutations import Cycle, Permutation, AppliedPermutation
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core.containers import Tuple, Dict
from sympy.core.expr import UnevaluatedExpr
from sympy.core.function import (Derivative, Function, Lambda, Subs, diff)
from sympy.core.mod import Mod
from sympy.core.mul import Mul
from sympy.core.numbers import (AlgebraicNumber, Float, I, Integer, Rational, oo, pi)
from sympy.core.parameters import evaluate
from sympy.core.power import Pow
from sympy.core.relational import Eq, Ne
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, Wild, symbols)
from sympy.functions.combinatorial.factorials import (FallingFactorial, RisingFactorial, binomial, factorial, factorial2, subfactorial)
from sympy.functions.combinatorial.numbers import (bernoulli, bell, catalan, euler, genocchi,
                                                   lucas, fibonacci, tribonacci, divisor_sigma, udivisor_sigma,
                                                   mobius, primenu, primeomega,
                                                   totient, reduced_totient)
from sympy.functions.elementary.complexes import (Abs, arg, conjugate, im, polar_lift, re)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (asinh, coth)
from sympy.functions.elementary.integers import (ceiling, floor, frac)
from sympy.functions.elementary.miscellaneous import (Max, Min, root, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acsc, asin, cos, cot, sin, tan)
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import (DiracDelta, Heaviside)
from sympy.functions.special.elliptic_integrals import (elliptic_e, elliptic_f, elliptic_k, elliptic_pi)
from sympy.functions.special.error_functions import (Chi, Ci, Ei, Shi, Si, expint)
from sympy.functions.special.gamma_functions import (gamma, uppergamma)
from sympy.functions.special.hyper import (hyper, meijerg)
from sympy.functions.special.mathieu_functions import (mathieuc, mathieucprime, mathieus, mathieusprime)
from sympy.functions.special.polynomials import (assoc_laguerre, assoc_legendre, chebyshevt, chebyshevu, gegenbauer, hermite, jacobi, laguerre, legendre)
from sympy.functions.special.singularity_functions import SingularityFunction
from sympy.functions.special.spherical_harmonics import (Ynm, Znm)
from sympy.functions.special.tensor_functions import (KroneckerDelta, LeviCivita)
from sympy.functions.special.zeta_functions import (dirichlet_eta, lerchphi, polylog, stieltjes, zeta)
from sympy.integrals.integrals import Integral
from sympy.integrals.transforms import (CosineTransform, FourierTransform, InverseCosineTransform, InverseFourierTransform, InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform, LaplaceTransform, MellinTransform, SineTransform)
from sympy.logic import Implies
from sympy.logic.boolalg import (And, Or, Xor, Equivalent, false, Not, true)
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.kronecker import KroneckerProduct
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.permutation import PermutationMatrix
from sympy.matrices.expressions.slice import MatrixSlice
from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback
from sympy.physics.quantum import Commutator, Operator
from sympy.physics.quantum.trace import Tr
from sympy.physics.units import meter, gibibyte, gram, microgram, second, milli, micro
from sympy.polys.domains.integerring import ZZ
from sympy.polys.fields import field
from sympy.polys.polytools import Poly
from sympy.polys.rings import ring
from sympy.polys.rootoftools import (RootSum, rootof)
from sympy.series.formal import fps
from sympy.series.fourier import fourier_series
from sympy.series.limits import Limit
from sympy.series.order import Order
from sympy.series.sequences import (SeqAdd, SeqFormula, SeqMul, SeqPer)
from sympy.sets.conditionset import ConditionSet
from sympy.sets.contains import Contains
from sympy.sets.fancysets import (ComplexRegion, ImageSet, Range)
from sympy.sets.ordinals import Ordinal, OrdinalOmega, OmegaPower
from sympy.sets.powerset import PowerSet
from sympy.sets.sets import (FiniteSet, Interval, Union, Intersection, Complement, SymmetricDifference, ProductSet)
from sympy.sets.setexpr import SetExpr
from sympy.stats.crv_types import Normal
from sympy.stats.symbolic_probability import (Covariance, Expectation,
                                              Probability, Variance)
from sympy.tensor.array import (ImmutableDenseNDimArray,
                                ImmutableSparseNDimArray,
                                MutableSparseNDimArray,
                                MutableDenseNDimArray,
                                tensorproduct)
from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElement
from sympy.tensor.indexed import (Idx, Indexed, IndexedBase)
from sympy.tensor.toperators import PartialDerivative
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian


from sympy.testing.pytest import (XFAIL, raises, _both_exp_pow,
                                  warns_deprecated_sympy)
from sympy.printing.latex import (latex, translate, greek_letters_set,
                                  tex_greek_dictionary, multiline_latex,
                                  latex_escape, LatexPrinter)

import sympy as sym

from sympy.abc import mu, tau


class lowergamma(sym.lowergamma):
    pass   # testing notation inheritance by a subclass with same name


x, y, z, t, w, a, b, c, s, p = symbols('x y z t w a b c s p')
k, m, n = symbols('k m n', integer=True)


def test_printmethod():
    class R(Abs):
        def _latex(self, printer):
            return "foo(%s)" % printer._print(self.args[0])
    assert latex(R(x)) == r"foo(x)"

    class R(Abs):
        def _latex(self, printer):
            return "foo"
    assert latex(R(x)) == r"foo"


def test_latex_basic():
    assert latex(1 + x) == r"x + 1"
    assert latex(x**2) == r"x^{2}"
    assert latex(x**(1 + x)) == r"x^{x + 1}"
    assert latex(x**3 + x + 1 + x**2) == r"x^{3} + x^{2} + x + 1"

    assert latex(2*x*y) == r"2 x y"
    assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y"
    assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y"
    assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}"

    assert latex(x**S.Half**5) == r"\sqrt[32]{x}"
    assert latex(Mul(S.Half, x**2, -5, evaluate=False)) == r"\frac{1}{2} x^{2} \left(-5\right)"
    assert latex(Mul(S.Half, x**2, 5, evaluate=False)) == r"\frac{1}{2} x^{2} \cdot 5"
    assert latex(Mul(-5, -5, evaluate=False)) == r"\left(-5\right) \left(-5\right)"
    assert latex(Mul(5, -5, evaluate=False)) == r"5 \left(-5\right)"
    assert latex(Mul(S.Half, -5, S.Half, evaluate=False)) == r"\frac{1}{2} \left(-5\right) \frac{1}{2}"
    assert latex(Mul(5, I, 5, evaluate=False)) == r"5 i 5"
    assert latex(Mul(5, I, -5, evaluate=False)) == r"5 i \left(-5\right)"
    assert latex(Mul(Pow(x, 2), S.Half*x + 1)) == r"x^{2} \left(\frac{x}{2} + 1\right)"
    assert latex(Mul(Pow(x, 3), Rational(2, 3)*x + 1)) == r"x^{3} \left(\frac{2 x}{3} + 1\right)"
    assert latex(Mul(Pow(x, 11), 2*x + 1)) == r"x^{11} \left(2 x + 1\right)"

    assert latex(Mul(0, 1, evaluate=False)) == r'0 \cdot 1'
    assert latex(Mul(1, 0, evaluate=False)) == r'1 \cdot 0'
    assert latex(Mul(1, 1, evaluate=False)) == r'1 \cdot 1'
    assert latex(Mul(-1, 1, evaluate=False)) == r'\left(-1\right) 1'
    assert latex(Mul(1, 1, 1, evaluate=False)) == r'1 \cdot 1 \cdot 1'
    assert latex(Mul(1, 2, evaluate=False)) == r'1 \cdot 2'
    assert latex(Mul(1, S.Half, evaluate=False)) == r'1 \cdot \frac{1}{2}'
    assert latex(Mul(1, 1, S.Half, evaluate=False)) == \
        r'1 \cdot 1 \cdot \frac{1}{2}'
    assert latex(Mul(1, 1, 2, 3, x, evaluate=False)) == \
        r'1 \cdot 1 \cdot 2 \cdot 3 x'
    assert latex(Mul(1, -1, evaluate=False)) == r'1 \left(-1\right)'
    assert latex(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == \
        r'4 \cdot 3 \cdot 2 \cdot 1 \cdot 0 y x'
    assert latex(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == \
        r'4 \cdot 3 \cdot 2 \left(z + 1\right) 0 y x'
    assert latex(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == \
        r'\frac{2}{3} \cdot \frac{5}{7}'

    assert latex(1/x) == r"\frac{1}{x}"
    assert latex(1/x, fold_short_frac=True) == r"1 / x"
    assert latex(-S(3)/2) == r"- \frac{3}{2}"
    assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2"
    assert latex(1/x**2) == r"\frac{1}{x^{2}}"
    assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}"
    assert latex(x/2) == r"\frac{x}{2}"
    assert latex(x/2, fold_short_frac=True) == r"x / 2"
    assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}"
    assert latex((x + y)/(2*x), fold_short_frac=True) == \
        r"\left(x + y\right) / 2 x"
    assert latex((x + y)/(2*x), long_frac_ratio=0) == \
        r"\frac{1}{2 x} \left(x + y\right)"
    assert latex((x + y)/x) == r"\frac{x + y}{x}"
    assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}"
    assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}"
    assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \
        r"\frac{2 x}{3} \sqrt{2}"
    assert latex(binomial(x, y)) == r"{\binom{x}{y}}"

    x_star = Symbol('x^*')
    f = Function('f')
    assert latex(x_star**2) == r"\left(x^{*}\right)^{2}"
    assert latex(x_star**2, parenthesize_super=False) == r"{x^{*}}^{2}"
    assert latex(Derivative(f(x_star), x_star,2)) == r"\frac{d^{2}}{d \left(x^{*}\right)^{2}} f{\left(x^{*} \right)}"
    assert latex(Derivative(f(x_star), x_star,2), parenthesize_super=False) == r"\frac{d^{2}}{d {x^{*}}^{2}} f{\left(x^{*} \right)}"

    assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}"
    assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \
        r"\left(2 \int x\, dx\right) / 3"

    assert latex(sqrt(x)) == r"\sqrt{x}"
    assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}"
    assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}"
    assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}"
    assert latex(sqrt(x), itex=True) == r"\sqrt{x}"
    assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}"
    assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}"
    assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}"
    assert latex(x**Rational(3, 4), fold_frac_powers=True) == r"x^{3/4}"
    assert latex((x + 1)**Rational(3, 4)) == \
        r"\left(x + 1\right)^{\frac{3}{4}}"
    assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \
        r"\left(x + 1\right)^{3/4}"
    assert latex(AlgebraicNumber(sqrt(2))) == r"\sqrt{2}"
    assert latex(AlgebraicNumber(sqrt(2), [3, -7])) == r"-7 + 3 \sqrt{2}"
    assert latex(AlgebraicNumber(sqrt(2), alias='alpha')) == r"\alpha"
    assert latex(AlgebraicNumber(sqrt(2), [3, -7], alias='alpha')) == \
        r"3 \alpha - 7"
    assert latex(AlgebraicNumber(2**(S(1)/3), [1, 3, -7], alias='beta')) == \
        r"\beta^{2} + 3 \beta - 7"

    k = ZZ.cyclotomic_field(5)
    assert latex(k.ext.field_element([1, 2, 3, 4])) == \
        r"\zeta^{3} + 2 \zeta^{2} + 3 \zeta + 4"
    assert latex(k.ext.field_element([1, 2, 3, 4]), order='old') == \
        r"4 + 3 \zeta + 2 \zeta^{2} + \zeta^{3}"
    assert latex(k.primes_above(19)[0]) == \
        r"\left(19, \zeta^{2} + 5 \zeta + 1\right)"
    assert latex(k.primes_above(19)[0], order='old') == \
           r"\left(19, 1 + 5 \zeta + \zeta^{2}\right)"
    assert latex(k.primes_above(7)[0]) == r"\left(7\right)"

    assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x"
    assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x"
    assert latex(1.5e20*x, mul_symbol='times') == \
        r"1.5 \times 10^{20} \times x"

    assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}"
    assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}"
    assert latex(sin(x)**Rational(3, 2)) == \
        r"\sin^{\frac{3}{2}}{\left(x \right)}"
    assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \
        r"\sin^{3/2}{\left(x \right)}"

    assert latex(~x) == r"\neg x"
    assert latex(x & y) == r"x \wedge y"
    assert latex(x & y & z) == r"x \wedge y \wedge z"
    assert latex(x | y) == r"x \vee y"
    assert latex(x | y | z) == r"x \vee y \vee z"
    assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)"
    assert latex(Implies(x, y)) == r"x \Rightarrow y"
    assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y"
    assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z"
    assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)"
    assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)"

    assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i"
    assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \
        r"x_i \wedge y_i"
    assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
        r"x_i \wedge y_i \wedge z_i"
    assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i"
    assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
        r"x_i \vee y_i \vee z_i"
    assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
        r"z_i \vee \left(x_i \wedge y_i\right)"
    assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \
        r"x_i \Rightarrow y_i"
    assert latex(Pow(Rational(1, 3), -1, evaluate=False)) == r"\frac{1}{\frac{1}{3}}"
    assert latex(Pow(Rational(1, 3), -2, evaluate=False)) == r"\frac{1}{(\frac{1}{3})^{2}}"
    assert latex(Pow(Integer(1)/100, -1, evaluate=False)) == r"\frac{1}{\frac{1}{100}}"


    p = Symbol('p', positive=True)
    assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}"


def test_latex_builtins():
    assert latex(True) == r"\text{True}"
    assert latex(False) == r"\text{False}"
    assert latex(None) == r"\text{None}"
    assert latex(true) == r"\text{True}"
    assert latex(false) == r'\text{False}'


def test_latex_SingularityFunction():
    assert latex(SingularityFunction(x, 4, 5)) == \
        r"{\left\langle x - 4 \right\rangle}^{5}"
    assert latex(SingularityFunction(x, -3, 4)) == \
        r"{\left\langle x + 3 \right\rangle}^{4}"
    assert latex(SingularityFunction(x, 0, 4)) == \
        r"{\left\langle x \right\rangle}^{4}"
    assert latex(SingularityFunction(x, a, n)) == \
        r"{\left\langle - a + x \right\rangle}^{n}"
    assert latex(SingularityFunction(x, 4, -2)) == \
        r"{\left\langle x - 4 \right\rangle}^{-2}"
    assert latex(SingularityFunction(x, 4, -1)) == \
        r"{\left\langle x - 4 \right\rangle}^{-1}"

    assert latex(SingularityFunction(x, 4, 5)**3) == \
        r"{\left({\langle x - 4 \rangle}^{5}\right)}^{3}"
    assert latex(SingularityFunction(x, -3, 4)**3) == \
        r"{\left({\langle x + 3 \rangle}^{4}\right)}^{3}"
    assert latex(SingularityFunction(x, 0, 4)**3) == \
        r"{\left({\langle x \rangle}^{4}\right)}^{3}"
    assert latex(SingularityFunction(x, a, n)**3) == \
        r"{\left({\langle - a + x \rangle}^{n}\right)}^{3}"
    assert latex(SingularityFunction(x, 4, -2)**3) == \
        r"{\left({\langle x - 4 \rangle}^{-2}\right)}^{3}"
    assert latex((SingularityFunction(x, 4, -1)**3)**3) == \
        r"{\left({\langle x - 4 \rangle}^{-1}\right)}^{9}"


def test_latex_cycle():
    assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
    assert latex(Cycle(1, 2)(4, 5, 6)) == \
        r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
    assert latex(Cycle()) == r"\left( \right)"


def test_latex_permutation():
    assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
    assert latex(Permutation(1, 2)(4, 5, 6)) == \
        r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
    assert latex(Permutation()) == r"\left( \right)"
    assert latex(Permutation(2, 4)*Permutation(5)) == \
        r"\left( 2\; 4\right)\left( 5\right)"
    assert latex(Permutation(5)) == r"\left( 5\right)"

    assert latex(Permutation(0, 1), perm_cyclic=False) == \
        r"\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}"
    assert latex(Permutation(0, 1)(2, 3), perm_cyclic=False) == \
        r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}"
    assert latex(Permutation(), perm_cyclic=False) == \
        r"\left( \right)"

