File size: 13,832 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer,
                        Tuple, Symbol, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.core import EulerGamma, GoldenRatio, Catalan, Lambda, Mul, Pow
from sympy.functions import Piecewise, sqrt, ceiling, exp, sin, cos
from sympy.testing.pytest import raises
from sympy.utilities.lambdify import implemented_function
from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity,
                            HadamardProduct, SparseMatrix)
from sympy.functions.special.bessel import (jn, yn, besselj, bessely, besseli,
                                            besselk, hankel1, hankel2, airyai,
                                            airybi, airyaiprime, airybiprime)
from sympy.testing.pytest import XFAIL

from sympy.printing.julia import julia_code

x, y, z = symbols('x,y,z')


def test_Integer():
    assert julia_code(Integer(67)) == "67"
    assert julia_code(Integer(-1)) == "-1"


def test_Rational():
    assert julia_code(Rational(3, 7)) == "3 // 7"
    assert julia_code(Rational(18, 9)) == "2"
    assert julia_code(Rational(3, -7)) == "-3 // 7"
    assert julia_code(Rational(-3, -7)) == "3 // 7"
    assert julia_code(x + Rational(3, 7)) == "x + 3 // 7"
    assert julia_code(Rational(3, 7)*x) == "(3 // 7) * x"


def test_Relational():
    assert julia_code(Eq(x, y)) == "x == y"
    assert julia_code(Ne(x, y)) == "x != y"
    assert julia_code(Le(x, y)) == "x <= y"
    assert julia_code(Lt(x, y)) == "x < y"
    assert julia_code(Gt(x, y)) == "x > y"
    assert julia_code(Ge(x, y)) == "x >= y"


def test_Function():
    assert julia_code(sin(x) ** cos(x)) == "sin(x) .^ cos(x)"
    assert julia_code(abs(x)) == "abs(x)"
    assert julia_code(ceiling(x)) == "ceil(x)"


def test_Pow():
    assert julia_code(x**3) == "x .^ 3"
    assert julia_code(x**(y**3)) == "x .^ (y .^ 3)"
    assert julia_code(x**Rational(2, 3)) == 'x .^ (2 // 3)'
    g = implemented_function('g', Lambda(x, 2*x))
    assert julia_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
        "(3.5 * 2 * x) .^ (-x + y .^ x) ./ (x .^ 2 + y)"
    # For issue 14160
    assert julia_code(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
                                                evaluate=False)) == '-2 * x ./ (y .* y)'


def test_basic_ops():
    assert julia_code(x*y) == "x .* y"
    assert julia_code(x + y) == "x + y"
    assert julia_code(x - y) == "x - y"
    assert julia_code(-x) == "-x"


def test_1_over_x_and_sqrt():
    # 1.0 and 0.5 would do something different in regular StrPrinter,
    # but these are exact in IEEE floating point so no different here.
    assert julia_code(1/x) == '1 ./ x'
    assert julia_code(x**-1) == julia_code(x**-1.0) == '1 ./ x'
    assert julia_code(1/sqrt(x)) == '1 ./ sqrt(x)'
    assert julia_code(x**-S.Half) == julia_code(x**-0.5) == '1 ./ sqrt(x)'
    assert julia_code(sqrt(x)) == 'sqrt(x)'
    assert julia_code(x**S.Half) == julia_code(x**0.5) == 'sqrt(x)'
    assert julia_code(1/pi) == '1 / pi'
    assert julia_code(pi**-1) == julia_code(pi**-1.0) == '1 / pi'
    assert julia_code(pi**-0.5) == '1 / sqrt(pi)'


