Spaces:
Sleeping
Sleeping
File size: 11,062 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
from sympy.concrete.summations import Sum
from sympy.core.mod import Mod
from sympy.core.relational import (Equality, Unequality)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.special import Identity
from sympy.utilities.lambdify import lambdify
from sympy.abc import x, i, j, a, b, c, d
from sympy.core import Function, Pow, Symbol
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Sqrt
from sympy.tensor.array import Array
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \
PermuteDims, ArrayDiagonal
from sympy.printing.numpy import JaxPrinter, _jax_known_constants, _jax_known_functions
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
from sympy.testing.pytest import skip, raises
from sympy.external import import_module
# Unlike NumPy which will aggressively promote operands to double precision,
# jax always uses single precision. Double precision in jax can be
# configured before the call to `import jax`, however this must be explicitly
# configured and is not fully supported. Thus, the tests here have been modified
# from the tests in test_numpy.py, only in the fact that they assert lambdify
# function accuracy to only single precision accuracy.
# https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
jax = import_module('jax')
if jax:
deafult_float_info = jax.numpy.finfo(jax.numpy.array([]).dtype)
JAX_DEFAULT_EPSILON = deafult_float_info.eps
def test_jax_piecewise_regression():
"""
NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid
breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+.
See gh-9747 and gh-9749 for details.
"""
printer = JaxPrinter()
p = Piecewise((1, x < 0), (0, True))
assert printer.doprint(p) == \
'jax.numpy.select([jax.numpy.less(x, 0),True], [1,0], default=jax.numpy.nan)'
assert printer.module_imports == {'jax.numpy': {'select', 'less', 'nan'}}
def test_jax_logaddexp():
lae = logaddexp(a, b)
assert JaxPrinter().doprint(lae) == 'jax.numpy.logaddexp(a, b)'
lae2 = logaddexp2(a, b)
assert JaxPrinter().doprint(lae2) == 'jax.numpy.logaddexp2(a, b)'
def test_jax_sum():
if not jax:
skip("JAX not installed")
s = Sum(x ** i, (i, a, b))
f = lambdify((a, b, x), s, 'jax')
a_, b_ = 0, 10
x_ = jax.numpy.linspace(-1, +1, 10)
assert jax.numpy.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1)))
s = Sum(i * x, (i, a, b))
f = lambdify((a, b, x), s, 'jax')
a_, b_ = 0, 10
x_ = jax.numpy.linspace(-1, +1, 10)
assert jax.numpy.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1)))
def test_jax_multiple_sums():
if not jax:
skip("JAX not installed")
s = Sum((x + j) * i, (i, a, b), (j, c, d))
f = lambdify((a, b, c, d, x), s, 'jax')
a_, b_ = 0, 10
c_, d_ = 11, 21
x_ = jax.numpy.linspace(-1, +1, 10)
assert jax.numpy.allclose(f(a_, b_, c_, d_, x_),
sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1)))
def test_jax_codegen_einsum():
if not jax:
skip("JAX not installed")
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
cg = convert_matrix_to_array(M * N)
f = lambdify((M, N), cg, 'jax')
ma = jax.numpy.array([[1, 2], [3, 4]])
mb = jax.numpy.array([[1,-2], [-1, 3]])
assert (f(ma, mb) == jax.numpy.matmul(ma, mb)).all()
def test_jax_codegen_extra():
if not jax:
skip("JAX not installed")
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
P = MatrixSymbol("P", 2, 2)
Q = MatrixSymbol("Q", 2, 2)
ma = jax.numpy.array([[1, 2], [3, 4]])
mb = jax.numpy.array([[1,-2], [-1, 3]])
mc = jax.numpy.array([[2, 0], [1, 2]])
md = jax.numpy.array([[1,-1], [4, 7]])
cg = ArrayTensorProduct(M, N)
f = lambdify((M, N), cg, 'jax')
assert (f(ma, mb) == jax.numpy.einsum(ma, [0, 1], mb, [2, 3])).all()
cg = ArrayAdd(M, N)
f = lambdify((M, N), cg, 'jax')
assert (f(ma, mb) == ma+mb).all()
cg = ArrayAdd(M, N, P)
f = lambdify((M, N, P), cg, 'jax')
assert (f(ma, mb, mc) == ma+mb+mc).all()
cg = ArrayAdd(M, N, P, Q)
f = lambdify((M, N, P, Q), cg, 'jax')
assert (f(ma, mb, mc, md) == ma+mb+mc+md).all()
cg = PermuteDims(M, [1, 0])
f = lambdify((M,), cg, 'jax')
assert (f(ma) == ma.T).all()
cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0])
f = lambdify((M, N), cg, 'jax')
assert (f(ma, mb) == jax.numpy.transpose(jax.numpy.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all()
cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2))
f = lambdify((M, N), cg, 'jax')
assert (f(ma, mb) == jax.numpy.diagonal(jax.numpy.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all()
def test_jax_relational():
if not jax:
skip("JAX not installed")
e = Equality(x, 1)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [False, True, False])
