File size: 21,743 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import typing

import sympy
from sympy.core import Add, Mul
from sympy.core import Symbol, Expr, Float, Rational, Integer, Basic
from sympy.core.function import UndefinedFunction, Function
from sympy.core.relational import Relational, Unequality, Equality, LessThan, GreaterThan, StrictLessThan, StrictGreaterThan
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import exp, log, Pow
from sympy.functions.elementary.hyperbolic import sinh, cosh, tanh
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import sin, cos, tan, asin, acos, atan, atan2
from sympy.logic.boolalg import And, Or, Xor, Implies, Boolean
from sympy.logic.boolalg import BooleanTrue, BooleanFalse, BooleanFunction, Not, ITE
from sympy.printing.printer import Printer
from sympy.sets import Interval
from mpmath.libmp.libmpf import prec_to_dps, to_str as mlib_to_str
from sympy.assumptions.assume import AppliedPredicate
from sympy.assumptions.relation.binrel import AppliedBinaryRelation
from sympy.assumptions.ask import Q
from sympy.assumptions.relation.equality import StrictGreaterThanPredicate, StrictLessThanPredicate, GreaterThanPredicate, LessThanPredicate, EqualityPredicate


class SMTLibPrinter(Printer):
    printmethod = "_smtlib"

    # based on dReal, an automated reasoning tool for solving problems that can be encoded as first-order logic formulas over the real numbers.
    # dReal's special strength is in handling problems that involve a wide range of nonlinear real functions.
    _default_settings: dict = {
        'precision': None,
        'known_types': {
            bool: 'Bool',
            int: 'Int',
            float: 'Real'
        },
        'known_constants': {
            # pi: 'MY_VARIABLE_PI_DECLARED_ELSEWHERE',
        },
        'known_functions': {
            Add: '+',
            Mul: '*',

            Equality: '=',
            LessThan: '<=',
            GreaterThan: '>=',
            StrictLessThan: '<',
            StrictGreaterThan: '>',

            EqualityPredicate(): '=',
            LessThanPredicate(): '<=',
            GreaterThanPredicate(): '>=',
            StrictLessThanPredicate(): '<',
            StrictGreaterThanPredicate(): '>',

            exp: 'exp',
            log: 'log',
            Abs: 'abs',
            sin: 'sin',
            cos: 'cos',
            tan: 'tan',
            asin: 'arcsin',
            acos: 'arccos',
            atan: 'arctan',
            atan2: 'arctan2',
            sinh: 'sinh',
            cosh: 'cosh',
            tanh: 'tanh',
            Min: 'min',
            Max: 'max',
            Pow: 'pow',

            And: 'and',
            Or: 'or',
            Xor: 'xor',
            Not: 'not',
            ITE: 'ite',
            Implies: '=>',
        }
    }

    symbol_table: dict

    def __init__(self, settings: typing.Optional[dict] = None,
                 symbol_table=None):
        settings = settings or {}
        self.symbol_table = symbol_table or {}
        Printer.__init__(self, settings)
        self._precision = self._settings['precision']
        self._known_types = dict(self._settings['known_types'])
        self._known_constants = dict(self._settings['known_constants'])
        self._known_functions = dict(self._settings['known_functions'])

        for _ in self._known_types.values(): assert self._is_legal_name(_)
        for _ in self._known_constants.values(): assert self._is_legal_name(_)
        # for _ in self._known_functions.values(): assert self._is_legal_name(_)  # +, *, <, >, etc.

    def _is_legal_name(self, s: str):
        if not s: return False
        if s[0].isnumeric(): return False
        return all(_.isalnum() or _ == '_' for _ in s)

    def _s_expr(self, op: str, args: typing.Union[list, tuple]) -> str:
        args_str = ' '.join(
            a if isinstance(a, str)
            else self._print(a)
            for a in args
        )
        return f'({op} {args_str})'

    def _print_Function(self, e):
        if e in self._known_functions:
            op = self._known_functions[e]
        elif type(e) in self._known_functions:
            op = self._known_functions[type(e)]
        elif type(type(e)) == UndefinedFunction:
            op = e.name
        elif isinstance(e, AppliedBinaryRelation) and e.function in self._known_functions:
            op = self._known_functions[e.function]
            return self._s_expr(op, e.arguments)
        else:
            op = self._known_functions[e]  # throw KeyError

