File size: 7,906 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from sympy.external.importtools import version_tuple
from collections.abc import Iterable

from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.codegen.cfunctions import Sqrt
from sympy.external import import_module
from sympy.printing.precedence import PRECEDENCE
from sympy.printing.pycode import AbstractPythonCodePrinter, ArrayPrinter
import sympy

tensorflow = import_module('tensorflow')

class TensorflowPrinter(ArrayPrinter, AbstractPythonCodePrinter):
    """
    Tensorflow printer which handles vectorized piecewise functions,
    logical operators, max/min, and relational operators.
    """
    printmethod = "_tensorflowcode"

    mapping = {
        sympy.Abs: "tensorflow.math.abs",
        sympy.sign: "tensorflow.math.sign",

        # XXX May raise error for ints.
        sympy.ceiling: "tensorflow.math.ceil",
        sympy.floor: "tensorflow.math.floor",
        sympy.log: "tensorflow.math.log",
        sympy.exp: "tensorflow.math.exp",
        Sqrt: "tensorflow.math.sqrt",
        sympy.cos: "tensorflow.math.cos",
        sympy.acos: "tensorflow.math.acos",
        sympy.sin: "tensorflow.math.sin",
        sympy.asin: "tensorflow.math.asin",
        sympy.tan: "tensorflow.math.tan",
        sympy.atan: "tensorflow.math.atan",
        sympy.atan2: "tensorflow.math.atan2",
        # XXX Also may give NaN for complex results.
        sympy.cosh: "tensorflow.math.cosh",
        sympy.acosh: "tensorflow.math.acosh",
        sympy.sinh: "tensorflow.math.sinh",
        sympy.asinh: "tensorflow.math.asinh",
        sympy.tanh: "tensorflow.math.tanh",
        sympy.atanh: "tensorflow.math.atanh",

        sympy.re: "tensorflow.math.real",
        sympy.im: "tensorflow.math.imag",
        sympy.arg: "tensorflow.math.angle",

        # XXX May raise error for ints and complexes
        sympy.erf: "tensorflow.math.erf",
        sympy.loggamma: "tensorflow.math.lgamma",

        sympy.Eq: "tensorflow.math.equal",
        sympy.Ne: "tensorflow.math.not_equal",
        sympy.StrictGreaterThan: "tensorflow.math.greater",
        sympy.StrictLessThan: "tensorflow.math.less",
        sympy.LessThan: "tensorflow.math.less_equal",
        sympy.GreaterThan: "tensorflow.math.greater_equal",

        sympy.And: "tensorflow.math.logical_and",
        sympy.Or: "tensorflow.math.logical_or",
        sympy.Not: "tensorflow.math.logical_not",
        sympy.Max: "tensorflow.math.maximum",
        sympy.Min: "tensorflow.math.minimum",

        # Matrices
        sympy.MatAdd: "tensorflow.math.add",
        sympy.HadamardProduct: "tensorflow.math.multiply",
        sympy.Trace: "tensorflow.linalg.trace",

        # XXX May raise error for integer matrices.
        sympy.Determinant : "tensorflow.linalg.det",
    }

    _default_settings = dict(
        AbstractPythonCodePrinter._default_settings,
        tensorflow_version=None
    )

    def __init__(self, settings=None):
        super().__init__(settings)

        version = self._settings['tensorflow_version']
        if version is None and tensorflow:
            version = tensorflow.__version__
        self.tensorflow_version = version

    def _print_Function(self, expr):
        op = self.mapping.get(type(expr), None)
        if op is None:
            return super()._print_Basic(expr)
        children = [self._print(arg) for arg in expr.args]
        if len(children) == 1:
            return "%s(%s)" % (
                self._module_format(op),
                children[0]
            )
        else:
            return self._expand_fold_binary_op(op, children)

