File size: 21,243 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
"""
Rust code printer

The `RustCodePrinter` converts SymPy expressions into Rust expressions.

A complete code generator, which uses `rust_code` extensively, can be found
in `sympy.utilities.codegen`. The `codegen` module can be used to generate
complete source code files.

"""

# Possible Improvement
#
# * make sure we follow Rust Style Guidelines_
# * make use of pattern matching
# * better support for reference
# * generate generic code and use trait to make sure they have specific methods
# * use crates_ to get more math support
#     - num_
#         + BigInt_, BigUint_
#         + Complex_
#         + Rational64_, Rational32_, BigRational_
#
# .. _crates: https://crates.io/
# .. _Guidelines: https://github.com/rust-lang/rust/tree/master/src/doc/style
# .. _num: http://rust-num.github.io/num/num/
# .. _BigInt: http://rust-num.github.io/num/num/bigint/struct.BigInt.html
# .. _BigUint: http://rust-num.github.io/num/num/bigint/struct.BigUint.html
# .. _Complex: http://rust-num.github.io/num/num/complex/struct.Complex.html
# .. _Rational32: http://rust-num.github.io/num/num/rational/type.Rational32.html
# .. _Rational64: http://rust-num.github.io/num/num/rational/type.Rational64.html
# .. _BigRational: http://rust-num.github.io/num/num/rational/type.BigRational.html

from __future__ import annotations
from typing import Any

from sympy.core import S, Rational, Float, Lambda
from sympy.core.numbers import equal_valued
from sympy.printing.codeprinter import CodePrinter

# Rust's methods for integer and float can be found at here :
#
# * `Rust - Primitive Type f64 <https://doc.rust-lang.org/std/primitive.f64.html>`_
# * `Rust - Primitive Type i64 <https://doc.rust-lang.org/std/primitive.i64.html>`_
#
# Function Style :
#
# 1. args[0].func(args[1:]), method with arguments
# 2. args[0].func(), method without arguments
# 3. args[1].func(), method without arguments (e.g. (e, x) => x.exp())
# 4. func(args), function with arguments

# dictionary mapping SymPy function to (argument_conditions, Rust_function).
# Used in RustCodePrinter._print_Function(self)

# f64 method in Rust
known_functions = {
    # "": "is_nan",
    # "": "is_infinite",
    # "": "is_finite",
    # "": "is_normal",
    # "": "classify",
    "floor": "floor",
    "ceiling": "ceil",
    # "": "round",
    # "": "trunc",
    # "": "fract",
    "Abs": "abs",
    "sign": "signum",
    # "": "is_sign_positive",
    # "": "is_sign_negative",
    # "": "mul_add",
    "Pow": [(lambda base, exp: equal_valued(exp, -1), "recip", 2),   # 1.0/x
            (lambda base, exp: equal_valued(exp, 0.5), "sqrt", 2),   # x ** 0.5
            (lambda base, exp: equal_valued(exp, -0.5), "sqrt().recip", 2),   # 1/(x ** 0.5)
            (lambda base, exp: exp == Rational(1, 3), "cbrt", 2),    # x ** (1/3)
            (lambda base, exp: equal_valued(base, 2), "exp2", 3),    # 2 ** x
            (lambda base, exp: exp.is_integer, "powi", 1),           # x ** y, for i32
            (lambda base, exp: not exp.is_integer, "powf", 1)],      # x ** y, for f64
    "exp": [(lambda exp: True, "exp", 2)],   # e ** x
    "log": "ln",
    # "": "log",          # number.log(base)
    # "": "log2",
    # "": "log10",
    # "": "to_degrees",
    # "": "to_radians",
    "Max": "max",
    "Min": "min",
    # "": "hypot",        # (x**2 + y**2) ** 0.5
    "sin": "sin",
    "cos": "cos",
    "tan": "tan",
    "asin": "asin",
    "acos": "acos",
    "atan": "atan",
    "atan2": "atan2",
    # "": "sin_cos",
    # "": "exp_m1",       # e ** x - 1
    # "": "ln_1p",        # ln(1 + x)
    "sinh": "sinh",
    "cosh": "cosh",
    "tanh": "tanh",
    "asinh": "asinh",
    "acosh": "acosh",
    "atanh": "atanh",
    "sqrt": "sqrt",  # To enable automatic rewrites
}