    with warns_deprecated_sympy():
        old_print_cyclic = Permutation.print_cyclic
        Permutation.print_cyclic = False
        assert latex(Permutation(0, 1)(2, 3)) == \
            r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}"
        Permutation.print_cyclic = old_print_cyclic

def test_latex_Float():
    assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}"
    assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}"
    assert latex(Float(1.0e-100), mul_symbol="times") == \
        r"1.0 \times 10^{-100}"
    assert latex(Float('10000.0'), full_prec=False, min=-2, max=2) == \
        r"1.0 \cdot 10^{4}"
    assert latex(Float('10000.0'), full_prec=False, min=-2, max=4) == \
        r"1.0 \cdot 10^{4}"
    assert latex(Float('10000.0'), full_prec=False, min=-2, max=5) == \
        r"10000.0"
    assert latex(Float('0.099999'), full_prec=True,  min=-2, max=5) == \
        r"9.99990000000000 \cdot 10^{-2}"


def test_latex_vector_expressions():
    A = CoordSys3D('A')

    assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \
        r"\mathbf{\hat{i}_{A}} \times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
    assert latex(Cross(A.i, A.j)) == \
        r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}"
    assert latex(x*Cross(A.i, A.j)) == \
        r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)"
    assert latex(Cross(x*A.i, A.j)) == \
        r'- \mathbf{\hat{j}_{A}} \times \left(\left(x\right)\mathbf{\hat{i}_{A}}\right)'

    assert latex(Curl(3*A.x*A.j)) == \
        r"\nabla\times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)"
    assert latex(Curl(3*A.x*A.j+A.i)) == \
        r"\nabla\times \left(\mathbf{\hat{i}_{A}} + \left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)"
    assert latex(Curl(3*x*A.x*A.j)) == \
        r"\nabla\times \left(\left(3 \mathbf{{x}_{A}} x\right)\mathbf{\hat{j}_{A}}\right)"
    assert latex(x*Curl(3*A.x*A.j)) == \
        r"x \left(\nabla\times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)\right)"

    assert latex(Divergence(3*A.x*A.j+A.i)) == \
        r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + \left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)"
    assert latex(Divergence(3*A.x*A.j)) == \
        r"\nabla\cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)"
    assert latex(x*Divergence(3*A.x*A.j)) == \
        r"x \left(\nabla\cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)\right)"

    assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \
        r"\mathbf{\hat{i}_{A}} \cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
    assert latex(Dot(A.i, A.j)) == \
        r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}"
    assert latex(Dot(x*A.i, A.j)) == \
        r"\mathbf{\hat{j}_{A}} \cdot \left(\left(x\right)\mathbf{\hat{i}_{A}}\right)"
    assert latex(x*Dot(A.i, A.j)) == \
        r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)"

    assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}"
    assert latex(Gradient(A.x + 3*A.y)) == \
        r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
    assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)"
    assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)"

    assert latex(Laplacian(A.x)) == r"\Delta \mathbf{{x}_{A}}"
    assert latex(Laplacian(A.x + 3*A.y)) == \
        r"\Delta \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
    assert latex(x*Laplacian(A.x)) == r"x \left(\Delta \mathbf{{x}_{A}}\right)"
    assert latex(Laplacian(x*A.x)) == r"\Delta \left(\mathbf{{x}_{A}} x\right)"

def test_latex_symbols():
    Gamma, lmbda, rho = symbols('Gamma, lambda, rho')
    tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU')
    assert latex(tau) == r"\tau"
    assert latex(Tau) == r"\mathrm{T}"
    assert latex(TAU) == r"\tau"
    assert latex(taU) == r"\tau"
    # Check that all capitalized greek letters are handled explicitly
    capitalized_letters = {l.capitalize() for l in greek_letters_set}
    assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0
    assert latex(Gamma + lmbda) == r"\Gamma + \lambda"
    assert latex(Gamma * lmbda) == r"\Gamma \lambda"
    assert latex(Symbol('q1')) == r"q_{1}"
    assert latex(Symbol('q21')) == r"q_{21}"
    assert latex(Symbol('epsilon0')) == r"\epsilon_{0}"
    assert latex(Symbol('omega1')) == r"\omega_{1}"
    assert latex(Symbol('91')) == r"91"
    assert latex(Symbol('alpha_new')) == r"\alpha_{new}"
    assert latex(Symbol('C^orig')) == r"C^{orig}"
    assert latex(Symbol('x^alpha')) == r"x^{\alpha}"
    assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}"
    assert latex(Symbol('e^Alpha')) == r"e^{\mathrm{A}}"
    assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}"
    assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}"


@XFAIL
def test_latex_symbols_failing():
    rho, mass, volume = symbols('rho, mass, volume')
    assert latex(
        volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}"
    assert latex(volume / mass * rho == 1) == \
        r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1"
    assert latex(mass**3 * volume**3) == \
        r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}"


@_both_exp_pow
def test_latex_functions():
    assert latex(exp(x)) == r"e^{x}"
    assert latex(exp(1) + exp(2)) == r"e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == r'f{\left(x \right)}'
    assert latex(f) == r'f'

    g = Function('g')
    assert latex(g(x, y)) == r'g{\left(x,y \right)}'
    assert latex(g) == r'g'

    h = Function('h')
    assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}'
    assert latex(h) == r'h'

    Li = Function('Li')
    assert latex(Li) == r'\operatorname{Li}'
    assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}'

    mybeta = Function('beta')
    # not to be confused with the beta function
    assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}"
    assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)'
    assert latex(beta(x, evaluate=False)) == r'\operatorname{B}\left(x, x\right)'
    assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)'
    assert latex(mybeta(x)) == r"\beta{\left(x \right)}"
    assert latex(mybeta) == r"\beta"

    g = Function('gamma')
    # not to be confused with the gamma function
    assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}"
    assert latex(g(x)) == r"\gamma{\left(x \right)}"
    assert latex(g) == r"\gamma"

    a_1 = Function('a_1')
    assert latex(a_1) == r"a_{1}"
    assert latex(a_1(x)) == r"a_{1}{\left(x \right)}"
    assert latex(Function('a_1')) == r"a_{1}"

    # Issue #16925
    # multi letter function names
    # > simple
    assert latex(Function('ab')) == r"\operatorname{ab}"
    assert latex(Function('ab1')) == r"\operatorname{ab}_{1}"
    assert latex(Function('ab12')) == r"\operatorname{ab}_{12}"
    assert latex(Function('ab_1')) == r"\operatorname{ab}_{1}"
    assert latex(Function('ab_12')) == r"\operatorname{ab}_{12}"
    assert latex(Function('ab_c')) == r"\operatorname{ab}_{c}"
    assert latex(Function('ab_cd')) == r"\operatorname{ab}_{cd}"
    # > with argument
    assert latex(Function('ab')(Symbol('x'))) == r"\operatorname{ab}{\left(x \right)}"
    assert latex(Function('ab1')(Symbol('x'))) == r"\operatorname{ab}_{1}{\left(x \right)}"
    assert latex(Function('ab12')(Symbol('x'))) == r"\operatorname{ab}_{12}{\left(x \right)}"
    assert latex(Function('ab_1')(Symbol('x'))) == r"\operatorname{ab}_{1}{\left(x \right)}"
    assert latex(Function('ab_c')(Symbol('x'))) == r"\operatorname{ab}_{c}{\left(x \right)}"
    assert latex(Function('ab_cd')(Symbol('x'))) == r"\operatorname{ab}_{cd}{\left(x \right)}"

    # > with power
    #   does not work on functions without brackets

    # > with argument and power combined
    assert latex(Function('ab')()**2) == r"\operatorname{ab}^{2}{\left( \right)}"
    assert latex(Function('ab1')()**2) == r"\operatorname{ab}_{1}^{2}{\left( \right)}"
    assert latex(Function('ab12')()**2) == r"\operatorname{ab}_{12}^{2}{\left( \right)}"
    assert latex(Function('ab_1')()**2) == r"\operatorname{ab}_{1}^{2}{\left( \right)}"
    assert latex(Function('ab_12')()**2) == r"\operatorname{ab}_{12}^{2}{\left( \right)}"
    assert latex(Function('ab')(Symbol('x'))**2) == r"\operatorname{ab}^{2}{\left(x \right)}"
    assert latex(Function('ab1')(Symbol('x'))**2) == r"\operatorname{ab}_{1}^{2}{\left(x \right)}"
    assert latex(Function('ab12')(Symbol('x'))**2) == r"\operatorname{ab}_{12}^{2}{\left(x \right)}"
    assert latex(Function('ab_1')(Symbol('x'))**2) == r"\operatorname{ab}_{1}^{2}{\left(x \right)}"
    assert latex(Function('ab_12')(Symbol('x'))**2) == \
        r"\operatorname{ab}_{12}^{2}{\left(x \right)}"

    # single letter function names
    # > simple
    assert latex(Function('a')) == r"a"
    assert latex(Function('a1')) == r"a_{1}"
    assert latex(Function('a12')) == r"a_{12}"
    assert latex(Function('a_1')) == r"a_{1}"
    assert latex(Function('a_12')) == r"a_{12}"

    # > with argument
    assert latex(Function('a')()) == r"a{\left( \right)}"
    assert latex(Function('a1')()) == r"a_{1}{\left( \right)}"
    assert latex(Function('a12')()) == r"a_{12}{\left( \right)}"
    assert latex(Function('a_1')()) == r"a_{1}{\left( \right)}"
    assert latex(Function('a_12')()) == r"a_{12}{\left( \right)}"

    # > with power
    #   does not work on functions without brackets

    # > with argument and power combined
    assert latex(Function('a')()**2) == r"a^{2}{\left( \right)}"
    assert latex(Function('a1')()**2) == r"a_{1}^{2}{\left( \right)}"
    assert latex(Function('a12')()**2) == r"a_{12}^{2}{\left( \right)}"
    assert latex(Function('a_1')()**2) == r"a_{1}^{2}{\left( \right)}"
    assert latex(Function('a_12')()**2) == r"a_{12}^{2}{\left( \right)}"
    assert latex(Function('a')(Symbol('x'))**2) == r"a^{2}{\left(x \right)}"
    assert latex(Function('a1')(Symbol('x'))**2) == r"a_{1}^{2}{\left(x \right)}"
    assert latex(Function('a12')(Symbol('x'))**2) == r"a_{12}^{2}{\left(x \right)}"
    assert latex(Function('a_1')(Symbol('x'))**2) == r"a_{1}^{2}{\left(x \right)}"
    assert latex(Function('a_12')(Symbol('x'))**2) == r"a_{12}^{2}{\left(x \right)}"

    assert latex(Function('a')()**32) == r"a^{32}{\left( \right)}"
    assert latex(Function('a1')()**32) == r"a_{1}^{32}{\left( \right)}"
    assert latex(Function('a12')()**32) == r"a_{12}^{32}{\left( \right)}"
    assert latex(Function('a_1')()**32) == r"a_{1}^{32}{\left( \right)}"
    assert latex(Function('a_12')()**32) == r"a_{12}^{32}{\left( \right)}"
    assert latex(Function('a')(Symbol('x'))**32) == r"a^{32}{\left(x \right)}"
    assert latex(Function('a1')(Symbol('x'))**32) == r"a_{1}^{32}{\left(x \right)}"
    assert latex(Function('a12')(Symbol('x'))**32) == r"a_{12}^{32}{\left(x \right)}"
    assert latex(Function('a_1')(Symbol('x'))**32) == r"a_{1}^{32}{\left(x \right)}"
    assert latex(Function('a_12')(Symbol('x'))**32) == r"a_{12}^{32}{\left(x \right)}"

    assert latex(Function('a')()**a) == r"a^{a}{\left( \right)}"
    assert latex(Function('a1')()**a) == r"a_{1}^{a}{\left( \right)}"
    assert latex(Function('a12')()**a) == r"a_{12}^{a}{\left( \right)}"
    assert latex(Function('a_1')()**a) == r"a_{1}^{a}{\left( \right)}"
    assert latex(Function('a_12')()**a) == r"a_{12}^{a}{\left( \right)}"
    assert latex(Function('a')(Symbol('x'))**a) == r"a^{a}{\left(x \right)}"
    assert latex(Function('a1')(Symbol('x'))**a) == r"a_{1}^{a}{\left(x \right)}"
    assert latex(Function('a12')(Symbol('x'))**a) == r"a_{12}^{a}{\left(x \right)}"
    assert latex(Function('a_1')(Symbol('x'))**a) == r"a_{1}^{a}{\left(x \right)}"
    assert latex(Function('a_12')(Symbol('x'))**a) == r"a_{12}^{a}{\left(x \right)}"

    ab = Symbol('ab')
    assert latex(Function('a')()**ab) == r"a^{ab}{\left( \right)}"
    assert latex(Function('a1')()**ab) == r"a_{1}^{ab}{\left( \right)}"
    assert latex(Function('a12')()**ab) == r"a_{12}^{ab}{\left( \right)}"
    assert latex(Function('a_1')()**ab) == r"a_{1}^{ab}{\left( \right)}"
    assert latex(Function('a_12')()**ab) == r"a_{12}^{ab}{\left( \right)}"
    assert latex(Function('a')(Symbol('x'))**ab) == r"a^{ab}{\left(x \right)}"
    assert latex(Function('a1')(Symbol('x'))**ab) == r"a_{1}^{ab}{\left(x \right)}"
    assert latex(Function('a12')(Symbol('x'))**ab) == r"a_{12}^{ab}{\left(x \right)}"
    assert latex(Function('a_1')(Symbol('x'))**ab) == r"a_{1}^{ab}{\left(x \right)}"
    assert latex(Function('a_12')(Symbol('x'))**ab) == r"a_{12}^{ab}{\left(x \right)}"

    assert latex(Function('a^12')(x)) == R"a^{12}{\left(x \right)}"
    assert latex(Function('a^12')(x) ** ab) == R"\left(a^{12}\right)^{ab}{\left(x \right)}"
    assert latex(Function('a__12')(x)) == R"a^{12}{\left(x \right)}"
    assert latex(Function('a__12')(x) ** ab) == R"\left(a^{12}\right)^{ab}{\left(x \right)}"
    assert latex(Function('a_1__1_2')(x)) == R"a^{1}_{1 2}{\left(x \right)}"

    # issue 5868
    omega1 = Function('omega1')
    assert latex(omega1) == r"\omega_{1}"
    assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}"

    assert latex(sin(x)) == r"\sin{\left(x \right)}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left(x \right)}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left(x \right)}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"
    assert latex(acsc(x), inv_trig_style="full") == \
        r"\operatorname{arccsc}{\left(x \right)}"
    assert latex(asinh(x), inv_trig_style="full") == \
        r"\operatorname{arsinh}{\left(x \right)}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"
    assert latex(factorial(k)**2) == r"k!^{2}"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"
    assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"
    assert latex(factorial2(k)**2) == r"k!!^{2}"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"
    assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}"

    assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}"
    assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}"

    assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor"
    assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil"
    assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}"
    assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}"
    assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}"
    assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}"