        return self._s_expr(op, e.args)

    def _print_Relational(self, e: Relational):
        return self._print_Function(e)

    def _print_BooleanFunction(self, e: BooleanFunction):
        return self._print_Function(e)

    def _print_Expr(self, e: Expr):
        return self._print_Function(e)

    def _print_Unequality(self, e: Unequality):
        if type(e) in self._known_functions:
            return self._print_Relational(e)  # default
        else:
            eq_op = self._known_functions[Equality]
            not_op = self._known_functions[Not]
            return self._s_expr(not_op, [self._s_expr(eq_op, e.args)])

    def _print_Piecewise(self, e: Piecewise):
        def _print_Piecewise_recursive(args: typing.Union[list, tuple]):
            e, c = args[0]
            if len(args) == 1:
                assert (c is True) or isinstance(c, BooleanTrue)
                return self._print(e)
            else:
                ite = self._known_functions[ITE]
                return self._s_expr(ite, [
                    c, e, _print_Piecewise_recursive(args[1:])
                ])

        return _print_Piecewise_recursive(e.args)

    def _print_Interval(self, e: Interval):
        if e.start.is_infinite and e.end.is_infinite:
            return ''
        elif e.start.is_infinite != e.end.is_infinite:
            raise ValueError(f'One-sided intervals (`{e}`) are not supported in SMT.')
        else:
            return f'[{e.start}, {e.end}]'

    def _print_AppliedPredicate(self, e: AppliedPredicate):
        if e.function == Q.positive:
            rel = Q.gt(e.arguments[0],0)
        elif e.function == Q.negative:
            rel = Q.lt(e.arguments[0], 0)
        elif e.function == Q.zero:
            rel = Q.eq(e.arguments[0], 0)
        elif e.function == Q.nonpositive:
            rel = Q.le(e.arguments[0], 0)
        elif e.function == Q.nonnegative:
            rel = Q.ge(e.arguments[0], 0)
        elif e.function == Q.nonzero:
            rel = Q.ne(e.arguments[0], 0)
        else:
            raise ValueError(f"Predicate (`{e}`) is not handled.")

        return self._print_AppliedBinaryRelation(rel)

    def _print_AppliedBinaryRelation(self, e: AppliedPredicate):
        if e.function == Q.ne:
            return self._print_Unequality(Unequality(*e.arguments))
        else:
            return self._print_Function(e)

    # todo: Sympy does not support quantifiers yet as of 2022, but quantifiers can be handy in SMT.
    # For now, users can extend this class and build in their own quantifier support.
    # See `test_quantifier_extensions()` in test_smtlib.py for an example of how this might look.

    # def _print_ForAll(self, e: ForAll):
    #     return self._s('forall', [
    #         self._s('', [
    #             self._s(sym.name, [self._type_name(sym), Interval(start, end)])
    #             for sym, start, end in e.limits
    #         ]),
    #         e.function
    #     ])

    def _print_BooleanTrue(self, x: BooleanTrue):
        return 'true'

    def _print_BooleanFalse(self, x: BooleanFalse):
        return 'false'

    def _print_Float(self, x: Float):
        dps = prec_to_dps(x._prec)
        str_real = mlib_to_str(x._mpf_, dps, strip_zeros=True, min_fixed=None, max_fixed=None)

        if 'e' in str_real:
            (mant, exp) = str_real.split('e')

            if exp[0] == '+':
                exp = exp[1:]

            mul = self._known_functions[Mul]
            pow = self._known_functions[Pow]

            return r"(%s %s (%s 10 %s))" % (mul, mant, pow, exp)
        elif str_real in ["+inf", "-inf"]:
            raise ValueError("Infinite values are not supported in SMT.")
        else:
            return str_real

    def _print_float(self, x: float):
        return self._print(Float(x))

    def _print_Rational(self, x: Rational):
        return self._s_expr('/', [x.p, x.q])

    def _print_Integer(self, x: Integer):
        assert x.q == 1
        return str(x.p)

    def _print_int(self, x: int):
        return str(x)

    def _print_Symbol(self, x: Symbol):
        assert self._is_legal_name(x.name)
        return x.name

    def _print_NumberSymbol(self, x):
        name = self._known_constants.get(x)
        if name:
            return name
        else:
            f = x.evalf(self._precision) if self._precision else x.evalf()
            return self._print_Float(f)

    def _print_UndefinedFunction(self, x):
        assert self._is_legal_name(x.name)
        return x.name

    def _print_Exp1(self, x):
        return (
            self._print_Function(exp(1, evaluate=False))
            if exp in self._known_functions else
            self._print_NumberSymbol(x)
        )

    def emptyPrinter(self, expr):
        raise NotImplementedError(f'Cannot convert `{repr(expr)}` of type `{type(expr)}` to SMT.')