def test_mix_number_mult_symbols():
    assert julia_code(3*x) == "3 * x"
    assert julia_code(pi*x) == "pi * x"
    assert julia_code(3/x) == "3 ./ x"
    assert julia_code(pi/x) == "pi ./ x"
    assert julia_code(x/3) == "x / 3"
    assert julia_code(x/pi) == "x / pi"
    assert julia_code(x*y) == "x .* y"
    assert julia_code(3*x*y) == "3 * x .* y"
    assert julia_code(3*pi*x*y) == "3 * pi * x .* y"
    assert julia_code(x/y) == "x ./ y"
    assert julia_code(3*x/y) == "3 * x ./ y"
    assert julia_code(x*y/z) == "x .* y ./ z"
    assert julia_code(x/y*z) == "x .* z ./ y"
    assert julia_code(1/x/y) == "1 ./ (x .* y)"
    assert julia_code(2*pi*x/y/z) == "2 * pi * x ./ (y .* z)"
    assert julia_code(3*pi/x) == "3 * pi ./ x"
    assert julia_code(S(3)/5) == "3 // 5"
    assert julia_code(S(3)/5*x) == "(3 // 5) * x"
    assert julia_code(x/y/z) == "x ./ (y .* z)"
    assert julia_code((x+y)/z) == "(x + y) ./ z"
    assert julia_code((x+y)/(z+x)) == "(x + y) ./ (x + z)"
    assert julia_code((x+y)/EulerGamma) == "(x + y) / eulergamma"
    assert julia_code(x/3/pi) == "x / (3 * pi)"
    assert julia_code(S(3)/5*x*y/pi) == "(3 // 5) * x .* y / pi"


def test_mix_number_pow_symbols():
    assert julia_code(pi**3) == 'pi ^ 3'
    assert julia_code(x**2) == 'x .^ 2'
    assert julia_code(x**(pi**3)) == 'x .^ (pi ^ 3)'
    assert julia_code(x**y) == 'x .^ y'
    assert julia_code(x**(y**z)) == 'x .^ (y .^ z)'
    assert julia_code((x**y)**z) == '(x .^ y) .^ z'


def test_imag():
    I = S('I')
    assert julia_code(I) == "im"
    assert julia_code(5*I) == "5im"
    assert julia_code((S(3)/2)*I) == "(3 // 2) * im"
    assert julia_code(3+4*I) == "3 + 4im"


def test_constants():
    assert julia_code(pi) == "pi"
    assert julia_code(oo) == "Inf"
    assert julia_code(-oo) == "-Inf"
    assert julia_code(S.NegativeInfinity) == "-Inf"
    assert julia_code(S.NaN) == "NaN"
    assert julia_code(S.Exp1) == "e"
    assert julia_code(exp(1)) == "e"


def test_constants_other():
    assert julia_code(2*GoldenRatio) == "2 * golden"
    assert julia_code(2*Catalan) == "2 * catalan"
    assert julia_code(2*EulerGamma) == "2 * eulergamma"


def test_boolean():
    assert julia_code(x & y) == "x && y"
    assert julia_code(x | y) == "x || y"
    assert julia_code(~x) == "!x"
    assert julia_code(x & y & z) == "x && y && z"
    assert julia_code(x | y | z) == "x || y || z"
    assert julia_code((x & y) | z) == "z || x && y"
    assert julia_code((x | y) & z) == "z && (x || y)"


def test_Matrices():
    assert julia_code(Matrix(1, 1, [10])) == "[10]"
    A = Matrix([[1, sin(x/2), abs(x)],
                [0, 1, pi],
                [0, exp(1), ceiling(x)]]);
    expected = ("[1 sin(x / 2)  abs(x);\n"
                "0          1      pi;\n"
                "0          e ceil(x)]")
    assert julia_code(A) == expected
    # row and columns
    assert julia_code(A[:,0]) == "[1, 0, 0]"
    assert julia_code(A[0,:]) == "[1 sin(x / 2) abs(x)]"
    # empty matrices
    assert julia_code(Matrix(0, 0, [])) == 'zeros(0, 0)'
    assert julia_code(Matrix(0, 3, [])) == 'zeros(0, 3)'
    # annoying to read but correct
    assert julia_code(Matrix([[x, x - y, -y]])) == "[x x - y -y]"


def test_vector_entries_hadamard():
    # For a row or column, user might to use the other dimension
    A = Matrix([[1, sin(2/x), 3*pi/x/5]])
    assert julia_code(A) == "[1 sin(2 ./ x) (3 // 5) * pi ./ x]"
    assert julia_code(A.T) == "[1, sin(2 ./ x), (3 // 5) * pi ./ x]"