    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\left|{x}\right|"
    assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}"
    assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}"
    assert latex(re(x + y)) == \
        r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}"
    assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(conjugate(x)**2) == r"\overline{x}^{2}"
    assert latex(conjugate(x**2)) == r"\overline{x}^{2}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    w = Wild('w')
    assert latex(gamma(w)) == r"\Gamma\left(w\right)"
    assert latex(Order(x)) == r"O\left(x\right)"
    assert latex(Order(x, x)) == r"O\left(x\right)"
    assert latex(Order(x, (x, 0))) == r"O\left(x\right)"
    assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)"
    assert latex(Order(x - y, (x, y))) == \
        r"O\left(x - y; x\rightarrow y\right)"
    assert latex(Order(x, x, y)) == \
        r"O\left(x; \left( x, \  y\right)\rightarrow \left( 0, \  0\right)\right)"
    assert latex(Order(x, x, y)) == \
        r"O\left(x; \left( x, \  y\right)\rightarrow \left( 0, \  0\right)\right)"
    assert latex(Order(x, (x, oo), (y, oo))) == \
        r"O\left(x; \left( x, \  y\right)\rightarrow \left( \infty, \  \infty\right)\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left(x \right)}'
    assert latex(coth(x)) == r'\coth{\left(x \right)}'
    assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}'
    assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left(x \right)}'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(
        polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"
    assert latex(stieltjes(x)) == r"\gamma_{x}"
    assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}"
    assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)"
    assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}"

    assert latex(elliptic_k(z)) == r"K\left(z\right)"
    assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
    assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
    assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(z)) == r"E\left(z\right)"
    assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
    assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y, z)**2) == \
        r"\Pi^{2}\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
    assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}'
    assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)'
    assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)'
    assert latex(jacobi(n, a, b, x)) == \
        r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(n, a, b, x)**2) == \
        r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(gegenbauer(n, a, x)) == \
        r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(n, a, x)**2) == \
        r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(chebyshevt(n, x)**2) == \
        r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(chebyshevu(n, x)**2) == \
        r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_legendre(n, a, x)) == \
        r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(n, a, x)**2) == \
        r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_laguerre(n, a, x)) == \
        r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(n, a, x)**2) == \
        r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    theta = Symbol("theta", real=True)
    phi = Symbol("phi", real=True)
    assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
    assert latex(Ynm(n, m, theta, phi)**3) == \
        r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
    assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
    assert latex(Znm(n, m, theta, phi)**3) == \
        r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'

    # Test latex printing of function names with "_"
    assert latex(polar_lift(0)) == \
        r"\operatorname{polar\_lift}{\left(0 \right)}"
    assert latex(polar_lift(0)**3) == \
        r"\operatorname{polar\_lift}^{3}{\left(0 \right)}"

    assert latex(totient(n)) == r'\phi\left(n\right)'
    assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}'

    assert latex(reduced_totient(n)) == r'\lambda\left(n\right)'
    assert latex(reduced_totient(n) ** 2) == \
        r'\left(\lambda\left(n\right)\right)^{2}'

    assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)"
    assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)"
    assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)"
    assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)"

    assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)"
    assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)"
    assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)"
    assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)"

    assert latex(primenu(n)) == r'\nu\left(n\right)'
    assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}'

    assert latex(primeomega(n)) == r'\Omega\left(n\right)'
    assert latex(primeomega(n) ** 2) == \
        r'\left(\Omega\left(n\right)\right)^{2}'

    assert latex(LambertW(n)) == r'W\left(n\right)'
    assert latex(LambertW(n, -1)) == r'W_{-1}\left(n\right)'
    assert latex(LambertW(n, k)) == r'W_{k}\left(n\right)'
    assert latex(LambertW(n) * LambertW(n)) == r"W^{2}\left(n\right)"
    assert latex(Pow(LambertW(n), 2)) == r"W^{2}\left(n\right)"
    assert latex(LambertW(n)**k) == r"W^{k}\left(n\right)"
    assert latex(LambertW(n, k)**p) == r"W^{p}_{k}\left(n\right)"

    assert latex(Mod(x, 7)) == r'x \bmod 7'
    assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right) \bmod 7'
    assert latex(Mod(7, x + 1)) == r'7 \bmod \left(x + 1\right)'
    assert latex(Mod(2 * x, 7)) == r'2 x \bmod 7'
    assert latex(Mod(7, 2 * x)) == r'7 \bmod 2 x'
    assert latex(Mod(x, 7) + 1) == r'\left(x \bmod 7\right) + 1'
    assert latex(2 * Mod(x, 7)) == r'2 \left(x \bmod 7\right)'
    assert latex(Mod(7, 2 * x)**n) == r'\left(7 \bmod 2 x\right)^{n}'

    # some unknown function name should get rendered with \operatorname
    fjlkd = Function('fjlkd')
    assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}'
    # even when it is referred to without an argument
    assert latex(fjlkd) == r'\operatorname{fjlkd}'


# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
    class mygamma(gamma):
        pass
    assert latex(mygamma) == r"\operatorname{mygamma}"
    assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}"


def test_hyper_printing():
    from sympy.abc import x, z

    assert latex(meijerg(Tuple(pi, pi, x), Tuple(1),
                         (0, 1), Tuple(1, 2, 3/pi), z)) == \
        r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\
        r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}'
    assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \
        r'{G_{1, 1}^{1, 0}\left(\begin{matrix}  & 1 \\0 &  \end{matrix} \middle| {z} \right)}'
    assert latex(hyper((x, 2), (3,), z)) == \
        r'{{}_{2}F_{1}\left(\begin{matrix} 2, x ' \
        r'\\ 3 \end{matrix}\middle| {z} \right)}'
    assert latex(hyper(Tuple(), Tuple(1), z)) == \
        r'{{}_{0}F_{1}\left(\begin{matrix}  ' \
        r'\\ 1 \end{matrix}\middle| {z} \right)}'


def test_latex_bessel():
    from sympy.functions.special.bessel import (besselj, bessely, besseli,
                                                besselk, hankel1, hankel2,
                                                jn, yn, hn1, hn2)
    from sympy.abc import z
    assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
    assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
    assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
    assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
    assert latex(hankel1(n, z**2)**2) == \
        r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
    assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
    assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
    assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
    assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)'
    assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)'


def test_latex_fresnel():
    from sympy.functions.special.error_functions import (fresnels, fresnelc)
    from sympy.abc import z
    assert latex(fresnels(z)) == r'S\left(z\right)'
    assert latex(fresnelc(z)) == r'C\left(z\right)'
    assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)'
    assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)'


def test_latex_brackets():
    assert latex((-1)**x) == r"\left(-1\right)^{x}"


def test_latex_indexed():
    Psi_symbol = Symbol('Psi_0', complex=True, real=False)
    Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False))
    symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol))
    indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0]))
    # \\overline{{\\Psi}_{0}} {\\Psi}_{0}  vs.  \\Psi_{0} \\overline{\\Psi_{0}}
    assert symbol_latex == r'\Psi_{0} \overline{\Psi_{0}}'
    assert indexed_latex == r'\overline{{\Psi}_{0}} {\Psi}_{0}'

    # Symbol('gamma') gives r'\gamma'
    interval = '\\mathrel{..}\\nobreak '
    assert latex(Indexed('x1', Symbol('i'))) == r'{x_{1}}_{i}'
    assert latex(Indexed('x2', Idx('i'))) == r'{x_{2}}_{i}'
    assert latex(Indexed('x3', Idx('i', Symbol('N')))) == r'{x_{3}}_{{i}_{0'+interval+'N - 1}}'
    assert latex(Indexed('x3', Idx('i', Symbol('N')+1))) == r'{x_{3}}_{{i}_{0'+interval+'N}}'
    assert latex(Indexed('x4', Idx('i', (Symbol('a'),Symbol('b'))))) == r'{x_{4}}_{{i}_{a'+interval+'b}}'
    assert latex(IndexedBase('gamma')) == r'\gamma'
    assert latex(IndexedBase('a b')) == r'a b'
    assert latex(IndexedBase('a_b')) == r'a_{b}'


def test_latex_derivatives():
    # regular "d" for ordinary derivatives
    assert latex(diff(x**3, x, evaluate=False)) == \
        r"\frac{d}{d x} x^{3}"
    assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \
        r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)"
    assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\
        == \
        r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)"
    assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \
        r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)"

    # \partial for partial derivatives
    assert latex(diff(sin(x * y), x, evaluate=False)) == \
        r"\frac{\partial}{\partial x} \sin{\left(x y \right)}"
    assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \
        r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)"
    assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \
        r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)"
    assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \
        r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)"

    # mixed partial derivatives
    f = Function("f")
    assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \
        r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y))

    assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \
        r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y))

    # for negative nested Derivative
    assert latex(diff(-diff(y**2,x,evaluate=False),x,evaluate=False)) == r'\frac{d}{d x} \left(- \frac{d}{d x} y^{2}\right)'
    assert latex(diff(diff(-diff(diff(y,x,evaluate=False),x,evaluate=False),x,evaluate=False),x,evaluate=False)) == \
        r'\frac{d^{2}}{d x^{2}} \left(- \frac{d^{2}}{d x^{2}} y\right)'

    # use ordinary d when one of the variables has been integrated out
    assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \
        r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx"

    # Derivative wrapped in power:
    assert latex(diff(x, x, evaluate=False)**2) == \
        r"\left(\frac{d}{d x} x\right)^{2}"

    assert latex(diff(f(x), x)**2) == \
        r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}"

    assert latex(diff(f(x), (x, n))) == \
        r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}"

    x1 = Symbol('x1')
    x2 = Symbol('x2')
    assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}'

    n1 = Symbol('n1')
    assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}'

    n2 = Symbol('n2')
    assert latex(diff(f(x), (x, Max(n1, n2)))) == \
        r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}'

    # set diff operator
    assert latex(diff(f(x), x), diff_operator="rd") == r'\frac{\mathrm{d}}{\mathrm{d} x} f{\left(x \right)}'


def test_latex_subs():
    assert latex(Subs(x*y, (x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}'


def test_latex_integrals():
    assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx"
    assert latex(Integral(x**2, (x, 0, 1))) == \
        r"\int\limits_{0}^{1} x^{2}\, dx"
    assert latex(Integral(x**2, (x, 10, 20))) == \
        r"\int\limits_{10}^{20} x^{2}\, dx"
    assert latex(Integral(y*x**2, (x, 0, 1), y)) == \
        r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy"
    assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \
        r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}"
    assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \
        == r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$"
    assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx"
    assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy"
    assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz"
    assert latex(Integral(x*y*z*t, x, y, z, t)) == \
        r"\iiiint t x y z\, dx\, dy\, dz\, dt"
    assert latex(Integral(x, x, x, x, x, x, x)) == \
        r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx"
    assert latex(Integral(x, x, y, (z, 0, 1))) == \
        r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz"

    # for negative nested Integral
    assert latex(Integral(-Integral(y**2,x),x)) == \
        r'\int \left(- \int y^{2}\, dx\right)\, dx'
    assert latex(Integral(-Integral(-Integral(y,x),x),x)) == \
        r'\int \left(- \int \left(- \int y\, dx\right)\, dx\right)\, dx'

    # fix issue #10806
    assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}"
    assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz"
    assert latex(Integral(x+z/2, z)) == \
        r"\int \left(x + \frac{z}{2}\right)\, dz"
    assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz"

    # set diff operator
    assert latex(Integral(x, x), diff_operator="rd") == r'\int x\, \mathrm{d}x'
    assert latex(Integral(x, (x, 0, 1)), diff_operator="rd") == r'\int\limits_{0}^{1} x\, \mathrm{d}x'


def test_latex_sets():
    for s in (frozenset, set):
        assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
        assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
        assert latex(s(range(1, 13))) == \
            r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"

    s = FiniteSet
    assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
    assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
    assert latex(s(*range(1, 13))) == \
        r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"


def test_latex_SetExpr():
    iv = Interval(1, 3)
    se = SetExpr(iv)
    assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)"


def test_latex_Range():
    assert latex(Range(1, 51)) == r'\left\{1, 2, \ldots, 50\right\}'
    assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}'
    assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}'
    assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}'
    assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}'
    assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}'
    assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}'
    assert latex(Range(-2, -oo, -1)) == r'\left\{-2, -3, \ldots\right\}'
    assert latex(Range(-oo, oo)) == r'\left\{\ldots, -1, 0, 1, \ldots\right\}'
    assert latex(Range(oo, -oo, -1)) == r'\left\{\ldots, 1, 0, -1, \ldots\right\}'

    a, b, c = symbols('a:c')
    assert latex(Range(a, b, c)) == r'\text{Range}\left(a, b, c\right)'
    assert latex(Range(a, 10, 1)) == r'\text{Range}\left(a, 10\right)'
    assert latex(Range(0, b, 1)) == r'\text{Range}\left(b\right)'
    assert latex(Range(0, 10, c)) == r'\text{Range}\left(0, 10, c\right)'

    i = Symbol('i', integer=True)
    n = Symbol('n', negative=True, integer=True)
    p = Symbol('p', positive=True, integer=True)

    assert latex(Range(i, i + 3)) == r'\left\{i, i + 1, i + 2\right\}'
    assert latex(Range(-oo, n, 2)) == r'\left\{\ldots, n - 4, n - 2\right\}'
    assert latex(Range(p, oo)) == r'\left\{p, p + 1, \ldots\right\}'
    # The following will work if __iter__ is improved
    # assert latex(Range(-3, p + 7)) == r'\left\{-3, -2,  \ldots, p + 6\right\}'
    # Must have integer assumptions
    assert latex(Range(a, a + 3)) == r'\text{Range}\left(a, a + 3\right)'


def test_latex_sequences():
    s1 = SeqFormula(a**2, (0, oo))
    s2 = SeqPer((1, 2))

    latex_str = r'\left[0, 1, 4, 9, \ldots\right]'
    assert latex(s1) == latex_str

    latex_str = r'\left[1, 2, 1, 2, \ldots\right]'
    assert latex(s2) == latex_str

    s3 = SeqFormula(a**2, (0, 2))
    s4 = SeqPer((1, 2), (0, 2))

    latex_str = r'\left[0, 1, 4\right]'
    assert latex(s3) == latex_str

    latex_str = r'\left[1, 2, 1\right]'
    assert latex(s4) == latex_str

    s5 = SeqFormula(a**2, (-oo, 0))
    s6 = SeqPer((1, 2), (-oo, 0))

    latex_str = r'\left[\ldots, 9, 4, 1, 0\right]'
    assert latex(s5) == latex_str

    latex_str = r'\left[\ldots, 2, 1, 2, 1\right]'
    assert latex(s6) == latex_str

    latex_str = r'\left[1, 3, 5, 11, \ldots\right]'
    assert latex(SeqAdd(s1, s2)) == latex_str

    latex_str = r'\left[1, 3, 5\right]'
    assert latex(SeqAdd(s3, s4)) == latex_str

    latex_str = r'\left[\ldots, 11, 5, 3, 1\right]'
    assert latex(SeqAdd(s5, s6)) == latex_str

    latex_str = r'\left[0, 2, 4, 18, \ldots\right]'
    assert latex(SeqMul(s1, s2)) == latex_str

    latex_str = r'\left[0, 2, 4\right]'
    assert latex(SeqMul(s3, s4)) == latex_str

    latex_str = r'\left[\ldots, 18, 4, 2, 0\right]'
    assert latex(SeqMul(s5, s6)) == latex_str

