Spaces:
Sleeping
Sleeping
File size: 7,906 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
from sympy.external.importtools import version_tuple
from collections.abc import Iterable
from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.codegen.cfunctions import Sqrt
from sympy.external import import_module
from sympy.printing.precedence import PRECEDENCE
from sympy.printing.pycode import AbstractPythonCodePrinter, ArrayPrinter
import sympy
tensorflow = import_module('tensorflow')
class TensorflowPrinter(ArrayPrinter, AbstractPythonCodePrinter):
"""
Tensorflow printer which handles vectorized piecewise functions,
logical operators, max/min, and relational operators.
"""
printmethod = "_tensorflowcode"
mapping = {
sympy.Abs: "tensorflow.math.abs",
sympy.sign: "tensorflow.math.sign",
# XXX May raise error for ints.
sympy.ceiling: "tensorflow.math.ceil",
sympy.floor: "tensorflow.math.floor",
sympy.log: "tensorflow.math.log",
sympy.exp: "tensorflow.math.exp",
Sqrt: "tensorflow.math.sqrt",
sympy.cos: "tensorflow.math.cos",
sympy.acos: "tensorflow.math.acos",
sympy.sin: "tensorflow.math.sin",
sympy.asin: "tensorflow.math.asin",
sympy.tan: "tensorflow.math.tan",
sympy.atan: "tensorflow.math.atan",
sympy.atan2: "tensorflow.math.atan2",
# XXX Also may give NaN for complex results.
sympy.cosh: "tensorflow.math.cosh",
sympy.acosh: "tensorflow.math.acosh",
sympy.sinh: "tensorflow.math.sinh",
sympy.asinh: "tensorflow.math.asinh",
sympy.tanh: "tensorflow.math.tanh",
sympy.atanh: "tensorflow.math.atanh",
sympy.re: "tensorflow.math.real",
sympy.im: "tensorflow.math.imag",
sympy.arg: "tensorflow.math.angle",
# XXX May raise error for ints and complexes
sympy.erf: "tensorflow.math.erf",
sympy.loggamma: "tensorflow.math.lgamma",
sympy.Eq: "tensorflow.math.equal",
sympy.Ne: "tensorflow.math.not_equal",
sympy.StrictGreaterThan: "tensorflow.math.greater",
sympy.StrictLessThan: "tensorflow.math.less",
sympy.LessThan: "tensorflow.math.less_equal",
sympy.GreaterThan: "tensorflow.math.greater_equal",
sympy.And: "tensorflow.math.logical_and",
sympy.Or: "tensorflow.math.logical_or",
sympy.Not: "tensorflow.math.logical_not",
sympy.Max: "tensorflow.math.maximum",
sympy.Min: "tensorflow.math.minimum",
# Matrices
sympy.MatAdd: "tensorflow.math.add",
sympy.HadamardProduct: "tensorflow.math.multiply",
sympy.Trace: "tensorflow.linalg.trace",
# XXX May raise error for integer matrices.
sympy.Determinant : "tensorflow.linalg.det",
}
_default_settings = dict(
AbstractPythonCodePrinter._default_settings,
tensorflow_version=None
)
def __init__(self, settings=None):
super().__init__(settings)
version = self._settings['tensorflow_version']
if version is None and tensorflow:
version = tensorflow.__version__
self.tensorflow_version = version
def _print_Function(self, expr):
op = self.mapping.get(type(expr), None)
if op is None:
return super()._print_Basic(expr)
children = [self._print(arg) for arg in expr.args]
if len(children) == 1:
return "%s(%s)" % (
self._module_format(op),
children[0]
)
else:
return self._expand_fold_binary_op(op, children)
_print_Expr = _print_Function
_print_Application = _print_Function
_print_MatrixExpr = _print_Function
# TODO: a better class structure would avoid this mess:
_print_Relational = _print_Function
_print_Not = _print_Function
_print_And = _print_Function
_print_Or = _print_Function
_print_HadamardProduct = _print_Function
_print_Trace = _print_Function
_print_Determinant = _print_Function
def _print_Inverse(self, expr):
op = self._module_format('tensorflow.linalg.inv')
return "{}({})".format(op, self._print(expr.arg))
def _print_Transpose(self, expr):
version = self.tensorflow_version
if version and version_tuple(version) < version_tuple('1.14'):
op = self._module_format('tensorflow.matrix_transpose')
else:
op = self._module_format('tensorflow.linalg.matrix_transpose')
return "{}({})".format(op, self._print(expr.arg))
def _print_Derivative(self, expr):
variables = expr.variables
if any(isinstance(i, Iterable) for i in variables):
raise NotImplementedError("derivation by multiple variables is not supported")
def unfold(expr, args):
if not args:
return self._print(expr)
return "%s(%s, %s)[0]" % (
self._module_format("tensorflow.gradients"),
unfold(expr, args[:-1]),
self._print(args[-1]),
)
return unfold(expr.expr, variables)
def _print_Piecewise(self, expr):
version = self.tensorflow_version
if version and version_tuple(version) < version_tuple('1.0'):
tensorflow_piecewise = "tensorflow.select"
else:
tensorflow_piecewise = "tensorflow.where"
from sympy.functions.elementary.piecewise import Piecewise
e, cond = expr.args[0].args
if len(expr.args) == 1:
return '{}({}, {}, {})'.format(
self._module_format(tensorflow_piecewise),
self._print(cond),
self._print(e),
0)
return '{}({}, {}, {})'.format(
self._module_format(tensorflow_piecewise),
self._print(cond),
self._print(e),
self._print(Piecewise(*expr.args[1:])))
def _print_Pow(self, expr):
# XXX May raise error for
# int**float or int**complex or float**complex
base, exp = expr.args
if expr.exp == S.Half:
return "{}({})".format(
self._module_format("tensorflow.math.sqrt"), self._print(base))
return "{}({}, {})".format(
self._module_format("tensorflow.math.pow"),
self._print(base), self._print(exp))
def _print_MatrixBase(self, expr):
tensorflow_f = "tensorflow.Variable" if expr.free_symbols else "tensorflow.constant"
data = "["+", ".join(["["+", ".join([self._print(j) for j in i])+"]" for i in expr.tolist()])+"]"
return "%s(%s)" % (
self._module_format(tensorflow_f),
data,
)
def _print_MatMul(self, expr):
from sympy.matrices.expressions import MatrixExpr
mat_args = [arg for arg in expr.args if isinstance(arg, MatrixExpr)]
args = [arg for arg in expr.args if arg not in mat_args]
if args:
return "%s*%s" % (
self.parenthesize(Mul.fromiter(args), PRECEDENCE["Mul"]),
self._expand_fold_binary_op(
"tensorflow.linalg.matmul", mat_args)
)
else:
return self._expand_fold_binary_op(
"tensorflow.linalg.matmul", mat_args)
def _print_MatPow(self, expr):
return self._expand_fold_binary_op(
"tensorflow.linalg.matmul", [expr.base]*expr.exp)
def _print_CodeBlock(self, expr):
# TODO: is this necessary?
ret = []
for subexpr in expr.args:
ret.append(self._print(subexpr))
return "\n".join(ret)
_module = "tensorflow"
_einsum = "linalg.einsum"
_add = "math.add"
_transpose = "transpose"
_ones = "ones"
_zeros = "zeros"
def tensorflow_code(expr, **settings):
printer = TensorflowPrinter(settings)
return printer.doprint(expr)
|