@XFAIL
def test_Matrices_entries_not_hadamard():
    # For Matrix with col >= 2, row >= 2, they need to be scalars
    # FIXME: is it worth worrying about this?  Its not wrong, just
    # leave it user's responsibility to put scalar data for x.
    A = Matrix([[1, sin(2/x), 3*pi/x/5], [1, 2, x*y]])
    expected = ("[1 sin(2/x) 3*pi/(5*x);\n"
                "1        2        x*y]") # <- we give x.*y
    assert julia_code(A) == expected


def test_MatrixSymbol():
    n = Symbol('n', integer=True)
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, n)
    assert julia_code(A*B) == "A * B"
    assert julia_code(B*A) == "B * A"
    assert julia_code(2*A*B) == "2 * A * B"
    assert julia_code(B*2*A) == "2 * B * A"
    assert julia_code(A*(B + 3*Identity(n))) == "A * (3 * eye(n) + B)"
    assert julia_code(A**(x**2)) == "A ^ (x .^ 2)"
    assert julia_code(A**3) == "A ^ 3"
    assert julia_code(A**S.Half) == "A ^ (1 // 2)"


def test_special_matrices():
    assert julia_code(6*Identity(3)) == "6 * eye(3)"


def test_containers():
    assert julia_code([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
        "Any[1, 2, 3, Any[4, 5, Any[6, 7]], 8, Any[9, 10], 11]"
    assert julia_code((1, 2, (3, 4))) == "(1, 2, (3, 4))"
    assert julia_code([1]) == "Any[1]"
    assert julia_code((1,)) == "(1,)"
    assert julia_code(Tuple(*[1, 2, 3])) == "(1, 2, 3)"
    assert julia_code((1, x*y, (3, x**2))) == "(1, x .* y, (3, x .^ 2))"
    # scalar, matrix, empty matrix and empty list
    assert julia_code((1, eye(3), Matrix(0, 0, []), [])) == "(1, [1 0 0;\n0 1 0;\n0 0 1], zeros(0, 0), Any[])"


def test_julia_noninline():
    source = julia_code((x+y)/Catalan, assign_to='me', inline=False)
    expected = (
        "const Catalan = %s\n"
        "me = (x + y) / Catalan"
    ) % Catalan.evalf(17)
    assert source == expected


def test_julia_piecewise():
    expr = Piecewise((x, x < 1), (x**2, True))
    assert julia_code(expr) == "((x < 1) ? (x) : (x .^ 2))"
    assert julia_code(expr, assign_to="r") == (
        "r = ((x < 1) ? (x) : (x .^ 2))")
    assert julia_code(expr, assign_to="r", inline=False) == (
        "if (x < 1)\n"
        "    r = x\n"
        "else\n"
        "    r = x .^ 2\n"
        "end")
    expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True))
    expected = ("((x < 1) ? (x .^ 2) :\n"
                "(x < 2) ? (x .^ 3) :\n"
                "(x < 3) ? (x .^ 4) : (x .^ 5))")
    assert julia_code(expr) == expected
    assert julia_code(expr, assign_to="r") == "r = " + expected
    assert julia_code(expr, assign_to="r", inline=False) == (
        "if (x < 1)\n"
        "    r = x .^ 2\n"
        "elseif (x < 2)\n"
        "    r = x .^ 3\n"
        "elseif (x < 3)\n"
        "    r = x .^ 4\n"
        "else\n"
        "    r = x .^ 5\n"
        "end")
    # Check that Piecewise without a True (default) condition error
    expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
    raises(ValueError, lambda: julia_code(expr))


def test_julia_piecewise_times_const():
    pw = Piecewise((x, x < 1), (x**2, True))
    assert julia_code(2*pw) == "2 * ((x < 1) ? (x) : (x .^ 2))"
    assert julia_code(pw/x) == "((x < 1) ? (x) : (x .^ 2)) ./ x"
    assert julia_code(pw/(x*y)) == "((x < 1) ? (x) : (x .^ 2)) ./ (x .* y)"
    assert julia_code(pw/3) == "((x < 1) ? (x) : (x .^ 2)) / 3"


def test_julia_matrix_assign_to():
    A = Matrix([[1, 2, 3]])
    assert julia_code(A, assign_to='a') == "a = [1 2 3]"
    A = Matrix([[1, 2], [3, 4]])
    assert julia_code(A, assign_to='A') == "A = [1 2;\n3 4]"


def test_julia_matrix_assign_to_more():
    # assigning to Symbol or MatrixSymbol requires lhs/rhs match
    A = Matrix([[1, 2, 3]])
    B = MatrixSymbol('B', 1, 3)
    C = MatrixSymbol('C', 2, 3)
    assert julia_code(A, assign_to=B) == "B = [1 2 3]"
    raises(ValueError, lambda: julia_code(A, assign_to=x))
    raises(ValueError, lambda: julia_code(A, assign_to=C))