    # Sequences with symbolic limits, issue 12629
    s7 = SeqFormula(a**2, (a, 0, x))
    latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}'
    assert latex(s7) == latex_str

    b = Symbol('b')
    s8 = SeqFormula(b*a**2, (a, 0, 2))
    latex_str = r'\left[0, b, 4 b\right]'
    assert latex(s8) == latex_str


def test_latex_FourierSeries():
    latex_str = \
        r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots'
    assert latex(fourier_series(x, (x, -pi, pi))) == latex_str


def test_latex_FormalPowerSeries():
    latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}'
    assert latex(fps(log(1 + x))) == latex_str


def test_latex_intervals():
    a = Symbol('a', real=True)
    assert latex(Interval(0, 0)) == r"\left\{0\right\}"
    assert latex(Interval(0, a)) == r"\left[0, a\right]"
    assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]"
    assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]"
    assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)"
    assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)"


def test_latex_AccumuBounds():
    a = Symbol('a', real=True)
    assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle"
    assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle"
    assert latex(AccumBounds(a + 1, a + 2)) == \
        r"\left\langle a + 1, a + 2\right\rangle"


def test_latex_emptyset():
    assert latex(S.EmptySet) == r"\emptyset"


def test_latex_universalset():
    assert latex(S.UniversalSet) == r"\mathbb{U}"


def test_latex_commutator():
    A = Operator('A')
    B = Operator('B')
    comm = Commutator(B, A)
    assert latex(comm.doit()) == r"- (A B - B A)"


def test_latex_union():
    assert latex(Union(Interval(0, 1), Interval(2, 3))) == \
        r"\left[0, 1\right] \cup \left[2, 3\right]"
    assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \
        r"\left\{1, 2\right\} \cup \left[3, 4\right]"


def test_latex_intersection():
    assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \
        r"\left[0, 1\right] \cap \left[x, y\right]"


def test_latex_symmetric_difference():
    assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7),
                                     evaluate=False)) == \
        r'\left[2, 5\right] \triangle \left[4, 7\right]'


def test_latex_Complement():
    assert latex(Complement(S.Reals, S.Naturals)) == \
        r"\mathbb{R} \setminus \mathbb{N}"


def test_latex_productset():
    line = Interval(0, 1)
    bigline = Interval(0, 10)
    fset = FiniteSet(1, 2, 3)
    assert latex(line**2) == r"%s^{2}" % latex(line)
    assert latex(line**10) == r"%s^{10}" % latex(line)
    assert latex((line * bigline * fset).flatten()) == r"%s \times %s \times %s" % (
        latex(line), latex(bigline), latex(fset))


def test_latex_powerset():
    fset = FiniteSet(1, 2, 3)
    assert latex(PowerSet(fset)) == r'\mathcal{P}\left(\left\{1, 2, 3\right\}\right)'


def test_latex_ordinals():
    w = OrdinalOmega()
    assert latex(w) == r"\omega"
    wp = OmegaPower(2, 3)
    assert latex(wp) == r'3 \omega^{2}'
    assert latex(Ordinal(wp, OmegaPower(1, 1))) == r'3 \omega^{2} + \omega'
    assert latex(Ordinal(OmegaPower(2, 1), OmegaPower(1, 2))) == r'\omega^{2} + 2 \omega'


def test_set_operators_parenthesis():
    a, b, c, d = symbols('a:d')
    A = FiniteSet(a)
    B = FiniteSet(b)
    C = FiniteSet(c)
    D = FiniteSet(d)

    U1 = Union(A, B, evaluate=False)
    U2 = Union(C, D, evaluate=False)
    I1 = Intersection(A, B, evaluate=False)
    I2 = Intersection(C, D, evaluate=False)
    C1 = Complement(A, B, evaluate=False)
    C2 = Complement(C, D, evaluate=False)
    D1 = SymmetricDifference(A, B, evaluate=False)
    D2 = SymmetricDifference(C, D, evaluate=False)
    # XXX ProductSet does not support evaluate keyword
    P1 = ProductSet(A, B)
    P2 = ProductSet(C, D)

    assert latex(Intersection(A, U2, evaluate=False)) == \
        r'\left\{a\right\} \cap ' \
        r'\left(\left\{c\right\} \cup \left\{d\right\}\right)'
    assert latex(Intersection(U1, U2, evaluate=False)) == \
        r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
        r'\cap \left(\left\{c\right\} \cup \left\{d\right\}\right)'
    assert latex(Intersection(C1, C2, evaluate=False)) == \
        r'\left(\left\{a\right\} \setminus ' \
        r'\left\{b\right\}\right) \cap \left(\left\{c\right\} ' \
        r'\setminus \left\{d\right\}\right)'
    assert latex(Intersection(D1, D2, evaluate=False)) == \
        r'\left(\left\{a\right\} \triangle ' \
        r'\left\{b\right\}\right) \cap \left(\left\{c\right\} ' \
        r'\triangle \left\{d\right\}\right)'
    assert latex(Intersection(P1, P2, evaluate=False)) == \
        r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
        r'\cap \left(\left\{c\right\} \times ' \
        r'\left\{d\right\}\right)'

    assert latex(Union(A, I2, evaluate=False)) == \
        r'\left\{a\right\} \cup ' \
        r'\left(\left\{c\right\} \cap \left\{d\right\}\right)'
    assert latex(Union(I1, I2, evaluate=False)) == \
        r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
        r'\cup \left(\left\{c\right\} \cap \left\{d\right\}\right)'
    assert latex(Union(C1, C2, evaluate=False)) == \
        r'\left(\left\{a\right\} \setminus ' \
        r'\left\{b\right\}\right) \cup \left(\left\{c\right\} ' \
        r'\setminus \left\{d\right\}\right)'
    assert latex(Union(D1, D2, evaluate=False)) == \
        r'\left(\left\{a\right\} \triangle ' \
        r'\left\{b\right\}\right) \cup \left(\left\{c\right\} ' \
        r'\triangle \left\{d\right\}\right)'
    assert latex(Union(P1, P2, evaluate=False)) == \
        r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
        r'\cup \left(\left\{c\right\} \times ' \
        r'\left\{d\right\}\right)'

    assert latex(Complement(A, C2, evaluate=False)) == \
        r'\left\{a\right\} \setminus \left(\left\{c\right\} ' \
        r'\setminus \left\{d\right\}\right)'
    assert latex(Complement(U1, U2, evaluate=False)) == \
        r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
        r'\setminus \left(\left\{c\right\} \cup ' \
        r'\left\{d\right\}\right)'
    assert latex(Complement(I1, I2, evaluate=False)) == \
        r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
        r'\setminus \left(\left\{c\right\} \cap ' \
        r'\left\{d\right\}\right)'
    assert latex(Complement(D1, D2, evaluate=False)) == \
        r'\left(\left\{a\right\} \triangle ' \
        r'\left\{b\right\}\right) \setminus ' \
        r'\left(\left\{c\right\} \triangle \left\{d\right\}\right)'
    assert latex(Complement(P1, P2, evaluate=False)) == \
        r'\left(\left\{a\right\} \times \left\{b\right\}\right) '\
        r'\setminus \left(\left\{c\right\} \times '\
        r'\left\{d\right\}\right)'

    assert latex(SymmetricDifference(A, D2, evaluate=False)) == \
        r'\left\{a\right\} \triangle \left(\left\{c\right\} ' \
        r'\triangle \left\{d\right\}\right)'
    assert latex(SymmetricDifference(U1, U2, evaluate=False)) == \
        r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
        r'\triangle \left(\left\{c\right\} \cup ' \
        r'\left\{d\right\}\right)'
    assert latex(SymmetricDifference(I1, I2, evaluate=False)) == \
        r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
        r'\triangle \left(\left\{c\right\} \cap ' \
        r'\left\{d\right\}\right)'
    assert latex(SymmetricDifference(C1, C2, evaluate=False)) == \
        r'\left(\left\{a\right\} \setminus ' \
        r'\left\{b\right\}\right) \triangle ' \
        r'\left(\left\{c\right\} \setminus \left\{d\right\}\right)'
    assert latex(SymmetricDifference(P1, P2, evaluate=False)) == \
        r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
        r'\triangle \left(\left\{c\right\} \times ' \
        r'\left\{d\right\}\right)'

    # XXX This can be incorrect since cartesian product is not associative
    assert latex(ProductSet(A, P2).flatten()) == \
        r'\left\{a\right\} \times \left\{c\right\} \times ' \
        r'\left\{d\right\}'
    assert latex(ProductSet(U1, U2)) == \
        r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
        r'\times \left(\left\{c\right\} \cup ' \
        r'\left\{d\right\}\right)'
    assert latex(ProductSet(I1, I2)) == \
        r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
        r'\times \left(\left\{c\right\} \cap ' \
        r'\left\{d\right\}\right)'
    assert latex(ProductSet(C1, C2)) == \
        r'\left(\left\{a\right\} \setminus ' \
        r'\left\{b\right\}\right) \times \left(\left\{c\right\} ' \
        r'\setminus \left\{d\right\}\right)'
    assert latex(ProductSet(D1, D2)) == \
        r'\left(\left\{a\right\} \triangle ' \
        r'\left\{b\right\}\right) \times \left(\left\{c\right\} ' \
        r'\triangle \left\{d\right\}\right)'


def test_latex_Complexes():
    assert latex(S.Complexes) == r"\mathbb{C}"


def test_latex_Naturals():
    assert latex(S.Naturals) == r"\mathbb{N}"


def test_latex_Naturals0():
    assert latex(S.Naturals0) == r"\mathbb{N}_0"


def test_latex_Integers():
    assert latex(S.Integers) == r"\mathbb{Z}"


def test_latex_ImageSet():
    x = Symbol('x')
    assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \
        r"\left\{x^{2}\; \middle|\; x \in \mathbb{N}\right\}"

    y = Symbol('y')
    imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
    assert latex(imgset) == \
        r"\left\{x + y\; \middle|\; x \in \left\{1, 2, 3\right\}, y \in \left\{3, 4\right\}\right\}"

    imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
    assert latex(imgset) == \
        r"\left\{x + y\; \middle|\; \left( x, \  y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\}"


def test_latex_ConditionSet():
    x = Symbol('x')
    assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \
        r"\left\{x\; \middle|\; x \in \mathbb{R} \wedge x^{2} = 1 \right\}"
    assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \
        r"\left\{x\; \middle|\; x^{2} = 1 \right\}"


def test_latex_ComplexRegion():
    assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \
        r"\left\{x + y i\; \middle|\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}"
    assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \
        r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\
        r"\right)}\right)\; \middle|\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}"


def test_latex_Contains():
    x = Symbol('x')
    assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}"


def test_latex_sum():
    assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
        r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
    assert latex(Sum(x**2, (x, -2, 2))) == \
        r"\sum_{x=-2}^{2} x^{2}"
    assert latex(Sum(x**2 + y, (x, -2, 2))) == \
        r"\sum_{x=-2}^{2} \left(x^{2} + y\right)"
    assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \
        r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}"


def test_latex_product():
    assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \
        r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
    assert latex(Product(x**2, (x, -2, 2))) == \
        r"\prod_{x=-2}^{2} x^{2}"
    assert latex(Product(x**2 + y, (x, -2, 2))) == \
        r"\prod_{x=-2}^{2} \left(x^{2} + y\right)"

    assert latex(Product(x, (x, -2, 2))**2) == \
        r"\left(\prod_{x=-2}^{2} x\right)^{2}"


def test_latex_limits():
    assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x"

    # issue 8175
    f = Function('f')
    assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}"
    assert latex(Limit(f(x), x, 0, "-")) == \
        r"\lim_{x \to 0^-} f{\left(x \right)}"

    # issue #10806
    assert latex(Limit(f(x), x, 0)**2) == \
        r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}"
    # bi-directional limit
    assert latex(Limit(f(x), x, 0, dir='+-')) == \
        r"\lim_{x \to 0} f{\left(x \right)}"


def test_latex_log():
    assert latex(log(x)) == r"\log{\left(x \right)}"
    assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}"
    assert latex(log(x) + log(y)) == \
        r"\log{\left(x \right)} + \log{\left(y \right)}"
    assert latex(log(x) + log(y), ln_notation=True) == \
        r"\ln{\left(x \right)} + \ln{\left(y \right)}"
    assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}"
    assert latex(pow(log(x), x), ln_notation=True) == \
        r"\ln{\left(x \right)}^{x}"


def test_issue_3568():
    beta = Symbol(r'\beta')
    y = beta + x
    assert latex(y) in [r'\beta + x', r'x + \beta']

    beta = Symbol(r'beta')
    y = beta + x
    assert latex(y) in [r'\beta + x', r'x + \beta']


def test_latex():
    assert latex((2*tau)**Rational(7, 2)) == r"8 \sqrt{2} \tau^{\frac{7}{2}}"
    assert latex((2*mu)**Rational(7, 2), mode='equation*') == \
        r"\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}"
    assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \
        r"$$8 \sqrt{2} \mu^{\frac{7}{2}}$$"
    assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \  y\right]"


def test_latex_dict():
    d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4}
    assert latex(d) == \
        r'\left\{ 1 : 1, \  x : 3, \  x^{2} : 2, \  x^{3} : 4\right\}'
    D = Dict(d)
    assert latex(D) == \
        r'\left\{ 1 : 1, \  x : 3, \  x^{2} : 2, \  x^{3} : 4\right\}'


def test_latex_list():
    ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')]
    assert latex(ll) == r'\left[ \omega_{1}, \  a, \  \alpha\right]'


def test_latex_NumberSymbols():
    assert latex(S.Catalan) == "G"
    assert latex(S.EulerGamma) == r"\gamma"
    assert latex(S.Exp1) == "e"
    assert latex(S.GoldenRatio) == r"\phi"
    assert latex(S.Pi) == r"\pi"
    assert latex(S.TribonacciConstant) == r"\text{TribonacciConstant}"


def test_latex_rational():
    # tests issue 3973
    assert latex(-Rational(1, 2)) == r"- \frac{1}{2}"
    assert latex(Rational(-1, 2)) == r"- \frac{1}{2}"
    assert latex(Rational(1, -2)) == r"- \frac{1}{2}"
    assert latex(-Rational(-1, 2)) == r"\frac{1}{2}"
    assert latex(-Rational(1, 2)*x) == r"- \frac{x}{2}"
    assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \
        r"- \frac{x}{2} - \frac{2 y}{3}"


def test_latex_inverse():
    # tests issue 4129
    assert latex(1/x) == r"\frac{1}{x}"
    assert latex(1/(x + y)) == r"\frac{1}{x + y}"


def test_latex_DiracDelta():
    assert latex(DiracDelta(x)) == r"\delta\left(x\right)"
    assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}"
    assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)"
    assert latex(DiracDelta(x, 5)) == \
        r"\delta^{\left( 5 \right)}\left( x \right)"
    assert latex(DiracDelta(x, 5)**2) == \
        r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}"


def test_latex_Heaviside():
    assert latex(Heaviside(x)) == r"\theta\left(x\right)"
    assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}"


def test_latex_KroneckerDelta():
    assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}"
    assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}"
    # issue 6578
    assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}"
    assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \
        r"\left(\delta_{x y}\right)^{2}"


def test_latex_LeviCivita():
    assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}"
    assert latex(LeviCivita(x, y, z)**2) == \
        r"\left(\varepsilon_{x y z}\right)^{2}"
    assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}"
    assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}"
    assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}"


def test_mode():
    expr = x + y
    assert latex(expr) == r'x + y'
    assert latex(expr, mode='plain') == r'x + y'
    assert latex(expr, mode='inline') == r'$x + y$'
    assert latex(
        expr, mode='equation*') == r'\begin{equation*}x + y\end{equation*}'
    assert latex(
        expr, mode='equation') == r'\begin{equation}x + y\end{equation}'
    raises(ValueError, lambda: latex(expr, mode='foo'))


def test_latex_mathieu():
    assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)"
    assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)"
    assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}"
    assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}"
    assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)"
    assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)"
    assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}"
    assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}"

def test_latex_Piecewise():
    p = Piecewise((x, x < 1), (x**2, True))
    assert latex(p) == r"\begin{cases} x & \text{for}\: x < 1 \\x^{2} &" \
                       r" \text{otherwise} \end{cases}"
    assert latex(p, itex=True) == \
        r"\begin{cases} x & \text{for}\: x \lt 1 \\x^{2} &" \
        r" \text{otherwise} \end{cases}"
    p = Piecewise((x, x < 0), (0, x >= 0))
    assert latex(p) == r'\begin{cases} x & \text{for}\: x < 0 \\0 &' \
                       r' \text{otherwise} \end{cases}'
    A, B = symbols("A B", commutative=False)
    p = Piecewise((A**2, Eq(A, B)), (A*B, True))
    s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}"
    assert latex(p) == s
    assert latex(A*p) == r"A \left(%s\right)" % s
    assert latex(p*A) == r"\left(%s\right) A" % s
    assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \
        r'\begin{cases} x & ' \
        r'\text{for}\: x < 1 \\x^{2} & \text{for}\: x < 2 \end{cases}'


def test_latex_Matrix():
    M = Matrix([[1 + x, y], [y, x - 1]])
    assert latex(M) == \
        r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]'
    assert latex(M, mode='inline') == \
        r'$\left[\begin{smallmatrix}x + 1 & y\\' \
        r'y & x - 1\end{smallmatrix}\right]$'
    assert latex(M, mat_str='array') == \
        r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]'
    assert latex(M, mat_str='bmatrix') == \
        r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]'
    assert latex(M, mat_delim=None, mat_str='bmatrix') == \
        r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}'

