File size: 11,520 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""
A Printer for generating executable code.

The most important function here is srepr that returns a string so that the
relation eval(srepr(expr))=expr holds in an appropriate environment.
"""

from __future__ import annotations
from typing import Any

from sympy.core.function import AppliedUndef
from sympy.core.mul import Mul
from mpmath.libmp import repr_dps, to_str as mlib_to_str

from .printer import Printer, print_function


class ReprPrinter(Printer):
    printmethod = "_sympyrepr"

    _default_settings: dict[str, Any] = {
        "order": None,
        "perm_cyclic" : True,
    }

    def reprify(self, args, sep):
        """
        Prints each item in `args` and joins them with `sep`.
        """
        return sep.join([self.doprint(item) for item in args])

    def emptyPrinter(self, expr):
        """
        The fallback printer.
        """
        if isinstance(expr, str):
            return expr
        elif hasattr(expr, "__srepr__"):
            return expr.__srepr__()
        elif hasattr(expr, "args") and hasattr(expr.args, "__iter__"):
            l = []
            for o in expr.args:
                l.append(self._print(o))
            return expr.__class__.__name__ + '(%s)' % ', '.join(l)
        elif hasattr(expr, "__module__") and hasattr(expr, "__name__"):
            return "<'%s.%s'>" % (expr.__module__, expr.__name__)
        else:
            return str(expr)

    def _print_Add(self, expr, order=None):
        args = self._as_ordered_terms(expr, order=order)
        args = map(self._print, args)
        clsname = type(expr).__name__
        return clsname + "(%s)" % ", ".join(args)

    def _print_Cycle(self, expr):
        return expr.__repr__()

    def _print_Permutation(self, expr):
        from sympy.combinatorics.permutations import Permutation, Cycle
        from sympy.utilities.exceptions import sympy_deprecation_warning

        perm_cyclic = Permutation.print_cyclic
        if perm_cyclic is not None:
            sympy_deprecation_warning(
                f"""
                Setting Permutation.print_cyclic is deprecated. Instead use
                init_printing(perm_cyclic={perm_cyclic}).
                """,
                deprecated_since_version="1.6",
                active_deprecations_target="deprecated-permutation-print_cyclic",
                stacklevel=7,
            )
        else:
            perm_cyclic = self._settings.get("perm_cyclic", True)

        if perm_cyclic:
            if not expr.size:
                return 'Permutation()'
            # before taking Cycle notation, see if the last element is
            # a singleton and move it to the head of the string
            s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):]
            last = s.rfind('(')
            if not last == 0 and ',' not in s[last:]:
                s = s[last:] + s[:last]
            return 'Permutation%s' %s
        else:
            s = expr.support()
            if not s:
                if expr.size < 5:
                    return 'Permutation(%s)' % str(expr.array_form)
                return 'Permutation([], size=%s)' % expr.size
            trim = str(expr.array_form[:s[-1] + 1]) + ', size=%s' % expr.size
            use = full = str(expr.array_form)
            if len(trim) < len(full):
                use = trim
            return 'Permutation(%s)' % use

    def _print_Function(self, expr):
        r = self._print(expr.func)
        r += '(%s)' % ', '.join([self._print(a) for a in expr.args])
        return r

    def _print_Heaviside(self, expr):
        # Same as _print_Function but uses pargs to suppress default value for
        # 2nd arg.
        r = self._print(expr.func)
        r += '(%s)' % ', '.join([self._print(a) for a in expr.pargs])
        return r

    def _print_FunctionClass(self, expr):
        if issubclass(expr, AppliedUndef):
            return 'Function(%r)' % (expr.__name__)
        else:
            return expr.__name__

    def _print_Half(self, expr):
        return 'Rational(1, 2)'

    def _print_RationalConstant(self, expr):
        return str(expr)

    def _print_AtomicExpr(self, expr):
        return str(expr)

    def _print_NumberSymbol(self, expr):
        return str(expr)

    def _print_Integer(self, expr):
        return 'Integer(%i)' % expr.p

    def _print_Complexes(self, expr):
        return 'Complexes'

    def _print_Integers(self, expr):
        return 'Integers'

    def _print_Naturals(self, expr):
        return 'Naturals'

    def _print_Naturals0(self, expr):
        return 'Naturals0'

    def _print_Rationals(self, expr):
        return 'Rationals'

    def _print_Reals(self, expr):
        return 'Reals'

    def _print_EmptySet(self, expr):
        return 'EmptySet'

    def _print_UniversalSet(self, expr):
        return 'UniversalSet'

    def _print_EmptySequence(self, expr):
        return 'EmptySequence'

    def _print_list(self, expr):
        return "[%s]" % self.reprify(expr, ", ")

    def _print_dict(self, expr):
        sep = ", "
        dict_kvs = ["%s: %s" % (self.doprint(key), self.doprint(value)) for key, value in expr.items()]
        return "{%s}" % sep.join(dict_kvs)

    def _print_set(self, expr):
        if not expr:
            return "set()"
        return "{%s}" % self.reprify(expr, ", ")

    def _print_MatrixBase(self, expr):
        # special case for some empty matrices
        if (expr.rows == 0) ^ (expr.cols == 0):
            return '%s(%s, %s, %s)' % (expr.__class__.__name__,
                                       self._print(expr.rows),
                                       self._print(expr.cols),
                                       self._print([]))
        l = []
        for i in range(expr.rows):
            l.append([])
            for j in range(expr.cols):
                l[-1].append(expr[i, j])
        return '%s(%s)' % (expr.__class__.__name__, self._print(l))