def test_julia_matrix_1x1():
    A = Matrix([[3]])
    B = MatrixSymbol('B', 1, 1)
    C = MatrixSymbol('C', 1, 2)
    assert julia_code(A, assign_to=B) == "B = [3]"
    # FIXME?
    #assert julia_code(A, assign_to=x) == "x = [3]"
    raises(ValueError, lambda: julia_code(A, assign_to=C))


def test_julia_matrix_elements():
    A = Matrix([[x, 2, x*y]])
    assert julia_code(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x .^ 2 + x .* y + 2"
    A = MatrixSymbol('AA', 1, 3)
    assert julia_code(A) == "AA"
    assert julia_code(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \
           "sin(AA[1,2]) + AA[1,1] .^ 2 + AA[1,3]"
    assert julia_code(sum(A)) == "AA[1,1] + AA[1,2] + AA[1,3]"


def test_julia_boolean():
    assert julia_code(True) == "true"
    assert julia_code(S.true) == "true"
    assert julia_code(False) == "false"
    assert julia_code(S.false) == "false"


def test_julia_not_supported():
    with raises(NotImplementedError):
        julia_code(S.ComplexInfinity)

    f = Function('f')
    assert julia_code(f(x).diff(x), strict=False) == (
        "# Not supported in Julia:\n"
        "# Derivative\n"
        "Derivative(f(x), x)"
    )


def test_trick_indent_with_end_else_words():
    # words starting with "end" or "else" do not confuse the indenter
    t1 = S('endless');
    t2 = S('elsewhere');
    pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True))
    assert julia_code(pw, inline=False) == (
        "if (x < 0)\n"
        "    endless\n"
        "elseif (x <= 1)\n"
        "    elsewhere\n"
        "else\n"
        "    1\n"
        "end")


def test_haramard():
    A = MatrixSymbol('A', 3, 3)
    B = MatrixSymbol('B', 3, 3)
    v = MatrixSymbol('v', 3, 1)
    h = MatrixSymbol('h', 1, 3)
    C = HadamardProduct(A, B)
    assert julia_code(C) == "A .* B"
    assert julia_code(C*v) == "(A .* B) * v"
    assert julia_code(h*C*v) == "h * (A .* B) * v"
    assert julia_code(C*A) == "(A .* B) * A"
    # mixing Hadamard and scalar strange b/c we vectorize scalars
    assert julia_code(C*x*y) == "(x .* y) * (A .* B)"


def test_sparse():
    M = SparseMatrix(5, 6, {})
    M[2, 2] = 10;
    M[1, 2] = 20;
    M[1, 3] = 22;
    M[0, 3] = 30;
    M[3, 0] = x*y;
    assert julia_code(M) == (
        "sparse([4, 2, 3, 1, 2], [1, 3, 3, 4, 4], [x .* y, 20, 10, 30, 22], 5, 6)"
    )


def test_specfun():
    n = Symbol('n')
    for f in [besselj, bessely, besseli, besselk]:
        assert julia_code(f(n, x)) == f.__name__ + '(n, x)'
    for f in [airyai, airyaiprime, airybi, airybiprime]:
        assert julia_code(f(x)) == f.__name__ + '(x)'
    assert julia_code(hankel1(n, x)) == 'hankelh1(n, x)'
    assert julia_code(hankel2(n, x)) == 'hankelh2(n, x)'
    assert julia_code(jn(n, x)) == 'sqrt(2) * sqrt(pi) * sqrt(1 ./ x) .* besselj(n + 1 // 2, x) / 2'
    assert julia_code(yn(n, x)) == 'sqrt(2) * sqrt(pi) * sqrt(1 ./ x) .* bessely(n + 1 // 2, x) / 2'


def test_MatrixElement_printing():
    # test cases for issue #11821
    A = MatrixSymbol("A", 1, 3)
    B = MatrixSymbol("B", 1, 3)
    C = MatrixSymbol("C", 1, 3)

    assert(julia_code(A[0, 0]) == "A[1,1]")
    assert(julia_code(3 * A[0, 0]) == "3 * A[1,1]")

    F = C[0, 0].subs(C, A - B)
    assert(julia_code(F) == "(A - B)[1,1]")