    M2 = Matrix(1, 11, range(11))
    assert latex(M2) == \
        r'\left[\begin{array}{ccccccccccc}' \
        r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'


def test_latex_matrix_with_functions():
    t = symbols('t')
    theta1 = symbols('theta1', cls=Function)

    M = Matrix([[sin(theta1(t)), cos(theta1(t))],
                [cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]])

    expected = (r'\left[\begin{matrix}\sin{\left('
                r'\theta_{1}{\left(t \right)} \right)} & '
                r'\cos{\left(\theta_{1}{\left(t \right)} \right)'
                r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t '
                r'\right)} \right)} & \sin{\left(\frac{d}{d t} '
                r'\theta_{1}{\left(t \right)} \right'
                r')}\end{matrix}\right]')

    assert latex(M) == expected


def test_latex_NDimArray():
    x, y, z, w = symbols("x y z w")

    for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
                      MutableDenseNDimArray, MutableSparseNDimArray):
        # Basic: scalar array
        M = ArrayType(x)

        assert latex(M) == r"x"

        M = ArrayType([[1 / x, y], [z, w]])
        M1 = ArrayType([1 / x, y, z])

        M2 = tensorproduct(M1, M)
        M3 = tensorproduct(M, M)

        assert latex(M) == \
            r'\left[\begin{matrix}\frac{1}{x} & y\\z & w\end{matrix}\right]'
        assert latex(M1) == \
            r"\left[\begin{matrix}\frac{1}{x} & y & z\end{matrix}\right]"
        assert latex(M2) == \
            r"\left[\begin{matrix}" \
            r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \
            r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \
            r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \
            r"\end{matrix}\right]"
        assert latex(M3) == \
            r"""\left[\begin{matrix}"""\
            r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\
            r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\
            r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\
            r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\
            r"""\end{matrix}\right]"""

        Mrow = ArrayType([[x, y, 1/z]])
        Mcolumn = ArrayType([[x], [y], [1/z]])
        Mcol2 = ArrayType([Mcolumn.tolist()])

        assert latex(Mrow) == \
            r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]"
        assert latex(Mcolumn) == \
            r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]"
        assert latex(Mcol2) == \
            r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]'


def test_latex_mul_symbol():
    assert latex(4*4**x, mul_symbol='times') == r"4 \times 4^{x}"
    assert latex(4*4**x, mul_symbol='dot') == r"4 \cdot 4^{x}"
    assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}"

    assert latex(4*x, mul_symbol='times') == r"4 \times x"
    assert latex(4*x, mul_symbol='dot') == r"4 \cdot x"
    assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x"


def test_latex_issue_4381():
    y = 4*4**log(2)
    assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}'
    assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}'


def test_latex_issue_4576():
    assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}"
    assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}"
    assert latex(Symbol("beta_13")) == r"\beta_{13}"
    assert latex(Symbol("x_a_b")) == r"x_{a b}"
    assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}"
    assert latex(Symbol("x_a_b1")) == r"x_{a b1}"
    assert latex(Symbol("x_a_1")) == r"x_{a 1}"
    assert latex(Symbol("x_1_a")) == r"x_{1 a}"
    assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}"
    assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}"
    assert latex(Symbol("x_11^a")) == r"x^{a}_{11}"
    assert latex(Symbol("x_11__a")) == r"x^{a}_{11}"
    assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}"
    assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}"
    assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}"
    assert latex(Symbol("alpha_11")) == r"\alpha_{11}"
    assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}"
    assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}"
    assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}"
    assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}"


def test_latex_pow_fraction():
    x = Symbol('x')
    # Testing exp
    assert r'e^{-x}' in latex(exp(-x)/2).replace(' ', '')  # Remove Whitespace

    # Testing e^{-x} in case future changes alter behavior of muls or fracs
    # In particular current output is \frac{1}{2}e^{- x} but perhaps this will
    # change to \frac{e^{-x}}{2}

    # Testing general, non-exp, power
    assert r'3^{-x}' in latex(3**-x/2).replace(' ', '')


def test_noncommutative():
    A, B, C = symbols('A,B,C', commutative=False)

    assert latex(A*B*C**-1) == r"A B C^{-1}"
    assert latex(C**-1*A*B) == r"C^{-1} A B"
    assert latex(A*C**-1*B) == r"A C^{-1} B"


def test_latex_order():
    expr = x**3 + x**2*y + y**4 + 3*x*y**3

    assert latex(expr, order='lex') == r"x^{3} + x^{2} y + 3 x y^{3} + y^{4}"
    assert latex(
        expr, order='rev-lex') == r"y^{4} + 3 x y^{3} + x^{2} y + x^{3}"
    assert latex(expr, order='none') == r"x^{3} + y^{4} + y x^{2} + 3 x y^{3}"


def test_latex_Lambda():
    assert latex(Lambda(x, x + 1)) == r"\left( x \mapsto x + 1 \right)"
    assert latex(Lambda((x, y), x + 1)) == r"\left( \left( x, \  y\right) \mapsto x + 1 \right)"
    assert latex(Lambda(x, x)) == r"\left( x \mapsto x \right)"

def test_latex_PolyElement():
    Ruv, u, v = ring("u,v", ZZ)
    Rxyz, x, y, z = ring("x,y,z", Ruv)

    assert latex(x - x) == r"0"
    assert latex(x - 1) == r"x - 1"
    assert latex(x + 1) == r"x + 1"

    assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \
        r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1"
    assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \
        r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x"
    assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \
        r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1"
    assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \
        r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1"

    assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \
        r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1"
    assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \
        r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1"


def test_latex_FracElement():
    Fuv, u, v = field("u,v", ZZ)
    Fxyzt, x, y, z, t = field("x,y,z,t", Fuv)

    assert latex(x - x) == r"0"
    assert latex(x - 1) == r"x - 1"
    assert latex(x + 1) == r"x + 1"

    assert latex(x/3) == r"\frac{x}{3}"
    assert latex(x/z) == r"\frac{x}{z}"
    assert latex(x*y/z) == r"\frac{x y}{z}"
    assert latex(x/(z*t)) == r"\frac{x}{z t}"
    assert latex(x*y/(z*t)) == r"\frac{x y}{z t}"

    assert latex((x - 1)/y) == r"\frac{x - 1}{y}"
    assert latex((x + 1)/y) == r"\frac{x + 1}{y}"
    assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}"
    assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}"
    assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}"
    assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}"

    assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \
        r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}"
    assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \
        r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}"


def test_latex_Poly():
    assert latex(Poly(x**2 + 2 * x, x)) == \
        r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}"
    assert latex(Poly(x/y, x)) == \
        r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}"
    assert latex(Poly(2.0*x + y)) == \
        r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}"


def test_latex_Poly_order():
    assert latex(Poly([a, 1, b, 2, c, 3], x)) == \
        r'\operatorname{Poly}{\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\
        r' x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
    assert latex(Poly([a, 1, b+c, 2, 3], x)) == \
        r'\operatorname{Poly}{\left( a x^{4} + x^{3} + \left(b + c\right) '\
        r'x^{2} + 2 x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
    assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b,
                      (x, y))) == \
        r'\operatorname{Poly}{\left( a x^{3} + x^{2}y -  b xy^{2} - xy -  '\
        r'a x -  c y^{3} + y + b, x, y, domain=\mathbb{Z}\left[a, b, c\right] \right)}'


def test_latex_ComplexRootOf():
    assert latex(rootof(x**5 + x + 3, 0)) == \
        r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}"


def test_latex_RootSum():
    assert latex(RootSum(x**5 + x + 3, sin)) == \
        r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}"


def test_settings():
    raises(TypeError, lambda: latex(x*y, method="garbage"))


def test_latex_numbers():
    assert latex(catalan(n)) == r"C_{n}"
    assert latex(catalan(n)**2) == r"C_{n}^{2}"
    assert latex(bernoulli(n)) == r"B_{n}"
    assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)"
    assert latex(bernoulli(n)**2) == r"B_{n}^{2}"
    assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)"
    assert latex(genocchi(n)) == r"G_{n}"
    assert latex(genocchi(n, x)) == r"G_{n}\left(x\right)"
    assert latex(genocchi(n)**2) == r"G_{n}^{2}"
    assert latex(genocchi(n, x)**2) == r"G_{n}^{2}\left(x\right)"
    assert latex(bell(n)) == r"B_{n}"
    assert latex(bell(n, x)) == r"B_{n}\left(x\right)"
    assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)"
    assert latex(bell(n)**2) == r"B_{n}^{2}"
    assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)"
    assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)"
    assert latex(fibonacci(n)) == r"F_{n}"
    assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)"
    assert latex(fibonacci(n)**2) == r"F_{n}^{2}"
    assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)"
    assert latex(lucas(n)) == r"L_{n}"
    assert latex(lucas(n)**2) == r"L_{n}^{2}"
    assert latex(tribonacci(n)) == r"T_{n}"
    assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)"
    assert latex(tribonacci(n)**2) == r"T_{n}^{2}"
    assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)"
    assert latex(mobius(n)) == r"\mu\left(n\right)"
    assert latex(mobius(n)**2) == r"\mu^{2}\left(n\right)"


def test_latex_euler():
    assert latex(euler(n)) == r"E_{n}"
    assert latex(euler(n, x)) == r"E_{n}\left(x\right)"
    assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)"


def test_lamda():
    assert latex(Symbol('lamda')) == r"\lambda"
    assert latex(Symbol('Lamda')) == r"\Lambda"


def test_custom_symbol_names():
    x = Symbol('x')
    y = Symbol('y')
    assert latex(x) == r"x"
    assert latex(x, symbol_names={x: "x_i"}) == r"x_i"
    assert latex(x + y, symbol_names={x: "x_i"}) == r"x_i + y"
    assert latex(x**2, symbol_names={x: "x_i"}) == r"x_i^{2}"
    assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == r"x_i + y_j"


def test_matAdd():
    C = MatrixSymbol('C', 5, 5)
    B = MatrixSymbol('B', 5, 5)

    n = symbols("n")
    h = MatrixSymbol("h", 1, 1)

    assert latex(C - 2*B) in [r'- 2 B + C', r'C -2 B']
    assert latex(C + 2*B) in [r'2 B + C', r'C + 2 B']
    assert latex(B - 2*C) in [r'B - 2 C', r'- 2 C + B']
    assert latex(B + 2*C) in [r'B + 2 C', r'2 C + B']

    assert latex(n * h - (-h + h.T) * (h + h.T)) == 'n h - \\left(- h + h^{T}\\right) \\left(h + h^{T}\\right)'
    assert latex(MatAdd(MatAdd(h, h), MatAdd(h, h))) == '\\left(h + h\\right) + \\left(h + h\\right)'
    assert latex(MatMul(MatMul(h, h), MatMul(h, h))) == '\\left(h h\\right) \\left(h h\\right)'


def test_matMul():
    A = MatrixSymbol('A', 5, 5)
    B = MatrixSymbol('B', 5, 5)
    x = Symbol('x')
    assert latex(2*A) == r'2 A'
    assert latex(2*x*A) == r'2 x A'
    assert latex(-2*A) == r'- 2 A'
    assert latex(1.5*A) == r'1.5 A'
    assert latex(sqrt(2)*A) == r'\sqrt{2} A'
    assert latex(-sqrt(2)*A) == r'- \sqrt{2} A'
    assert latex(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A'
    assert latex(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)',
                                        r'- 2 A \left(2 B + A\right)']


def test_latex_MatrixSlice():
    n = Symbol('n', integer=True)
    x, y, z, w, t, = symbols('x y z w t')
    X = MatrixSymbol('X', n, n)
    Y = MatrixSymbol('Y', 10, 10)
    Z = MatrixSymbol('Z', 10, 10)

    assert latex(MatrixSlice(X, (None, None, None), (None, None, None))) == r'X\left[:, :\right]'
    assert latex(X[x:x + 1, y:y + 1]) == r'X\left[x:x + 1, y:y + 1\right]'
    assert latex(X[x:x + 1:2, y:y + 1:2]) == r'X\left[x:x + 1:2, y:y + 1:2\right]'
    assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
    assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
    assert latex(X[x:, :y]) == r'X\left[x:, :y\right]'
    assert latex(X[x:y, z:w]) == r'X\left[x:y, z:w\right]'
    assert latex(X[x:y:t, w:t:x]) == r'X\left[x:y:t, w:t:x\right]'
    assert latex(X[x::y, t::w]) == r'X\left[x::y, t::w\right]'
    assert latex(X[:x:y, :t:w]) == r'X\left[:x:y, :t:w\right]'
    assert latex(X[::x, ::y]) == r'X\left[::x, ::y\right]'
    assert latex(MatrixSlice(X, (0, None, None), (0, None, None))) == r'X\left[:, :\right]'
    assert latex(MatrixSlice(X, (None, n, None), (None, n, None))) == r'X\left[:, :\right]'
    assert latex(MatrixSlice(X, (0, n, None), (0, n, None))) == r'X\left[:, :\right]'
    assert latex(MatrixSlice(X, (0, n, 2), (0, n, 2))) == r'X\left[::2, ::2\right]'
    assert latex(X[1:2:3, 4:5:6]) == r'X\left[1:2:3, 4:5:6\right]'
    assert latex(X[1:3:5, 4:6:8]) == r'X\left[1:3:5, 4:6:8\right]'
    assert latex(X[1:10:2]) == r'X\left[1:10:2, :\right]'
    assert latex(Y[:5, 1:9:2]) == r'Y\left[:5, 1:9:2\right]'
    assert latex(Y[:5, 1:10:2]) == r'Y\left[:5, 1::2\right]'
    assert latex(Y[5, :5:2]) == r'Y\left[5:6, :5:2\right]'
    assert latex(X[0:1, 0:1]) == r'X\left[:1, :1\right]'
    assert latex(X[0:1:2, 0:1:2]) == r'X\left[:1:2, :1:2\right]'
    assert latex((Y + Z)[2:, 2:]) == r'\left(Y + Z\right)\left[2:, 2:\right]'


def test_latex_RandomDomain():
    from sympy.stats import Normal, Die, Exponential, pspace, where
    from sympy.stats.rv import RandomDomain

    X = Normal('x1', 0, 1)
    assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty"

    D = Die('d1', 6)
    assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6"

    A = Exponential('a', 1)
    B = Exponential('b', 1)
    assert latex(
        pspace(Tuple(A, B)).domain) == \
        r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty"

    assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \
        r'\text{Domain: }\left\{x\right\} \in \left\{1, 2\right\}'

def test_PrettyPoly():
    from sympy.polys.domains import QQ
    F = QQ.frac_field(x, y)
    R = QQ[x, y]

    assert latex(F.convert(x/(x + y))) == latex(x/(x + y))
    assert latex(R.convert(x + y)) == latex(x + y)


def test_integral_transforms():
    x = Symbol("x")
    k = Symbol("k")
    f = Function("f")
    a = Symbol("a")
    b = Symbol("b")

    assert latex(MellinTransform(f(x), x, k)) == \
        r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
    assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \
        r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"

    assert latex(LaplaceTransform(f(x), x, k)) == \
        r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
    assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \
        r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"

    assert latex(FourierTransform(f(x), x, k)) == \
        r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
    assert latex(InverseFourierTransform(f(k), k, x)) == \
        r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"

    assert latex(CosineTransform(f(x), x, k)) == \
        r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
    assert latex(InverseCosineTransform(f(k), k, x)) == \
        r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"

    assert latex(SineTransform(f(x), x, k)) == \
        r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
    assert latex(InverseSineTransform(f(k), k, x)) == \
        r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"


def test_PolynomialRingBase():
    from sympy.polys.domains import QQ
    assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
    assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
        r"S_<^{-1}\mathbb{Q}\left[x, y\right]"


def test_categories():
    from sympy.categories import (Object, IdentityMorphism,
                                  NamedMorphism, Category, Diagram,
                                  DiagramGrid)