    def _print_BooleanTrue(self, expr):
        return "true"

    def _print_BooleanFalse(self, expr):
        return "false"

    def _print_NaN(self, expr):
        return "nan"

    def _print_Mul(self, expr, order=None):
        if self.order not in ('old', 'none'):
            args = expr.as_ordered_factors()
        else:
            # use make_args in case expr was something like -x -> x
            args = Mul.make_args(expr)

        args = map(self._print, args)
        clsname = type(expr).__name__
        return clsname + "(%s)" % ", ".join(args)

    def _print_Rational(self, expr):
        return 'Rational(%s, %s)' % (self._print(expr.p), self._print(expr.q))

    def _print_PythonRational(self, expr):
        return "%s(%d, %d)" % (expr.__class__.__name__, expr.p, expr.q)

    def _print_Fraction(self, expr):
        return 'Fraction(%s, %s)' % (self._print(expr.numerator), self._print(expr.denominator))

    def _print_Float(self, expr):
        r = mlib_to_str(expr._mpf_, repr_dps(expr._prec))
        return "%s('%s', precision=%i)" % (expr.__class__.__name__, r, expr._prec)

    def _print_Sum2(self, expr):
        return "Sum2(%s, (%s, %s, %s))" % (self._print(expr.f), self._print(expr.i),
                                           self._print(expr.a), self._print(expr.b))

    def _print_Str(self, s):
        return "%s(%s)" % (s.__class__.__name__, self._print(s.name))

    def _print_Symbol(self, expr):
        d = expr._assumptions_orig
        # print the dummy_index like it was an assumption
        if expr.is_Dummy:
            d['dummy_index'] = expr.dummy_index

        if d == {}:
            return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name))
        else:
            attr = ['%s=%s' % (k, v) for k, v in d.items()]
            return "%s(%s, %s)" % (expr.__class__.__name__,
                                   self._print(expr.name), ', '.join(attr))

    def _print_CoordinateSymbol(self, expr):
        d = expr._assumptions.generator

        if d == {}:
            return "%s(%s, %s)" % (
                expr.__class__.__name__,
                self._print(expr.coord_sys),
                self._print(expr.index)
            )
        else:
            attr = ['%s=%s' % (k, v) for k, v in d.items()]
            return "%s(%s, %s, %s)" % (
                expr.__class__.__name__,
                self._print(expr.coord_sys),
                self._print(expr.index),
                ', '.join(attr)
            )

    def _print_Predicate(self, expr):
        return "Q.%s" % expr.name

    def _print_AppliedPredicate(self, expr):
        # will be changed to just expr.args when args overriding is removed
        args = expr._args
        return "%s(%s)" % (expr.__class__.__name__, self.reprify(args, ", "))

    def _print_str(self, expr):
        return repr(expr)

    def _print_tuple(self, expr):
        if len(expr) == 1:
            return "(%s,)" % self._print(expr[0])
        else:
            return "(%s)" % self.reprify(expr, ", ")

    def _print_WildFunction(self, expr):
        return "%s('%s')" % (expr.__class__.__name__, expr.name)

    def _print_AlgebraicNumber(self, expr):
        return "%s(%s, %s)" % (expr.__class__.__name__,
            self._print(expr.root), self._print(expr.coeffs()))

    def _print_PolyRing(self, ring):
        return "%s(%s, %s, %s)" % (ring.__class__.__name__,
            self._print(ring.symbols), self._print(ring.domain), self._print(ring.order))

    def _print_FracField(self, field):
        return "%s(%s, %s, %s)" % (field.__class__.__name__,
            self._print(field.symbols), self._print(field.domain), self._print(field.order))

    def _print_PolyElement(self, poly):
        terms = list(poly.terms())
        terms.sort(key=poly.ring.order, reverse=True)
        return "%s(%s, %s)" % (poly.__class__.__name__, self._print(poly.ring), self._print(terms))

    def _print_FracElement(self, frac):
        numer_terms = list(frac.numer.terms())
        numer_terms.sort(key=frac.field.order, reverse=True)
        denom_terms = list(frac.denom.terms())
        denom_terms.sort(key=frac.field.order, reverse=True)
        numer = self._print(numer_terms)
        denom = self._print(denom_terms)
        return "%s(%s, %s, %s)" % (frac.__class__.__name__, self._print(frac.field), numer, denom)

    def _print_FractionField(self, domain):
        cls = domain.__class__.__name__
        field = self._print(domain.field)
        return "%s(%s)" % (cls, field)

    def _print_PolynomialRingBase(self, ring):
        cls = ring.__class__.__name__
        dom = self._print(ring.domain)
        gens = ', '.join(map(self._print, ring.gens))
        order = str(ring.order)
        if order != ring.default_order:
            orderstr = ", order=" + order
        else:
            orderstr = ""
        return "%s(%s, %s%s)" % (cls, dom, gens, orderstr)

    def _print_DMP(self, p):
        cls = p.__class__.__name__
        rep = self._print(p.to_list())
        dom = self._print(p.dom)
        return "%s(%s, %s)" % (cls, rep, dom)

    def _print_MonogenicFiniteExtension(self, ext):
        # The expanded tree shown by srepr(ext.modulus)
        # is not practical.
        return "FiniteExtension(%s)" % str(ext.modulus)

    def _print_ExtensionElement(self, f):
        rep = self._print(f.rep)
        ext = self._print(f.ext)
        return "ExtElem(%s, %s)" % (rep, ext)

@print_function(ReprPrinter)
def srepr(expr, **settings):
    """return expr in repr form"""
    return ReprPrinter(settings).doprint(expr)