# i64 method in Rust
# known_functions_i64 = {
#     "": "min_value",
#     "": "max_value",
#     "": "from_str_radix",
#     "": "count_ones",
#     "": "count_zeros",
#     "": "leading_zeros",
#     "": "trainling_zeros",
#     "": "rotate_left",
#     "": "rotate_right",
#     "": "swap_bytes",
#     "": "from_be",
#     "": "from_le",
#     "": "to_be",    # to big endian
#     "": "to_le",    # to little endian
#     "": "checked_add",
#     "": "checked_sub",
#     "": "checked_mul",
#     "": "checked_div",
#     "": "checked_rem",
#     "": "checked_neg",
#     "": "checked_shl",
#     "": "checked_shr",
#     "": "checked_abs",
#     "": "saturating_add",
#     "": "saturating_sub",
#     "": "saturating_mul",
#     "": "wrapping_add",
#     "": "wrapping_sub",
#     "": "wrapping_mul",
#     "": "wrapping_div",
#     "": "wrapping_rem",
#     "": "wrapping_neg",
#     "": "wrapping_shl",
#     "": "wrapping_shr",
#     "": "wrapping_abs",
#     "": "overflowing_add",
#     "": "overflowing_sub",
#     "": "overflowing_mul",
#     "": "overflowing_div",
#     "": "overflowing_rem",
#     "": "overflowing_neg",
#     "": "overflowing_shl",
#     "": "overflowing_shr",
#     "": "overflowing_abs",
#     "Pow": "pow",
#     "Abs": "abs",
#     "sign": "signum",
#     "": "is_positive",
#     "": "is_negnative",
# }

# These are the core reserved words in the Rust language. Taken from:
# http://doc.rust-lang.org/grammar.html#keywords

reserved_words = ['abstract',
                  'alignof',
                  'as',
                  'become',
                  'box',
                  'break',
                  'const',
                  'continue',
                  'crate',
                  'do',
                  'else',
                  'enum',
                  'extern',
                  'false',
                  'final',
                  'fn',
                  'for',
                  'if',
                  'impl',
                  'in',
                  'let',
                  'loop',
                  'macro',
                  'match',
                  'mod',
                  'move',
                  'mut',
                  'offsetof',
                  'override',
                  'priv',
                  'proc',
                  'pub',
                  'pure',
                  'ref',
                  'return',
                  'Self',
                  'self',
                  'sizeof',
                  'static',
                  'struct',
                  'super',
                  'trait',
                  'true',
                  'type',
                  'typeof',
                  'unsafe',
                  'unsized',
                  'use',
                  'virtual',
                  'where',
                  'while',
                  'yield']


class RustCodePrinter(CodePrinter):
    """A printer to convert SymPy expressions to strings of Rust code"""
    printmethod = "_rust_code"
    language = "Rust"

    _default_settings: dict[str, Any] = dict(CodePrinter._default_settings, **{
        'precision': 17,
        'user_functions': {},
        'contract': True,
        'dereference': set(),
    })

    def __init__(self, settings={}):
        CodePrinter.__init__(self, settings)
        self.known_functions = dict(known_functions)
        userfuncs = settings.get('user_functions', {})
        self.known_functions.update(userfuncs)
        self._dereference = set(settings.get('dereference', []))
        self.reserved_words = set(reserved_words)

    def _rate_index_position(self, p):
        return p*5

    def _get_statement(self, codestring):
        return "%s;" % codestring

    def _get_comment(self, text):
        return "// %s" % text

    def _declare_number_const(self, name, value):
        return "const %s: f64 = %s;" % (name, value)

    def _format_code(self, lines):
        return self.indent_code(lines)