    A1 = Object("A1")
    A2 = Object("A2")
    A3 = Object("A3")

    f1 = NamedMorphism(A1, A2, "f1")
    f2 = NamedMorphism(A2, A3, "f2")
    id_A1 = IdentityMorphism(A1)

    K1 = Category("K1")

    assert latex(A1) == r"A_{1}"
    assert latex(f1) == r"f_{1}:A_{1}\rightarrow A_{2}"
    assert latex(id_A1) == r"id:A_{1}\rightarrow A_{1}"
    assert latex(f2*f1) == r"f_{2}\circ f_{1}:A_{1}\rightarrow A_{3}"

    assert latex(K1) == r"\mathbf{K_{1}}"

    d = Diagram()
    assert latex(d) == r"\emptyset"

    d = Diagram({f1: "unique", f2: S.EmptySet})
    assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
        r"\rightarrow A_{3} : \emptyset, \  id:A_{1}\rightarrow " \
        r"A_{1} : \emptyset, \  id:A_{2}\rightarrow A_{2} : " \
        r"\emptyset, \  id:A_{3}\rightarrow A_{3} : \emptyset, " \
        r"\  f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \
        r"\  f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}"

    d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
    assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
        r"\rightarrow A_{3} : \emptyset, \  id:A_{1}\rightarrow " \
        r"A_{1} : \emptyset, \  id:A_{2}\rightarrow A_{2} : " \
        r"\emptyset, \  id:A_{3}\rightarrow A_{3} : \emptyset, " \
        r"\  f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \
        r" \  f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \
        r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \
        r"\rightarrow A_{3} : \left\{unique\right\}\right\}"

    # A linear diagram.
    A = Object("A")
    B = Object("B")
    C = Object("C")
    f = NamedMorphism(A, B, "f")
    g = NamedMorphism(B, C, "g")
    d = Diagram([f, g])
    grid = DiagramGrid(d)

    assert latex(grid) == r"\begin{array}{cc}" + "\n" \
        r"A & B \\" + "\n" \
        r" & C " + "\n" \
        r"\end{array}" + "\n"


def test_Modules():
    from sympy.polys.domains import QQ
    from sympy.polys.agca import homomorphism

    R = QQ.old_poly_ring(x, y)
    F = R.free_module(2)
    M = F.submodule([x, y], [1, x**2])

    assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
    assert latex(M) == \
        r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle"

    I = R.ideal(x**2, y)
    assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle"

    Q = F / M
    assert latex(Q) == \
        r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\
        r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}"
    assert latex(Q.submodule([1, x**3/2], [2, y])) == \
        r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\
        r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\
        r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\
        r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle"

    h = homomorphism(QQ.old_poly_ring(x).free_module(2),
                     QQ.old_poly_ring(x).free_module(2), [0, 0])

    assert latex(h) == \
        r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\
        r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"


def test_QuotientRing():
    from sympy.polys.domains import QQ
    R = QQ.old_poly_ring(x)/[x**2 + 1]

    assert latex(R) == \
        r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}"
    assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}"


def test_Tr():
    #TODO: Handle indices
    A, B = symbols('A B', commutative=False)
    t = Tr(A*B)
    assert latex(t) == r'\operatorname{tr}\left(A B\right)'


def test_Determinant():
    from sympy.matrices import Determinant, Inverse, BlockMatrix, OneMatrix, ZeroMatrix
    m = Matrix(((1, 2), (3, 4)))
    assert latex(Determinant(m)) == '\\left|{\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}}\\right|'
    assert latex(Determinant(Inverse(m))) == \
        '\\left|{\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{-1}}\\right|'
    X = MatrixSymbol('X', 2, 2)
    assert latex(Determinant(X)) == '\\left|{X}\\right|'
    assert latex(Determinant(X + m)) == \
        '\\left|{\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X}\\right|'
    assert latex(Determinant(BlockMatrix(((OneMatrix(2, 2), X),
                                          (m, ZeroMatrix(2, 2)))))) == \
        '\\left|{\\begin{matrix}1 & X\\\\\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] & 0\\end{matrix}}\\right|'


def test_Adjoint():
    from sympy.matrices import Adjoint, Inverse, Transpose
    X = MatrixSymbol('X', 2, 2)
    Y = MatrixSymbol('Y', 2, 2)
    assert latex(Adjoint(X)) == r'X^{\dagger}'
    assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}'
    assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}'
    assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}'
    assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}'
    assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}'
    assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}'
    assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}'
    assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}'
    assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}'
    assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}'
    assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}'
    m = Matrix(((1, 2), (3, 4)))
    assert latex(Adjoint(m)) == '\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{\\dagger}'
    assert latex(Adjoint(m+X)) == \
        '\\left(\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X\\right)^{\\dagger}'
    from sympy.matrices import BlockMatrix, OneMatrix, ZeroMatrix
    assert latex(Adjoint(BlockMatrix(((OneMatrix(2, 2), X),
                                      (m, ZeroMatrix(2, 2)))))) == \
        '\\left[\\begin{matrix}1 & X\\\\\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] & 0\\end{matrix}\\right]^{\\dagger}'
    # Issue 20959
    Mx = MatrixSymbol('M^x', 2, 2)
    assert latex(Adjoint(Mx)) == r'\left(M^{x}\right)^{\dagger}'

    # adjoint style
    assert latex(Adjoint(X), adjoint_style="star") == r'X^{\ast}'
    assert latex(Adjoint(X + Y), adjoint_style="hermitian") == r'\left(X + Y\right)^{\mathsf{H}}'
    assert latex(Adjoint(X) + Adjoint(Y), adjoint_style="dagger") == r'X^{\dagger} + Y^{\dagger}'
    assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}'
    assert latex(Adjoint(X**2), adjoint_style="star") == r'\left(X^{2}\right)^{\ast}'
    assert latex(Adjoint(X)**2, adjoint_style="hermitian") == r'\left(X^{\mathsf{H}}\right)^{2}'

def test_Transpose():
    from sympy.matrices import Transpose, MatPow, HadamardPower
    X = MatrixSymbol('X', 2, 2)
    Y = MatrixSymbol('Y', 2, 2)
    assert latex(Transpose(X)) == r'X^{T}'
    assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}'

    assert latex(Transpose(HadamardPower(X, 2))) == r'\left(X^{\circ {2}}\right)^{T}'
    assert latex(HadamardPower(Transpose(X), 2)) == r'\left(X^{T}\right)^{\circ {2}}'
    assert latex(Transpose(MatPow(X, 2))) == r'\left(X^{2}\right)^{T}'
    assert latex(MatPow(Transpose(X), 2)) == r'\left(X^{T}\right)^{2}'
    m = Matrix(((1, 2), (3, 4)))
    assert latex(Transpose(m)) == '\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{T}'
    assert latex(Transpose(m+X)) == \
        '\\left(\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X\\right)^{T}'
    from sympy.matrices import BlockMatrix, OneMatrix, ZeroMatrix
    assert latex(Transpose(BlockMatrix(((OneMatrix(2, 2), X),
                                        (m, ZeroMatrix(2, 2)))))) == \
        '\\left[\\begin{matrix}1 & X\\\\\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] & 0\\end{matrix}\\right]^{T}'
    # Issue 20959
    Mx = MatrixSymbol('M^x', 2, 2)
    assert latex(Transpose(Mx)) == r'\left(M^{x}\right)^{T}'


def test_Hadamard():
    from sympy.matrices import HadamardProduct, HadamardPower
    from sympy.matrices.expressions import MatAdd, MatMul, MatPow
    X = MatrixSymbol('X', 2, 2)
    Y = MatrixSymbol('Y', 2, 2)
    assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}'
    assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y'

    assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}'
    assert latex(HadamardPower(X, -1)) == r'X^{\circ \left({-1}\right)}'
    assert latex(HadamardPower(MatAdd(X, Y), 2)) == \
        r'\left(X + Y\right)^{\circ {2}}'
    assert latex(HadamardPower(MatMul(X, Y), 2)) == \
        r'\left(X Y\right)^{\circ {2}}'

    assert latex(HadamardPower(MatPow(X, -1), -1)) == \
        r'\left(X^{-1}\right)^{\circ \left({-1}\right)}'
    assert latex(MatPow(HadamardPower(X, -1), -1)) == \
        r'\left(X^{\circ \left({-1}\right)}\right)^{-1}'

    assert latex(HadamardPower(X, n+1)) == \
        r'X^{\circ \left({n + 1}\right)}'


def test_MatPow():
    from sympy.matrices.expressions import MatPow
    X = MatrixSymbol('X', 2, 2)
    Y = MatrixSymbol('Y', 2, 2)
    assert latex(MatPow(X, 2)) == 'X^{2}'
    assert latex(MatPow(X*X, 2)) == '\\left(X^{2}\\right)^{2}'
    assert latex(MatPow(X*Y, 2)) == '\\left(X Y\\right)^{2}'
    assert latex(MatPow(X + Y, 2)) == '\\left(X + Y\\right)^{2}'
    assert latex(MatPow(X + X, 2)) == '\\left(2 X\\right)^{2}'
    # Issue 20959
    Mx = MatrixSymbol('M^x', 2, 2)
    assert latex(MatPow(Mx, 2)) == r'\left(M^{x}\right)^{2}'


def test_ElementwiseApplyFunction():
    X = MatrixSymbol('X', 2, 2)
    expr = (X.T*X).applyfunc(sin)
    assert latex(expr) == r"{\left( d \mapsto \sin{\left(d \right)} \right)}_{\circ}\left({X^{T} X}\right)"
    expr = X.applyfunc(Lambda(x, 1/x))
    assert latex(expr) == r'{\left( x \mapsto \frac{1}{x} \right)}_{\circ}\left({X}\right)'


def test_ZeroMatrix():
    from sympy.matrices.expressions.special import ZeroMatrix
    assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"0"
    assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}"


def test_OneMatrix():
    from sympy.matrices.expressions.special import OneMatrix
    assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"1"
    assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}"


def test_Identity():
    from sympy.matrices.expressions.special import Identity
    assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}"
    assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}"


def test_latex_DFT_IDFT():
    from sympy.matrices.expressions.fourier import DFT, IDFT
    assert latex(DFT(13)) == r"\text{DFT}_{13}"
    assert latex(IDFT(x)) == r"\text{IDFT}_{x}"


def test_boolean_args_order():
    syms = symbols('a:f')

    expr = And(*syms)
    assert latex(expr) == r'a \wedge b \wedge c \wedge d \wedge e \wedge f'

    expr = Or(*syms)
    assert latex(expr) == r'a \vee b \vee c \vee d \vee e \vee f'

    expr = Equivalent(*syms)
    assert latex(expr) == \
        r'a \Leftrightarrow b \Leftrightarrow c \Leftrightarrow d \Leftrightarrow e \Leftrightarrow f'

    expr = Xor(*syms)
    assert latex(expr) == \
        r'a \veebar b \veebar c \veebar d \veebar e \veebar f'


def test_imaginary():
    i = sqrt(-1)
    assert latex(i) == r'i'


def test_builtins_without_args():
    assert latex(sin) == r'\sin'
    assert latex(cos) == r'\cos'
    assert latex(tan) == r'\tan'
    assert latex(log) == r'\log'
    assert latex(Ei) == r'\operatorname{Ei}'
    assert latex(zeta) == r'\zeta'


def test_latex_greek_functions():
    # bug because capital greeks that have roman equivalents should not use
    # \Alpha, \Beta, \Eta, etc.
    s = Function('Alpha')
    assert latex(s) == r'\mathrm{A}'
    assert latex(s(x)) == r'\mathrm{A}{\left(x \right)}'
    s = Function('Beta')
    assert latex(s) == r'\mathrm{B}'
    s = Function('Eta')
    assert latex(s) == r'\mathrm{H}'
    assert latex(s(x)) == r'\mathrm{H}{\left(x \right)}'

    # bug because sympy.core.numbers.Pi is special
    p = Function('Pi')
    # assert latex(p(x)) == r'\Pi{\left(x \right)}'
    assert latex(p) == r'\Pi'

    # bug because not all greeks are included
    c = Function('chi')
    assert latex(c(x)) == r'\chi{\left(x \right)}'
    assert latex(c) == r'\chi'


def test_translate():
    s = 'Alpha'
    assert translate(s) == r'\mathrm{A}'
    s = 'Beta'
    assert translate(s) == r'\mathrm{B}'
    s = 'Eta'
    assert translate(s) == r'\mathrm{H}'
    s = 'omicron'
    assert translate(s) == r'o'
    s = 'Pi'
    assert translate(s) == r'\Pi'
    s = 'pi'
    assert translate(s) == r'\pi'
    s = 'LamdaHatDOT'
    assert translate(s) == r'\dot{\hat{\Lambda}}'


def test_other_symbols():
    from sympy.printing.latex import other_symbols
    for s in other_symbols:
        assert latex(symbols(s)) == r"" "\\" + s


def test_modifiers():
    # Test each modifier individually in the simplest case
    # (with funny capitalizations)
    assert latex(symbols("xMathring")) == r"\mathring{x}"
    assert latex(symbols("xCheck")) == r"\check{x}"
    assert latex(symbols("xBreve")) == r"\breve{x}"
    assert latex(symbols("xAcute")) == r"\acute{x}"
    assert latex(symbols("xGrave")) == r"\grave{x}"
    assert latex(symbols("xTilde")) == r"\tilde{x}"
    assert latex(symbols("xPrime")) == r"{x}'"
    assert latex(symbols("xddDDot")) == r"\ddddot{x}"
    assert latex(symbols("xDdDot")) == r"\dddot{x}"
    assert latex(symbols("xDDot")) == r"\ddot{x}"
    assert latex(symbols("xBold")) == r"\boldsymbol{x}"
    assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|"
    assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle"
    assert latex(symbols("xHat")) == r"\hat{x}"
    assert latex(symbols("xDot")) == r"\dot{x}"
    assert latex(symbols("xBar")) == r"\bar{x}"
    assert latex(symbols("xVec")) == r"\vec{x}"
    assert latex(symbols("xAbs")) == r"\left|{x}\right|"
    assert latex(symbols("xMag")) == r"\left|{x}\right|"
    assert latex(symbols("xPrM")) == r"{x}'"
    assert latex(symbols("xBM")) == r"\boldsymbol{x}"
    # Test strings that are *only* the names of modifiers
    assert latex(symbols("Mathring")) == r"Mathring"
    assert latex(symbols("Check")) == r"Check"
    assert latex(symbols("Breve")) == r"Breve"
    assert latex(symbols("Acute")) == r"Acute"
    assert latex(symbols("Grave")) == r"Grave"
    assert latex(symbols("Tilde")) == r"Tilde"
    assert latex(symbols("Prime")) == r"Prime"
    assert latex(symbols("DDot")) == r"\dot{D}"
    assert latex(symbols("Bold")) == r"Bold"
    assert latex(symbols("NORm")) == r"NORm"
    assert latex(symbols("AVG")) == r"AVG"
    assert latex(symbols("Hat")) == r"Hat"
    assert latex(symbols("Dot")) == r"Dot"
    assert latex(symbols("Bar")) == r"Bar"
    assert latex(symbols("Vec")) == r"Vec"
    assert latex(symbols("Abs")) == r"Abs"
    assert latex(symbols("Mag")) == r"Mag"
    assert latex(symbols("PrM")) == r"PrM"
    assert latex(symbols("BM")) == r"BM"
    assert latex(symbols("hbar")) == r"\hbar"
    # Check a few combinations
    assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}"
    assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}"
    assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|"
    # Check a couple big, ugly combinations
    assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \
        r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}"
    assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \
        r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}"