e = Unequality(x, 1)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [True, False, True])
e = (x < 1)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [True, False, False])
e = (x <= 1)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [True, True, False])
e = (x > 1)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [False, False, True])
e = (x >= 1)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [False, True, True])
# Multi-condition expressions
e = (x >= 1) & (x < 2)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [False, True, False])
e = (x >= 1) | (x < 2)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [True, True, True])
def test_jax_mod():
if not jax:
skip("JAX not installed")
e = Mod(a, b)
f = lambdify((a, b), e, 'jax')
a_ = jax.numpy.array([0, 1, 2, 3])
b_ = 2
assert jax.numpy.array_equal(f(a_, b_), [0, 1, 0, 1])
a_ = jax.numpy.array([0, 1, 2, 3])
b_ = jax.numpy.array([2, 2, 2, 2])
assert jax.numpy.array_equal(f(a_, b_), [0, 1, 0, 1])
a_ = jax.numpy.array([2, 3, 4, 5])
b_ = jax.numpy.array([2, 3, 4, 5])
assert jax.numpy.array_equal(f(a_, b_), [0, 0, 0, 0])
def test_jax_pow():
if not jax:
skip('JAX not installed')
expr = Pow(2, -1, evaluate=False)
f = lambdify([], expr, 'jax')
assert f() == 0.5
def test_jax_expm1():
if not jax:
skip("JAX not installed")
f = lambdify((a,), expm1(a), 'jax')
assert abs(f(1e-10) - 1e-10 - 5e-21) <= 1e-10 * JAX_DEFAULT_EPSILON
def test_jax_log1p():
if not jax:
skip("JAX not installed")
f = lambdify((a,), log1p(a), 'jax')
assert abs(f(1e-99) - 1e-99) <= 1e-99 * JAX_DEFAULT_EPSILON
def test_jax_hypot():
if not jax:
skip("JAX not installed")
assert abs(lambdify((a, b), hypot(a, b), 'jax')(3, 4) - 5) <= JAX_DEFAULT_EPSILON
def test_jax_log10():
if not jax:
skip("JAX not installed")
assert abs(lambdify((a,), log10(a), 'jax')(100) - 2) <= JAX_DEFAULT_EPSILON
def test_jax_exp2():
if not jax:
skip("JAX not installed")
assert abs(lambdify((a,), exp2(a), 'jax')(5) - 32) <= JAX_DEFAULT_EPSILON
def test_jax_log2():
if not jax:
skip("JAX not installed")
assert abs(lambdify((a,), log2(a), 'jax')(256) - 8) <= JAX_DEFAULT_EPSILON
def test_jax_Sqrt():
if not jax:
skip("JAX not installed")
assert abs(lambdify((a,), Sqrt(a), 'jax')(4) - 2) <= JAX_DEFAULT_EPSILON
def test_jax_sqrt():
if not jax:
skip("JAX not installed")
assert abs(lambdify((a,), sqrt(a), 'jax')(4) - 2) <= JAX_DEFAULT_EPSILON
def test_jax_matsolve():
if not jax:
skip("JAX not installed")
M = MatrixSymbol("M", 3, 3)
x = MatrixSymbol("x", 3, 1)
expr = M**(-1) * x + x
matsolve_expr = MatrixSolve(M, x) + x
f = lambdify((M, x), expr, 'jax')
f_matsolve = lambdify((M, x), matsolve_expr, 'jax')
m0 = jax.numpy.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]])
assert jax.numpy.linalg.matrix_rank(m0) == 3
x0 = jax.numpy.array([3, 4, 5])
assert jax.numpy.allclose(f_matsolve(m0, x0), f(m0, x0))
def test_16857():
if not jax:
skip("JAX not installed")
a_1 = MatrixSymbol('a_1', 10, 3)
a_2 = MatrixSymbol('a_2', 10, 3)
a_3 = MatrixSymbol('a_3', 10, 3)
a_4 = MatrixSymbol('a_4', 10, 3)
A = BlockMatrix([[a_1, a_2], [a_3, a_4]])
assert A.shape == (20, 6)
printer = JaxPrinter()
assert printer.doprint(A) == 'jax.numpy.block([[a_1, a_2], [a_3, a_4]])'
def test_issue_17006():
if not jax:
skip("JAX not installed")
M = MatrixSymbol("M", 2, 2)
f = lambdify(M, M + Identity(2), 'jax')
ma = jax.numpy.array([[1, 2], [3, 4]])
mr = jax.numpy.array([[2, 2], [3, 5]])
assert (f(ma) == mr).all()
from sympy.core.symbol import symbols
n = symbols('n', integer=True)
N = MatrixSymbol("M", n, n)
raises(NotImplementedError, lambda: lambdify(N, N + Identity(n), 'jax'))
def test_jax_array():
assert JaxPrinter().doprint(Array(((1, 2), (3, 5)))) == 'jax.numpy.array([[1, 2], [3, 5]])'
assert JaxPrinter().doprint(Array((1, 2))) == 'jax.numpy.array((1, 2))'
def test_jax_known_funcs_consts():
assert _jax_known_constants['NaN'] == 'jax.numpy.nan'
assert _jax_known_constants['EulerGamma'] == 'jax.numpy.euler_gamma'
assert _jax_known_functions['acos'] == 'jax.numpy.arccos'
assert _jax_known_functions['log'] == 'jax.numpy.log'
def test_jax_print_methods():
prntr = JaxPrinter()
assert hasattr(prntr, '_print_acos')
assert hasattr(prntr, '_print_log')
def test_jax_printmethod():
printer = JaxPrinter()
assert hasattr(printer, 'printmethod')
assert printer.printmethod == '_jaxcode'
def test_jax_custom_print_method():
class expm1(Function):
def _jaxcode(self, printer):
x, = self.args
function = f'expm1({printer._print(x)})'
return printer._module_format(printer._module + '.' + function)
printer = JaxPrinter()
assert printer.doprint(expm1(Symbol('x'))) == 'jax.numpy.expm1(x)'
|