    def _traverse_matrix_indices(self, mat):
        rows, cols = mat.shape
        return ((i, j) for i in range(rows) for j in range(cols))

    def _get_loop_opening_ending(self, indices):
        open_lines = []
        close_lines = []
        loopstart = "for %(var)s in %(start)s..%(end)s {"
        for i in indices:
            # Rust arrays start at 0 and end at dimension-1
            open_lines.append(loopstart % {
                'var': self._print(i),
                'start': self._print(i.lower),
                'end': self._print(i.upper + 1)})
            close_lines.append("}")
        return open_lines, close_lines

    def _print_caller_var(self, expr):
        if len(expr.args) > 1:
            # for something like `sin(x + y + z)`,
            # make sure we can get '(x + y + z).sin()'
            # instead of 'x + y + z.sin()'
            return '(' + self._print(expr) + ')'
        elif expr.is_number:
            return self._print(expr, _type=True)
        else:
            return self._print(expr)

    def _print_Function(self, expr):
        """
        basic function for printing `Function`

        Function Style :

        1. args[0].func(args[1:]), method with arguments
        2. args[0].func(), method without arguments
        3. args[1].func(), method without arguments (e.g. (e, x) => x.exp())
        4. func(args), function with arguments
        """

        if expr.func.__name__ in self.known_functions:
            cond_func = self.known_functions[expr.func.__name__]
            func = None
            style = 1
            if isinstance(cond_func, str):
                func = cond_func
            else:
                for cond, func, style in cond_func:
                    if cond(*expr.args):
                        break
            if func is not None:
                if style == 1:
                    ret = "%(var)s.%(method)s(%(args)s)" % {
                        'var': self._print_caller_var(expr.args[0]),
                        'method': func,
                        'args': self.stringify(expr.args[1:], ", ") if len(expr.args) > 1 else ''
                    }
                elif style == 2:
                    ret = "%(var)s.%(method)s()" % {
                        'var': self._print_caller_var(expr.args[0]),
                        'method': func,
                    }
                elif style == 3:
                    ret = "%(var)s.%(method)s()" % {
                        'var': self._print_caller_var(expr.args[1]),
                        'method': func,
                    }
                else:
                    ret = "%(func)s(%(args)s)" % {
                        'func': func,
                        'args': self.stringify(expr.args, ", "),
                    }
                return ret
        elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda):
            # inlined function
            return self._print(expr._imp_(*expr.args))
        elif expr.func.__name__ in self._rewriteable_functions:
            # Simple rewrite to supported function possible
            target_f, required_fs = self._rewriteable_functions[expr.func.__name__]
            if self._can_print(target_f) and all(self._can_print(f) for f in required_fs):
                return self._print(expr.rewrite(target_f))
        else:
            return self._print_not_supported(expr)

    def _print_Pow(self, expr):
        if expr.base.is_integer and not expr.exp.is_integer:
            expr = type(expr)(Float(expr.base), expr.exp)
            return self._print(expr)
        return self._print_Function(expr)

    def _print_Float(self, expr, _type=False):
        ret = super()._print_Float(expr)
        if _type:
            return ret + '_f64'
        else:
            return ret

    def _print_Integer(self, expr, _type=False):
        ret = super()._print_Integer(expr)
        if _type:
            return ret + '_i32'
        else:
            return ret

    def _print_Rational(self, expr):
        p, q = int(expr.p), int(expr.q)
        return '%d_f64/%d.0' % (p, q)

    def _print_Relational(self, expr):
        lhs_code = self._print(expr.lhs)
        rhs_code = self._print(expr.rhs)
        op = expr.rel_op
        return "{} {} {}".format(lhs_code, op, rhs_code)

    def _print_Indexed(self, expr):
        # calculate index for 1d array
        dims = expr.shape
        elem = S.Zero
        offset = S.One
        for i in reversed(range(expr.rank)):
            elem += expr.indices[i]*offset
            offset *= dims[i]
        return "%s[%s]" % (self._print(expr.base.label), self._print(elem))