def test_greek_symbols():
    assert latex(Symbol('alpha'))   == r'\alpha'
    assert latex(Symbol('beta'))    == r'\beta'
    assert latex(Symbol('gamma'))   == r'\gamma'
    assert latex(Symbol('delta'))   == r'\delta'
    assert latex(Symbol('epsilon')) == r'\epsilon'
    assert latex(Symbol('zeta'))    == r'\zeta'
    assert latex(Symbol('eta'))     == r'\eta'
    assert latex(Symbol('theta'))   == r'\theta'
    assert latex(Symbol('iota'))    == r'\iota'
    assert latex(Symbol('kappa'))   == r'\kappa'
    assert latex(Symbol('lambda'))  == r'\lambda'
    assert latex(Symbol('mu'))      == r'\mu'
    assert latex(Symbol('nu'))      == r'\nu'
    assert latex(Symbol('xi'))      == r'\xi'
    assert latex(Symbol('omicron')) == r'o'
    assert latex(Symbol('pi'))      == r'\pi'
    assert latex(Symbol('rho'))     == r'\rho'
    assert latex(Symbol('sigma'))   == r'\sigma'
    assert latex(Symbol('tau'))     == r'\tau'
    assert latex(Symbol('upsilon')) == r'\upsilon'
    assert latex(Symbol('phi'))     == r'\phi'
    assert latex(Symbol('chi'))     == r'\chi'
    assert latex(Symbol('psi'))     == r'\psi'
    assert latex(Symbol('omega'))   == r'\omega'

    assert latex(Symbol('Alpha'))   == r'\mathrm{A}'
    assert latex(Symbol('Beta'))    == r'\mathrm{B}'
    assert latex(Symbol('Gamma'))   == r'\Gamma'
    assert latex(Symbol('Delta'))   == r'\Delta'
    assert latex(Symbol('Epsilon')) == r'\mathrm{E}'
    assert latex(Symbol('Zeta'))    == r'\mathrm{Z}'
    assert latex(Symbol('Eta'))     == r'\mathrm{H}'
    assert latex(Symbol('Theta'))   == r'\Theta'
    assert latex(Symbol('Iota'))    == r'\mathrm{I}'
    assert latex(Symbol('Kappa'))   == r'\mathrm{K}'
    assert latex(Symbol('Lambda'))  == r'\Lambda'
    assert latex(Symbol('Mu'))      == r'\mathrm{M}'
    assert latex(Symbol('Nu'))      == r'\mathrm{N}'
    assert latex(Symbol('Xi'))      == r'\Xi'
    assert latex(Symbol('Omicron')) == r'\mathrm{O}'
    assert latex(Symbol('Pi'))      == r'\Pi'
    assert latex(Symbol('Rho'))     == r'\mathrm{P}'
    assert latex(Symbol('Sigma'))   == r'\Sigma'
    assert latex(Symbol('Tau'))     == r'\mathrm{T}'
    assert latex(Symbol('Upsilon')) == r'\Upsilon'
    assert latex(Symbol('Phi'))     == r'\Phi'
    assert latex(Symbol('Chi'))     == r'\mathrm{X}'
    assert latex(Symbol('Psi'))     == r'\Psi'
    assert latex(Symbol('Omega'))   == r'\Omega'

    assert latex(Symbol('varepsilon')) == r'\varepsilon'
    assert latex(Symbol('varkappa')) == r'\varkappa'
    assert latex(Symbol('varphi')) == r'\varphi'
    assert latex(Symbol('varpi')) == r'\varpi'
    assert latex(Symbol('varrho')) == r'\varrho'
    assert latex(Symbol('varsigma')) == r'\varsigma'
    assert latex(Symbol('vartheta')) == r'\vartheta'


def test_fancyset_symbols():
    assert latex(S.Rationals) == r'\mathbb{Q}'
    assert latex(S.Naturals) == r'\mathbb{N}'
    assert latex(S.Naturals0) == r'\mathbb{N}_0'
    assert latex(S.Integers) == r'\mathbb{Z}'
    assert latex(S.Reals) == r'\mathbb{R}'
    assert latex(S.Complexes) == r'\mathbb{C}'


@XFAIL
def test_builtin_without_args_mismatched_names():
    assert latex(CosineTransform) == r'\mathcal{COS}'


def test_builtin_no_args():
    assert latex(Chi) == r'\operatorname{Chi}'
    assert latex(beta) == r'\operatorname{B}'
    assert latex(gamma) == r'\Gamma'
    assert latex(KroneckerDelta) == r'\delta'
    assert latex(DiracDelta) == r'\delta'
    assert latex(lowergamma) == r'\gamma'


def test_issue_6853():
    p = Function('Pi')
    assert latex(p(x)) == r"\Pi{\left(x \right)}"


def test_Mul():
    e = Mul(-2, x + 1, evaluate=False)
    assert latex(e) == r'- 2 \left(x + 1\right)'
    e = Mul(2, x + 1, evaluate=False)
    assert latex(e) == r'2 \left(x + 1\right)'
    e = Mul(S.Half, x + 1, evaluate=False)
    assert latex(e) == r'\frac{x + 1}{2}'
    e = Mul(y, x + 1, evaluate=False)
    assert latex(e) == r'y \left(x + 1\right)'
    e = Mul(-y, x + 1, evaluate=False)
    assert latex(e) == r'- y \left(x + 1\right)'
    e = Mul(-2, x + 1)
    assert latex(e) == r'- 2 x - 2'
    e = Mul(2, x + 1)
    assert latex(e) == r'2 x + 2'


def test_Pow():
    e = Pow(2, 2, evaluate=False)
    assert latex(e) == r'2^{2}'
    assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}'
    x2 = Symbol(r'x^2')
    assert latex(x2**2) == r'\left(x^{2}\right)^{2}'
    # Issue 11011
    assert latex(S('1.453e4500')**x) == r'{1.453 \cdot 10^{4500}}^{x}'


def test_issue_7180():
    assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y"
    assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y"


def test_issue_8409():
    assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}"


def test_issue_8470():
    from sympy.parsing.sympy_parser import parse_expr
    e = parse_expr("-B*A", evaluate=False)
    assert latex(e) == r"A \left(- B\right)"


def test_issue_15439():
    x = MatrixSymbol('x', 2, 2)
    y = MatrixSymbol('y', 2, 2)
    assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)"
    assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)"
    assert latex((x * y).subs(x, -x)) == r"\left(- x\right) y"


def test_issue_2934():
    assert latex(Symbol(r'\frac{a_1}{b_1}')) == r'\frac{a_1}{b_1}'


def test_issue_10489():
    latexSymbolWithBrace = r'C_{x_{0}}'
    s = Symbol(latexSymbolWithBrace)
    assert latex(s) == latexSymbolWithBrace
    assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}'


def test_issue_12886():
    m__1, l__1 = symbols('m__1, l__1')
    assert latex(m__1**2 + l__1**2) == \
        r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}'


def test_issue_13559():
    from sympy.parsing.sympy_parser import parse_expr
    expr = parse_expr('5/1', evaluate=False)
    assert latex(expr) == r"\frac{5}{1}"


def test_issue_13651():
    expr = c + Mul(-1, a + b, evaluate=False)
    assert latex(expr) == r"c - \left(a + b\right)"


def test_latex_UnevaluatedExpr():
    x = symbols("x")
    he = UnevaluatedExpr(1/x)
    assert latex(he) == latex(1/x) == r"\frac{1}{x}"
    assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}"
    assert latex(he + 1) == r"1 + \frac{1}{x}"
    assert latex(x*he) == r"x \frac{1}{x}"


def test_MatrixElement_printing():
    # test cases for issue #11821
    A = MatrixSymbol("A", 1, 3)
    B = MatrixSymbol("B", 1, 3)
    C = MatrixSymbol("C", 1, 3)

    assert latex(A[0, 0]) == r"{A}_{0,0}"
    assert latex(3 * A[0, 0]) == r"3 {A}_{0,0}"

    F = C[0, 0].subs(C, A - B)
    assert latex(F) == r"{\left(A - B\right)}_{0,0}"

    i, j, k = symbols("i j k")
    M = MatrixSymbol("M", k, k)
    N = MatrixSymbol("N", k, k)
    assert latex((M*N)[i, j]) == \
        r'\sum_{i_{1}=0}^{k - 1} {M}_{i,i_{1}} {N}_{i_{1},j}'

    X_a = MatrixSymbol('X_a', 3, 3)
    assert latex(X_a[0, 0]) == r"{X_{a}}_{0,0}"


def test_MatrixSymbol_printing():
    # test cases for issue #14237
    A = MatrixSymbol("A", 3, 3)
    B = MatrixSymbol("B", 3, 3)
    C = MatrixSymbol("C", 3, 3)

    assert latex(-A) == r"- A"
    assert latex(A - A*B - B) == r"A - A B - B"
    assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B"


def test_KroneckerProduct_printing():
    A = MatrixSymbol('A', 3, 3)
    B = MatrixSymbol('B', 2, 2)
    assert latex(KroneckerProduct(A, B)) == r'A \otimes B'


def test_Series_printing():
    tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
    tf2 = TransferFunction(x - y, x + y, y)
    tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
    assert latex(Series(tf1, tf2)) == \
        r'\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right)'
    assert latex(Series(tf1, tf2, tf3)) == \
        r'\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right) \left(\frac{t x^{2} - t^{w} x + w}{t - y}\right)'
    assert latex(Series(-tf2, tf1)) == \
        r'\left(\frac{- x + y}{x + y}\right) \left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right)'

    M_1 = Matrix([[5/s], [5/(2*s)]])
    T_1 = TransferFunctionMatrix.from_Matrix(M_1, s)
    M_2 = Matrix([[5, 6*s**3]])
    T_2 = TransferFunctionMatrix.from_Matrix(M_2, s)
    # Brackets
    assert latex(T_1*(T_2 + T_2)) == \
        r'\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left(\left[\begin{matrix}\frac{5}{1} &' \
        r' \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau\right)' \
            == latex(MIMOSeries(MIMOParallel(T_2, T_2), T_1))
    # No Brackets
    M_3 = Matrix([[5, 6], [6, 5/s]])
    T_3 = TransferFunctionMatrix.from_Matrix(M_3, s)
    assert latex(T_1*T_2 + T_3) == r'\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}' \
        r'\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & ' \
            r'\frac{5}{s}\end{matrix}\right]_\tau' == latex(MIMOParallel(MIMOSeries(T_2, T_1), T_3))


def test_TransferFunction_printing():
    tf1 = TransferFunction(x - 1, x + 1, x)
    assert latex(tf1) == r"\frac{x - 1}{x + 1}"
    tf2 = TransferFunction(x + 1, 2 - y, x)
    assert latex(tf2) == r"\frac{x + 1}{2 - y}"
    tf3 = TransferFunction(y, y**2 + 2*y + 3, y)
    assert latex(tf3) == r"\frac{y}{y^{2} + 2 y + 3}"


def test_Parallel_printing():
    tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
    tf2 = TransferFunction(x - y, x + y, y)
    assert latex(Parallel(tf1, tf2)) == \
        r'\frac{x y^{2} - z}{- t^{3} + y^{3}} + \frac{x - y}{x + y}'
    assert latex(Parallel(-tf2, tf1)) == \
        r'\frac{- x + y}{x + y} + \frac{x y^{2} - z}{- t^{3} + y^{3}}'

    M_1 = Matrix([[5, 6], [6, 5/s]])
    T_1 = TransferFunctionMatrix.from_Matrix(M_1, s)
    M_2 = Matrix([[5/s, 6], [6, 5/(s - 1)]])
    T_2 = TransferFunctionMatrix.from_Matrix(M_2, s)
    M_3 = Matrix([[6, 5/(s*(s - 1))], [5, 6]])
    T_3 = TransferFunctionMatrix.from_Matrix(M_3, s)
    assert latex(T_1 + T_2 + T_3) == r'\left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s}\end{matrix}\right]' \
        r'_\tau + \left[\begin{matrix}\frac{5}{s} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s - 1}\end{matrix}\right]_\tau + \left[\begin{matrix}' \
            r'\frac{6}{1} & \frac{5}{s \left(s - 1\right)}\\\frac{5}{1} & \frac{6}{1}\end{matrix}\right]_\tau' \
                == latex(MIMOParallel(T_1, T_2, T_3)) == latex(MIMOParallel(T_1, MIMOParallel(T_2, T_3))) == latex(MIMOParallel(MIMOParallel(T_1, T_2), T_3))


def test_TransferFunctionMatrix_printing():
    tf1 = TransferFunction(p, p + x, p)
    tf2 = TransferFunction(-s + p, p + s, p)
    tf3 = TransferFunction(p, y**2 + 2*y + 3, p)
    assert latex(TransferFunctionMatrix([[tf1], [tf2]])) == \
        r'\left[\begin{matrix}\frac{p}{p + x}\\\frac{p - s}{p + s}\end{matrix}\right]_\tau'
    assert latex(TransferFunctionMatrix([[tf1, tf2], [tf3, -tf1]])) == \
        r'\left[\begin{matrix}\frac{p}{p + x} & \frac{p - s}{p + s}\\\frac{p}{y^{2} + 2 y + 3} & \frac{\left(-1\right) p}{p + x}\end{matrix}\right]_\tau'


def test_Feedback_printing():
    tf1 = TransferFunction(p, p + x, p)
    tf2 = TransferFunction(-s + p, p + s, p)
    # Negative Feedback (Default)
    assert latex(Feedback(tf1, tf2)) == \
        r'\frac{\frac{p}{p + x}}{\frac{1}{1} + \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
    assert latex(Feedback(tf1*tf2, TransferFunction(1, 1, p))) == \
        r'\frac{\left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}{\frac{1}{1} + \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
    # Positive Feedback
    assert latex(Feedback(tf1, tf2, 1)) == \
        r'\frac{\frac{p}{p + x}}{\frac{1}{1} - \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
    assert latex(Feedback(tf1*tf2, sign=1)) == \
        r'\frac{\left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}{\frac{1}{1} - \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'


def test_MIMOFeedback_printing():
    tf1 = TransferFunction(1, s, s)
    tf2 = TransferFunction(s, s**2 - 1, s)
    tf3 = TransferFunction(s, s - 1, s)
    tf4 = TransferFunction(s**2, s**2 - 1, s)

    tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
    tfm_2 = TransferFunctionMatrix([[tf4, tf3], [tf2, tf1]])

    # Negative Feedback (Default)
    assert latex(MIMOFeedback(tfm_1, tfm_2)) == \
        r'\left(I_{\tau} + \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[' \
        r'\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}' \
        r'\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau'

    # Positive Feedback
    assert latex(MIMOFeedback(tfm_1*tfm_2, tfm_1, 1)) == \
        r'\left(I_{\tau} - \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left' \
        r'[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}' \
        r'\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}' \
        r'\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1}' \
        r' & \frac{1}{s}\end{matrix}\right]_\tau'


def test_Quaternion_latex_printing():
    q = Quaternion(x, y, z, t)
    assert latex(q) == r"x + y i + z j + t k"
    q = Quaternion(x, y, z, x*t)
    assert latex(q) == r"x + y i + z j + t x k"
    q = Quaternion(x, y, z, x + t)
    assert latex(q) == r"x + y i + z j + \left(t + x\right) k"


def test_TensorProduct_printing():
    from sympy.tensor.functions import TensorProduct
    A = MatrixSymbol("A", 3, 3)
    B = MatrixSymbol("B", 3, 3)
    assert latex(TensorProduct(A, B)) == r"A \otimes B"


def test_WedgeProduct_printing():
    from sympy.diffgeom.rn import R2
    from sympy.diffgeom import WedgeProduct
    wp = WedgeProduct(R2.dx, R2.dy)
    assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y"


def test_issue_9216():
    expr_1 = Pow(1, -1, evaluate=False)
    assert latex(expr_1) == r"1^{-1}"

    expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False)
    assert latex(expr_2) == r"1^{1^{-1}}"

    expr_3 = Pow(3, -2, evaluate=False)
    assert latex(expr_3) == r"\frac{1}{9}"

    expr_4 = Pow(1, -2, evaluate=False)
    assert latex(expr_4) == r"1^{-2}"


def test_latex_printer_tensor():
    from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads
    L = TensorIndexType("L")
    i, j, k, l = tensor_indices("i j k l", L)
    i0 = tensor_indices("i_0", L)
    A, B, C, D = tensor_heads("A B C D", [L])
    H = TensorHead("H", [L, L])
    K = TensorHead("K", [L, L, L, L])

    assert latex(i) == r"{}^{i}"
    assert latex(-i) == r"{}_{i}"

    expr = A(i)
    assert latex(expr) == r"A{}^{i}"

    expr = A(i0)
    assert latex(expr) == r"A{}^{i_{0}}"

    expr = A(-i)
    assert latex(expr) == r"A{}_{i}"

    expr = -3*A(i)
    assert latex(expr) == r"-3A{}^{i}"

    expr = K(i, j, -k, -i0)
    assert latex(expr) == r"K{}^{ij}{}_{ki_{0}}"

    expr = K(i, -j, -k, i0)
    assert latex(expr) == r"K{}^{i}{}_{jk}{}^{i_{0}}"

    expr = K(i, -j, k, -i0)
    assert latex(expr) == r"K{}^{i}{}_{j}{}^{k}{}_{i_{0}}"

    expr = H(i, -j)
    assert latex(expr) == r"H{}^{i}{}_{j}"

    expr = H(i, j)
    assert latex(expr) == r"H{}^{ij}"

    expr = H(-i, -j)
    assert latex(expr) == r"H{}_{ij}"

    expr = (1+x)*A(i)
    assert latex(expr) == r"\left(x + 1\right)A{}^{i}"

    expr = H(i, -i)
    assert latex(expr) == r"H{}^{L_{0}}{}_{L_{0}}"

    expr = H(i, -j)*A(j)*B(k)
    assert latex(expr) == r"H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}"

    expr = A(i) + 3*B(i)
    assert latex(expr) == r"3B{}^{i} + A{}^{i}"