def smtlib_code(
    expr,
    auto_assert=True, auto_declare=True,
    precision=None,
    symbol_table=None,
    known_types=None, known_constants=None, known_functions=None,
    prefix_expressions=None, suffix_expressions=None,
    log_warn=None
):
    r"""Converts ``expr`` to a string of smtlib code.

    Parameters
    ==========

    expr : Expr | List[Expr]
        A SymPy expression or system to be converted.
    auto_assert : bool, optional
        If false, do not modify expr and produce only the S-Expression equivalent of expr.
        If true, assume expr is a system and assert each boolean element.
    auto_declare : bool, optional
        If false, do not produce declarations for the symbols used in expr.
        If true, prepend all necessary declarations for variables used in expr based on symbol_table.
    precision : integer, optional
        The ``evalf(..)`` precision for numbers such as pi.
    symbol_table : dict, optional
        A dictionary where keys are ``Symbol`` or ``Function`` instances and values are their Python type i.e. ``bool``, ``int``, ``float``, or ``Callable[...]``.
        If incomplete, an attempt will be made to infer types from ``expr``.
    known_types: dict, optional
        A dictionary where keys are ``bool``, ``int``, ``float`` etc. and values are their corresponding SMT type names.
        If not given, a partial listing compatible with several solvers will be used.
    known_functions : dict, optional
        A dictionary where keys are ``Function``, ``Relational``, ``BooleanFunction``, or ``Expr`` instances and values are their SMT string representations.
        If not given, a partial listing optimized for dReal solver (but compatible with others) will be used.
    known_constants: dict, optional
        A dictionary where keys are ``NumberSymbol`` instances and values are their SMT variable names.
        When using this feature, extra caution must be taken to avoid naming collisions between user symbols and listed constants.
        If not given, constants will be expanded inline i.e. ``3.14159`` instead of ``MY_SMT_VARIABLE_FOR_PI``.
    prefix_expressions: list, optional
        A list of lists of ``str`` and/or expressions to convert into SMTLib and prefix to the output.
    suffix_expressions: list, optional
        A list of lists of ``str`` and/or expressions to convert into SMTLib and postfix to the output.
    log_warn: lambda function, optional
        A function to record all warnings during potentially risky operations.
        Soundness is a core value in SMT solving, so it is good to log all assumptions made.

    Examples
    ========
    >>> from sympy import smtlib_code, symbols, sin, Eq
    >>> x = symbols('x')
    >>> smtlib_code(sin(x).series(x).removeO(), log_warn=print)
    Could not infer type of `x`. Defaulting to float.
    Non-Boolean expression `x**5/120 - x**3/6 + x` will not be asserted. Converting to SMTLib verbatim.
    '(declare-const x Real)\n(+ x (* (/ -1 6) (pow x 3)) (* (/ 1 120) (pow x 5)))'

    >>> from sympy import Rational
    >>> x, y, tau = symbols("x, y, tau")
    >>> smtlib_code((2*tau)**Rational(7, 2), log_warn=print)
    Could not infer type of `tau`. Defaulting to float.
    Non-Boolean expression `8*sqrt(2)*tau**(7/2)` will not be asserted. Converting to SMTLib verbatim.
    '(declare-const tau Real)\n(* 8 (pow 2 (/ 1 2)) (pow tau (/ 7 2)))'

    ``Piecewise`` expressions are implemented with ``ite`` expressions by default.
    Note that if the ``Piecewise`` lacks a default term, represented by
    ``(expr, True)`` then an error will be thrown.  This is to prevent
    generating an expression that may not evaluate to anything.