    def _print_Idx(self, expr):
        return expr.label.name

    def _print_Dummy(self, expr):
        return expr.name

    def _print_Exp1(self, expr, _type=False):
        return "E"

    def _print_Pi(self, expr, _type=False):
        return 'PI'

    def _print_Infinity(self, expr, _type=False):
        return 'INFINITY'

    def _print_NegativeInfinity(self, expr, _type=False):
        return 'NEG_INFINITY'

    def _print_BooleanTrue(self, expr, _type=False):
        return "true"

    def _print_BooleanFalse(self, expr, _type=False):
        return "false"

    def _print_bool(self, expr, _type=False):
        return str(expr).lower()

    def _print_NaN(self, expr, _type=False):
        return "NAN"

    def _print_Piecewise(self, expr):
        if expr.args[-1].cond != True:
            # We need the last conditional to be a True, otherwise the resulting
            # function may not return a result.
            raise ValueError("All Piecewise expressions must contain an "
                             "(expr, True) statement to be used as a default "
                             "condition. Without one, the generated "
                             "expression may not evaluate to anything under "
                             "some condition.")
        lines = []

        for i, (e, c) in enumerate(expr.args):
            if i == 0:
                lines.append("if (%s) {" % self._print(c))
            elif i == len(expr.args) - 1 and c == True:
                lines[-1] += " else {"
            else:
                lines[-1] += " else if (%s) {" % self._print(c)
            code0 = self._print(e)
            lines.append(code0)
            lines.append("}")

        if self._settings['inline']:
            return " ".join(lines)
        else:
            return "\n".join(lines)

    def _print_ITE(self, expr):
        from sympy.functions import Piecewise
        return self._print(expr.rewrite(Piecewise, deep=False))

    def _print_MatrixBase(self, A):
        if A.cols == 1:
            return "[%s]" % ", ".join(self._print(a) for a in A)
        else:
            raise ValueError("Full Matrix Support in Rust need Crates (https://crates.io/keywords/matrix).")

    def _print_SparseRepMatrix(self, mat):
        # do not allow sparse matrices to be made dense
        return self._print_not_supported(mat)

    def _print_MatrixElement(self, expr):
        return "%s[%s]" % (expr.parent,
                           expr.j + expr.i*expr.parent.shape[1])

    def _print_Symbol(self, expr):

        name = super()._print_Symbol(expr)

        if expr in self._dereference:
            return '(*%s)' % name
        else:
            return name

    def _print_Assignment(self, expr):
        from sympy.tensor.indexed import IndexedBase
        lhs = expr.lhs
        rhs = expr.rhs
        if self._settings["contract"] and (lhs.has(IndexedBase) or
                rhs.has(IndexedBase)):
            # Here we check if there is looping to be done, and if so
            # print the required loops.
            return self._doprint_loops(rhs, lhs)
        else:
            lhs_code = self._print(lhs)
            rhs_code = self._print(rhs)
            return self._get_statement("%s = %s" % (lhs_code, rhs_code))

    def indent_code(self, code):
        """Accepts a string of code or a list of code lines"""

        if isinstance(code, str):
            code_lines = self.indent_code(code.splitlines(True))
            return ''.join(code_lines)

        tab = "    "
        inc_token = ('{', '(', '{\n', '(\n')
        dec_token = ('}', ')')

        code = [ line.lstrip(' \t') for line in code ]

        increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
        decrease = [ int(any(map(line.startswith, dec_token)))
                     for line in code ]

        pretty = []
        level = 0
        for n, line in enumerate(code):
            if line in ('', '\n'):
                pretty.append(line)
                continue
            level -= decrease[n]
            pretty.append("%s%s" % (tab*level, line))
            level += increase[n]
        return pretty


def rust_code(expr, assign_to=None, **settings):
    """Converts an expr to a string of Rust code