    # Test ``TensorElement``:
    from sympy.tensor.tensor import TensorElement

    expr = TensorElement(K(i, j, k, l), {i: 3, k: 2})
    assert latex(expr) == r'K{}^{i=3,j,k=2,l}'

    expr = TensorElement(K(i, j, k, l), {i: 3})
    assert latex(expr) == r'K{}^{i=3,jkl}'

    expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2})
    assert latex(expr) == r'K{}^{i=3}{}_{j}{}^{k=2,l}'

    expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2})
    assert latex(expr) == r'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}'

    expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2})
    assert latex(expr) == r'K{}^{i=3,j}{}_{k=2,l}'

    expr = TensorElement(K(i, j, -k, -l), {i: 3})
    assert latex(expr) == r'K{}^{i=3,j}{}_{kl}'

    expr = PartialDerivative(A(i), A(i))
    assert latex(expr) == r"\frac{\partial}{\partial {A{}^{L_{0}}}}{A{}^{L_{0}}}"

    expr = PartialDerivative(A(-i), A(-j))
    assert latex(expr) == r"\frac{\partial}{\partial {A{}_{j}}}{A{}_{i}}"

    expr = PartialDerivative(K(i, j, -k, -l), A(m), A(-n))
    assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}^{m}} \partial {A{}_{n}}}{K{}^{ij}{}_{kl}}"

    expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
    assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(A{}_{i} + B{}_{i}\right)}"

    expr = PartialDerivative(3*A(-i), A(-j), A(-n))
    assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(3A{}_{i}\right)}"


def test_multiline_latex():
    a, b, c, d, e, f = symbols('a b c d e f')
    expr = -a + 2*b -3*c +4*d -5*e
    expected = r"\begin{eqnarray}" + "\n"\
        r"f & = &- a \nonumber\\" + "\n"\
        r"& & + 2 b \nonumber\\" + "\n"\
        r"& & - 3 c \nonumber\\" + "\n"\
        r"& & + 4 d \nonumber\\" + "\n"\
        r"& & - 5 e " + "\n"\
        r"\end{eqnarray}"
    assert multiline_latex(f, expr, environment="eqnarray") == expected

    expected2 = r'\begin{eqnarray}' + '\n'\
        r'f & = &- a + 2 b \nonumber\\' + '\n'\
        r'& & - 3 c + 4 d \nonumber\\' + '\n'\
        r'& & - 5 e ' + '\n'\
        r'\end{eqnarray}'

    assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2

    expected3 = r'\begin{eqnarray}' + '\n'\
        r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\
        r'& & + 4 d - 5 e ' + '\n'\
        r'\end{eqnarray}'

    assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3

    expected3dots = r'\begin{eqnarray}' + '\n'\
        r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\
        r'& & + 4 d - 5 e ' + '\n'\
        r'\end{eqnarray}'

    assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots

    expected3align = r'\begin{align*}' + '\n'\
        r'f = &- a + 2 b - 3 c \\'+ '\n'\
        r'& + 4 d - 5 e ' + '\n'\
        r'\end{align*}'

    assert multiline_latex(f, expr, 3) == expected3align
    assert multiline_latex(f, expr, 3, environment='align*') == expected3align

    expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\
        r'f & = &- a + 2 b \nonumber\\' + '\n'\
        r'& & - 3 c + 4 d \nonumber\\' + '\n'\
        r'& & - 5 e ' + '\n'\
        r'\end{IEEEeqnarray}'

    assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee

    raises(ValueError, lambda: multiline_latex(f, expr, environment="foo"))

def test_issue_15353():
    a, x = symbols('a x')
    # Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a])
    sol = ConditionSet(
        Tuple(x, a), Eq(sin(a*x), 0) & Eq(cos(a*x), 0), S.Complexes**2)
    assert latex(sol) == \
        r'\left\{\left( x, \  a\right)\; \middle|\; \left( x, \  a\right) \in ' \
        r'\mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge ' \
        r'\cos{\left(a x \right)} = 0 \right\}'


def test_latex_symbolic_probability():
    mu = symbols("mu")
    sigma = symbols("sigma", positive=True)
    X = Normal("X", mu, sigma)
    assert latex(Expectation(X)) == r'\operatorname{E}\left[X\right]'
    assert latex(Variance(X)) == r'\operatorname{Var}\left(X\right)'
    assert latex(Probability(X > 0)) == r'\operatorname{P}\left(X > 0\right)'
    Y = Normal("Y", mu, sigma)
    assert latex(Covariance(X, Y)) == r'\operatorname{Cov}\left(X, Y\right)'


def test_trace():
    # Issue 15303
    from sympy.matrices.expressions.trace import trace
    A = MatrixSymbol("A", 2, 2)
    assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)"
    assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)"


def test_print_basic():
    # Issue 15303
    from sympy.core.basic import Basic
    from sympy.core.expr import Expr

    # dummy class for testing printing where the function is not
    # implemented in latex.py
    class UnimplementedExpr(Expr):
        def __new__(cls, e):
            return Basic.__new__(cls, e)

    # dummy function for testing
    def unimplemented_expr(expr):
        return UnimplementedExpr(expr).doit()

    # override class name to use superscript / subscript
    def unimplemented_expr_sup_sub(expr):
        result = UnimplementedExpr(expr)
        result.__class__.__name__ = 'UnimplementedExpr_x^1'
        return result

    assert latex(unimplemented_expr(x)) == r'\operatorname{UnimplementedExpr}\left(x\right)'
    assert latex(unimplemented_expr(x**2)) == \
        r'\operatorname{UnimplementedExpr}\left(x^{2}\right)'
    assert latex(unimplemented_expr_sup_sub(x)) == \
        r'\operatorname{UnimplementedExpr^{1}_{x}}\left(x\right)'


def test_MatrixSymbol_bold():
    # Issue #15871
    from sympy.matrices.expressions.trace import trace
    A = MatrixSymbol("A", 2, 2)
    assert latex(trace(A), mat_symbol_style='bold') == \
        r"\operatorname{tr}\left(\mathbf{A} \right)"
    assert latex(trace(A), mat_symbol_style='plain') == \
        r"\operatorname{tr}\left(A \right)"

    A = MatrixSymbol("A", 3, 3)
    B = MatrixSymbol("B", 3, 3)
    C = MatrixSymbol("C", 3, 3)

    assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}"
    assert latex(A - A*B - B, mat_symbol_style='bold') == \
        r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}"
    assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \
        r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}"

    A_k = MatrixSymbol("A_k", 3, 3)
    assert latex(A_k, mat_symbol_style='bold') == r"\mathbf{A}_{k}"

    A = MatrixSymbol(r"\nabla_k", 3, 3)
    assert latex(A, mat_symbol_style='bold') == r"\mathbf{\nabla}_{k}"

def test_AppliedPermutation():
    p = Permutation(0, 1, 2)
    x = Symbol('x')
    assert latex(AppliedPermutation(p, x)) == \
        r'\sigma_{\left( 0\; 1\; 2\right)}(x)'


def test_PermutationMatrix():
    p = Permutation(0, 1, 2)
    assert latex(PermutationMatrix(p)) == r'P_{\left( 0\; 1\; 2\right)}'
    p = Permutation(0, 3)(1, 2)
    assert latex(PermutationMatrix(p)) == \
        r'P_{\left( 0\; 3\right)\left( 1\; 2\right)}'


def test_issue_21758():
    from sympy.functions.elementary.piecewise import piecewise_fold
    from sympy.series.fourier import FourierSeries
    x = Symbol('x')
    k, n = symbols('k n')
    fo = FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)), SeqFormula(
        Piecewise((-2*pi*cos(n*pi)/n + 2*sin(n*pi)/n**2, (n > -oo) & (n < oo) & Ne(n, 0)),
                  (0, True))*sin(n*x)/pi, (n, 1, oo))))
    assert latex(piecewise_fold(fo)) == '\\begin{cases} 2 \\sin{\\left(x \\right)}' \
            ' - \\sin{\\left(2 x \\right)} + \\frac{2 \\sin{\\left(3 x \\right)}}{3} +' \
            ' \\ldots & \\text{for}\\: n > -\\infty \\wedge n < \\infty \\wedge ' \
                'n \\neq 0 \\\\0 & \\text{otherwise} \\end{cases}'
    assert latex(FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)),
                                                 SeqFormula(0, (n, 1, oo))))) == '0'


def test_imaginary_unit():
    assert latex(1 + I) == r'1 + i'
    assert latex(1 + I, imaginary_unit='i') == r'1 + i'
    assert latex(1 + I, imaginary_unit='j') == r'1 + j'
    assert latex(1 + I, imaginary_unit='foo') == r'1 + foo'
    assert latex(I, imaginary_unit="ti") == r'\text{i}'
    assert latex(I, imaginary_unit="tj") == r'\text{j}'


def test_text_re_im():
    assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}'
    assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}'
    assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}'
    assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}'


def test_latex_diffgeom():
    from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
    from sympy.diffgeom.rn import R2
    x,y = symbols('x y', real=True)
    m = Manifold('M', 2)
    assert latex(m) == r'\text{M}'
    p = Patch('P', m)
    assert latex(p) == r'\text{P}_{\text{M}}'
    rect = CoordSystem('rect', p, [x, y])
    assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}'
    b = BaseScalarField(rect, 0)
    assert latex(b) == r'\mathbf{x}'

    g = Function('g')
    s_field = g(R2.x, R2.y)
    assert latex(Differential(s_field)) == \
        r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)'


def test_unit_printing():
    assert latex(5*meter) == r'5 \text{m}'
    assert latex(3*gibibyte) == r'3 \text{gibibyte}'
    assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}'
    assert latex(4*micro*gram/second) == r'\frac{4 \mu \text{g}}{\text{s}}'
    assert latex(5*milli*meter) == r'5 \text{m} \text{m}'
    assert latex(milli) == r'\text{m}'


def test_issue_17092():
    x_star = Symbol('x^*')
    assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}'


def test_latex_decimal_separator():

    x, y, z, t = symbols('x y z t')
    k, m, n = symbols('k m n', integer=True)
    f, g, h = symbols('f g h', cls=Function)

    # comma decimal_separator
    assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \  2{,}3; \  4{,}5\right]')
    assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}')
    assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \  2{,}3; \  4{,}6\right)')
    assert(latex((1,), decimal_separator='comma') == r'\left( 1;\right)')

    # period decimal_separator
    assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \  2.3, \  4.5\right]' )
    assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
    assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \  2.3, \  4.6\right)')
    assert(latex((1,), decimal_separator='period') == r'\left( 1,\right)')

    # default decimal_separator
    assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \  2.3, \  4.5\right]')
    assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}')
    assert(latex((1, 2.3, 4.6)) == r'\left( 1, \  2.3, \  4.6\right)')
    assert(latex((1,)) == r'\left( 1,\right)')

    assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') == r'18{,}02')
    assert(latex(3.4*5.3, decimal_separator = 'comma') == r'18{,}02')
    x = symbols('x')
    y = symbols('y')
    z = symbols('z')
    assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma') == r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5')

    assert(latex(0.987, decimal_separator='comma') == r'0{,}987')
    assert(latex(S(0.987), decimal_separator='comma') == r'0{,}987')
    assert(latex(.3, decimal_separator='comma') == r'0{,}3')
    assert(latex(S(.3), decimal_separator='comma') == r'0{,}3')


    assert(latex(5.8*10**(-7), decimal_separator='comma') == r'5{,}8 \cdot 10^{-7}')
    assert(latex(S(5.7)*10**(-7), decimal_separator='comma') == r'5{,}7 \cdot 10^{-7}')
    assert(latex(S(5.7*10**(-7)), decimal_separator='comma') == r'5{,}7 \cdot 10^{-7}')

    x = symbols('x')
    assert(latex(1.2*x+3.4, decimal_separator='comma') == r'1{,}2 x + 3{,}4')
    assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')

    # Error Handling tests
    raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list'))
    raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set'))
    raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple'))

def test_Str():
    from sympy.core.symbol import Str
    assert str(Str('x')) == r'x'

def test_latex_escape():
    assert latex_escape(r"~^\&%$#_{}") == "".join([
        r'\textasciitilde',
        r'\textasciicircum',
        r'\textbackslash',
        r'\&',
        r'\%',
        r'\$',
        r'\#',
        r'\_',
        r'\{',
        r'\}',
    ])

def test_emptyPrinter():
    class MyObject:
        def __repr__(self):
            return "<MyObject with {...}>"

    # unknown objects are monospaced
    assert latex(MyObject()) == r"\mathtt{\text{<MyObject with \{...\}>}}"

    # even if they are nested within other objects
    assert latex((MyObject(),)) == r"\left( \mathtt{\text{<MyObject with \{...\}>}},\right)"

def test_global_settings():
    import inspect

    # settings should be visible in the signature of `latex`
    assert inspect.signature(latex).parameters['imaginary_unit'].default == r'i'
    assert latex(I) == r'i'
    try:
        # but changing the defaults...
        LatexPrinter.set_global_settings(imaginary_unit='j')
        # ... should change the signature
        assert inspect.signature(latex).parameters['imaginary_unit'].default == r'j'
        assert latex(I) == r'j'
    finally:
        # there's no public API to undo this, but we need to make sure we do
        # so as not to impact other tests
        del LatexPrinter._global_settings['imaginary_unit']

    # check we really did undo it
    assert inspect.signature(latex).parameters['imaginary_unit'].default == r'i'
    assert latex(I) == r'i'

def test_pickleable():
    # this tests that the _PrintFunction instance is pickleable
    import pickle
    assert pickle.loads(pickle.dumps(latex)) is latex

def test_printing_latex_array_expressions():
    assert latex(ArraySymbol("A", (2, 3, 4))) == "A"
    assert latex(ArrayElement("A", (2, 1/(1-x), 0))) == "{{A}_{2, \\frac{1}{1 - x}, 0}}"
    M = MatrixSymbol("M", 3, 3)
    N = MatrixSymbol("N", 3, 3)
    assert latex(ArrayElement(M*N, [x, 0])) == "{{\\left(M N\\right)}_{x, 0}}"

def test_Array():
    arr = Array(range(10))
    assert latex(arr) == r'\left[\begin{matrix}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{matrix}\right]'

    arr = Array(range(11))
    # fill the empty argument with a bunch of 'c' to avoid latex errors
    assert latex(arr) == r'\left[\begin{array}{ccccccccccc}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'

def test_latex_with_unevaluated():
    with evaluate(False):
        assert latex(a * a) == r"a a"