    >>> from sympy import Piecewise
    >>> pw = Piecewise((x + 1, x > 0), (x, True))
    >>> smtlib_code(Eq(pw, 3), symbol_table={x: float}, log_warn=print)
    '(declare-const x Real)\n(assert (= (ite (> x 0) (+ 1 x) x) 3))'

    Custom printing can be defined for certain types by passing a dictionary of
    PythonType : "SMT Name" to the ``known_types``, ``known_constants``, and ``known_functions`` kwargs.

    >>> from typing import Callable
    >>> from sympy import Function, Add
    >>> f = Function('f')
    >>> g = Function('g')
    >>> smt_builtin_funcs = {  # functions our SMT solver will understand
    ...   f: "existing_smtlib_fcn",
    ...   Add: "sum",
    ... }
    >>> user_def_funcs = {  # functions defined by the user must have their types specified explicitly
    ...   g: Callable[[int], float],
    ... }
    >>> smtlib_code(f(x) + g(x), symbol_table=user_def_funcs, known_functions=smt_builtin_funcs, log_warn=print)
    Non-Boolean expression `f(x) + g(x)` will not be asserted. Converting to SMTLib verbatim.
    '(declare-const x Int)\n(declare-fun g (Int) Real)\n(sum (existing_smtlib_fcn x) (g x))'
    """
    log_warn = log_warn or (lambda _: None)

    if not isinstance(expr, list): expr = [expr]
    expr = [
        sympy.sympify(_, strict=True, evaluate=False, convert_xor=False)
        for _ in expr
    ]

    if not symbol_table: symbol_table = {}
    symbol_table = _auto_infer_smtlib_types(
        *expr, symbol_table=symbol_table
    )
    # See [FALLBACK RULES]
    # Need SMTLibPrinter to populate known_functions and known_constants first.

    settings = {}
    if precision: settings['precision'] = precision
    del precision

    if known_types: settings['known_types'] = known_types
    del known_types

    if known_functions: settings['known_functions'] = known_functions
    del known_functions

    if known_constants: settings['known_constants'] = known_constants
    del known_constants

    if not prefix_expressions: prefix_expressions = []
    if not suffix_expressions: suffix_expressions = []

    p = SMTLibPrinter(settings, symbol_table)
    del symbol_table

    # [FALLBACK RULES]
    for e in expr:
        for sym in e.atoms(Symbol, Function):
            if (
                sym.is_Symbol and
                sym not in p._known_constants and
                sym not in p.symbol_table
            ):
                log_warn(f"Could not infer type of `{sym}`. Defaulting to float.")
                p.symbol_table[sym] = float
            if (
                sym.is_Function and
                type(sym) not in p._known_functions and
                type(sym) not in p.symbol_table and
                not sym.is_Piecewise
            ): raise TypeError(
                f"Unknown type of undefined function `{sym}`. "
                f"Must be mapped to ``str`` in known_functions or mapped to ``Callable[..]`` in symbol_table."
            )

    declarations = []
    if auto_declare:
        constants = {sym.name: sym for e in expr for sym in e.free_symbols
                     if sym not in p._known_constants}
        functions = {fnc.name: fnc for e in expr for fnc in e.atoms(Function)
                     if type(fnc) not in p._known_functions and not fnc.is_Piecewise}
        declarations = \
            [
                _auto_declare_smtlib(sym, p, log_warn)
                for sym in constants.values()
            ] + [
                _auto_declare_smtlib(fnc, p, log_warn)
                for fnc in functions.values()
            ]
        declarations = [decl for decl in declarations if decl]

    if auto_assert:
        expr = [_auto_assert_smtlib(e, p, log_warn) for e in expr]

    # return SMTLibPrinter().doprint(expr)
    return '\n'.join([
        # ';; PREFIX EXPRESSIONS',
        *[
            e if isinstance(e, str) else p.doprint(e)
            for e in prefix_expressions
        ],

        # ';; DECLARATIONS',
        *sorted(e for e in declarations),

        # ';; EXPRESSIONS',
        *[
            e if isinstance(e, str) else p.doprint(e)
            for e in expr
        ],