    _print_Expr = _print_Function
    _print_Application = _print_Function
    _print_MatrixExpr = _print_Function
    # TODO: a better class structure would avoid this mess:
    _print_Relational = _print_Function
    _print_Not = _print_Function
    _print_And = _print_Function
    _print_Or = _print_Function
    _print_HadamardProduct = _print_Function
    _print_Trace = _print_Function
    _print_Determinant = _print_Function

    def _print_Inverse(self, expr):
        op = self._module_format('tensorflow.linalg.inv')
        return "{}({})".format(op, self._print(expr.arg))

    def _print_Transpose(self, expr):
        version = self.tensorflow_version
        if version and version_tuple(version) < version_tuple('1.14'):
            op = self._module_format('tensorflow.matrix_transpose')
        else:
            op = self._module_format('tensorflow.linalg.matrix_transpose')
        return "{}({})".format(op, self._print(expr.arg))

    def _print_Derivative(self, expr):
        variables = expr.variables
        if any(isinstance(i, Iterable) for i in variables):
            raise NotImplementedError("derivation by multiple variables is not supported")
        def unfold(expr, args):
            if not args:
                return self._print(expr)
            return "%s(%s, %s)[0]" % (
                    self._module_format("tensorflow.gradients"),
                    unfold(expr, args[:-1]),
                    self._print(args[-1]),
                )
        return unfold(expr.expr, variables)

    def _print_Piecewise(self, expr):
        version = self.tensorflow_version
        if version and version_tuple(version) < version_tuple('1.0'):
            tensorflow_piecewise = "tensorflow.select"
        else:
            tensorflow_piecewise = "tensorflow.where"

        from sympy.functions.elementary.piecewise import Piecewise
        e, cond = expr.args[0].args
        if len(expr.args) == 1:
            return '{}({}, {}, {})'.format(
                self._module_format(tensorflow_piecewise),
                self._print(cond),
                self._print(e),
                0)

        return '{}({}, {}, {})'.format(
            self._module_format(tensorflow_piecewise),
            self._print(cond),
            self._print(e),
            self._print(Piecewise(*expr.args[1:])))

    def _print_Pow(self, expr):
        # XXX May raise error for
        # int**float or int**complex or float**complex
        base, exp = expr.args
        if expr.exp == S.Half:
            return "{}({})".format(
                self._module_format("tensorflow.math.sqrt"), self._print(base))
        return "{}({}, {})".format(
            self._module_format("tensorflow.math.pow"),
            self._print(base), self._print(exp))

    def _print_MatrixBase(self, expr):
        tensorflow_f = "tensorflow.Variable" if expr.free_symbols else "tensorflow.constant"
        data = "["+", ".join(["["+", ".join([self._print(j) for j in i])+"]" for i in expr.tolist()])+"]"
        return "%s(%s)" % (
            self._module_format(tensorflow_f),
            data,
        )

    def _print_MatMul(self, expr):
        from sympy.matrices.expressions import MatrixExpr
        mat_args = [arg for arg in expr.args if isinstance(arg, MatrixExpr)]
        args = [arg for arg in expr.args if arg not in mat_args]
        if args:
            return "%s*%s" % (
                self.parenthesize(Mul.fromiter(args), PRECEDENCE["Mul"]),
                self._expand_fold_binary_op(
                    "tensorflow.linalg.matmul", mat_args)
            )
        else:
            return self._expand_fold_binary_op(
                "tensorflow.linalg.matmul", mat_args)

    def _print_MatPow(self, expr):
        return self._expand_fold_binary_op(
            "tensorflow.linalg.matmul", [expr.base]*expr.exp)

    def _print_CodeBlock(self, expr):
        # TODO: is this necessary?
        ret = []
        for subexpr in expr.args:
            ret.append(self._print(subexpr))
        return "\n".join(ret)

    _module = "tensorflow"
    _einsum = "linalg.einsum"
    _add = "math.add"
    _transpose = "transpose"
    _ones = "ones"
    _zeros = "zeros"


def tensorflow_code(expr, **settings):
    printer = TensorflowPrinter(settings)
    return printer.doprint(expr)