    Parameters
    ==========

    expr : Expr
        A SymPy expression to be converted.
    assign_to : optional
        When given, the argument is used as the name of the variable to which
        the expression is assigned. Can be a string, ``Symbol``,
        ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
        line-wrapping, or for expressions that generate multi-line statements.
    precision : integer, optional
        The precision for numbers such as pi [default=15].
    user_functions : dict, optional
        A dictionary where the keys are string representations of either
        ``FunctionClass`` or ``UndefinedFunction`` instances and the values
        are their desired C string representations. Alternatively, the
        dictionary value can be a list of tuples i.e. [(argument_test,
        cfunction_string)].  See below for examples.
    dereference : iterable, optional
        An iterable of symbols that should be dereferenced in the printed code
        expression. These would be values passed by address to the function.
        For example, if ``dereference=[a]``, the resulting code would print
        ``(*a)`` instead of ``a``.
    human : bool, optional
        If True, the result is a single string that may contain some constant
        declarations for the number symbols. If False, the same information is
        returned in a tuple of (symbols_to_declare, not_supported_functions,
        code_text). [default=True].
    contract: bool, optional
        If True, ``Indexed`` instances are assumed to obey tensor contraction
        rules and the corresponding nested loops over indices are generated.
        Setting contract=False will not generate loops, instead the user is
        responsible to provide values for the indices in the code.
        [default=True].

    Examples
    ========

    >>> from sympy import rust_code, symbols, Rational, sin, ceiling, Abs, Function
    >>> x, tau = symbols("x, tau")
    >>> rust_code((2*tau)**Rational(7, 2))
    '8*1.4142135623731*tau.powf(7_f64/2.0)'
    >>> rust_code(sin(x), assign_to="s")
    's = x.sin();'

    Simple custom printing can be defined for certain types by passing a
    dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
    Alternatively, the dictionary value can be a list of tuples i.e.
    [(argument_test, cfunction_string)].

    >>> custom_functions = {
    ...   "ceiling": "CEIL",
    ...   "Abs": [(lambda x: not x.is_integer, "fabs", 4),
    ...           (lambda x: x.is_integer, "ABS", 4)],
    ...   "func": "f"
    ... }
    >>> func = Function('func')
    >>> rust_code(func(Abs(x) + ceiling(x)), user_functions=custom_functions)
    '(fabs(x) + x.CEIL()).f()'

    ``Piecewise`` expressions are converted into conditionals. If an
    ``assign_to`` variable is provided an if statement is created, otherwise
    the ternary operator is used. Note that if the ``Piecewise`` lacks a
    default term, represented by ``(expr, True)`` then an error will be thrown.
    This is to prevent generating an expression that may not evaluate to
    anything.

    >>> from sympy import Piecewise
    >>> expr = Piecewise((x + 1, x > 0), (x, True))
    >>> print(rust_code(expr, tau))
    tau = if (x > 0) {
        x + 1
    } else {
        x
    };

    Support for loops is provided through ``Indexed`` types. With
    ``contract=True`` these expressions will be turned into loops, whereas
    ``contract=False`` will just print the assignment expression that should be
    looped over:

    >>> from sympy import Eq, IndexedBase, Idx
    >>> len_y = 5
    >>> y = IndexedBase('y', shape=(len_y,))
    >>> t = IndexedBase('t', shape=(len_y,))
    >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
    >>> i = Idx('i', len_y-1)
    >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
    >>> rust_code(e.rhs, assign_to=e.lhs, contract=False)
    'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'

    Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
    must be provided to ``assign_to``. Note that any expression that can be
    generated normally can also exist inside a Matrix:

    >>> from sympy import Matrix, MatrixSymbol
    >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
    >>> A = MatrixSymbol('A', 3, 1)
    >>> print(rust_code(mat, A))
    A = [x.powi(2), if (x > 0) {
        x + 1
    } else {
        x
    }, x.sin()];
    """

    return RustCodePrinter(settings).doprint(expr, assign_to)


def print_rust_code(expr, **settings):
    """Prints Rust representation of the given expression."""
    print(rust_code(expr, **settings))