        # ';; SUFFIX EXPRESSIONS',
        *[
            e if isinstance(e, str) else p.doprint(e)
            for e in suffix_expressions
        ],
    ])


def _auto_declare_smtlib(sym: typing.Union[Symbol, Function], p: SMTLibPrinter, log_warn: typing.Callable[[str], None]):
    if sym.is_Symbol:
        type_signature = p.symbol_table[sym]
        assert isinstance(type_signature, type)
        type_signature = p._known_types[type_signature]
        return p._s_expr('declare-const', [sym, type_signature])

    elif sym.is_Function:
        type_signature = p.symbol_table[type(sym)]
        assert callable(type_signature)
        type_signature = [p._known_types[_] for _ in type_signature.__args__]
        assert len(type_signature) > 0
        params_signature = f"({' '.join(type_signature[:-1])})"
        return_signature = type_signature[-1]
        return p._s_expr('declare-fun', [type(sym), params_signature, return_signature])

    else:
        log_warn(f"Non-Symbol/Function `{sym}` will not be declared.")
        return None


def _auto_assert_smtlib(e: Expr, p: SMTLibPrinter, log_warn: typing.Callable[[str], None]):
    if isinstance(e, Boolean) or (
        e in p.symbol_table and p.symbol_table[e] == bool
    ) or (
        e.is_Function and
        type(e) in p.symbol_table and
        p.symbol_table[type(e)].__args__[-1] == bool
    ):
        return p._s_expr('assert', [e])
    else:
        log_warn(f"Non-Boolean expression `{e}` will not be asserted. Converting to SMTLib verbatim.")
        return e


def _auto_infer_smtlib_types(
    *exprs: Basic,
    symbol_table: typing.Optional[dict] = None
) -> dict:
    # [TYPE INFERENCE RULES]
    # X is alone in an expr => X is bool
    # X in BooleanFunction.args => X is bool
    # X matches to a bool param of a symbol_table function => X is bool
    # X matches to an int param of a symbol_table function => X is int
    # X.is_integer => X is int
    # X == Y, where X is T => Y is T

    # [FALLBACK RULES]
    # see _auto_declare_smtlib(..)
    # X is not bool and X is not int and X is Symbol => X is float
    # else (e.g. X is Function) => error. must be specified explicitly.

    _symbols = dict(symbol_table) if symbol_table else {}

    def safe_update(syms: set, inf):
        for s in syms:
            assert s.is_Symbol
            if (old_type := _symbols.setdefault(s, inf)) != inf:
                raise TypeError(f"Could not infer type of `{s}`. Apparently both `{old_type}` and `{inf}`?")

    # EXPLICIT TYPES
    safe_update({
        e
        for e in exprs
        if e.is_Symbol
    }, bool)

    safe_update({
        symbol
        for e in exprs
        for boolfunc in e.atoms(BooleanFunction)
        for symbol in boolfunc.args
        if symbol.is_Symbol
    }, bool)

    safe_update({
        symbol
        for e in exprs
        for boolfunc in e.atoms(Function)
        if type(boolfunc) in _symbols
        for symbol, param in zip(boolfunc.args, _symbols[type(boolfunc)].__args__)
        if symbol.is_Symbol and param == bool
    }, bool)

    safe_update({
        symbol
        for e in exprs
        for intfunc in e.atoms(Function)
        if type(intfunc) in _symbols
        for symbol, param in zip(intfunc.args, _symbols[type(intfunc)].__args__)
        if symbol.is_Symbol and param == int
    }, int)

    safe_update({
        symbol
        for e in exprs
        for symbol in e.atoms(Symbol)
        if symbol.is_integer
    }, int)

    safe_update({
        symbol
        for e in exprs
        for symbol in e.atoms(Symbol)
        if symbol.is_real and not symbol.is_integer
    }, float)

    # EQUALITY RELATION RULE
    rels = [rel for expr in exprs for rel in expr.atoms(Equality)]
    rels = [
               (rel.lhs, rel.rhs) for rel in rels if rel.lhs.is_Symbol
           ] + [
               (rel.rhs, rel.lhs) for rel in rels if rel.rhs.is_Symbol
           ]
    for infer, reltd in rels:
        inference = (
            _symbols[infer] if infer in _symbols else
            _symbols[reltd] if reltd in _symbols else

            _symbols[type(reltd)].__args__[-1]
            if reltd.is_Function and type(reltd) in _symbols else

            bool if reltd.is_Boolean else
            int if reltd.is_integer or reltd.is_Integer else
            float if reltd.is_real else
            None
        )
        if inference: safe_update({infer}, inference)

    return _symbols