File size: 10,643 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
"""
Maple code printer

The MapleCodePrinter converts single SymPy expressions into single
Maple expressions, using the functions defined in the Maple objects where possible.


FIXME: This module is still under actively developed. Some functions may be not completed.
"""

from sympy.core import S
from sympy.core.numbers import Integer, IntegerConstant, equal_valued
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence, PRECEDENCE

import sympy

_known_func_same_name = (
    'sin', 'cos', 'tan', 'sec', 'csc', 'cot', 'sinh', 'cosh', 'tanh', 'sech',
    'csch', 'coth', 'exp', 'floor', 'factorial', 'bernoulli',  'euler',
    'fibonacci', 'gcd', 'lcm', 'conjugate', 'Ci', 'Chi', 'Ei', 'Li', 'Si', 'Shi',
    'erf', 'erfc', 'harmonic', 'LambertW',
    'sqrt', # For automatic rewrites
)

known_functions = {
    # SymPy -> Maple
    'Abs': 'abs',
    'log': 'ln',
    'asin': 'arcsin',
    'acos': 'arccos',
    'atan': 'arctan',
    'asec': 'arcsec',
    'acsc': 'arccsc',
    'acot': 'arccot',
    'asinh': 'arcsinh',
    'acosh': 'arccosh',
    'atanh': 'arctanh',
    'asech': 'arcsech',
    'acsch': 'arccsch',
    'acoth': 'arccoth',
    'ceiling': 'ceil',
    'Max' : 'max',
    'Min' : 'min',

    'factorial2': 'doublefactorial',
    'RisingFactorial': 'pochhammer',
    'besseli': 'BesselI',
    'besselj': 'BesselJ',
    'besselk': 'BesselK',
    'bessely': 'BesselY',
    'hankelh1': 'HankelH1',
    'hankelh2': 'HankelH2',
    'airyai': 'AiryAi',
    'airybi': 'AiryBi',
    'appellf1': 'AppellF1',
    'fresnelc': 'FresnelC',
    'fresnels': 'FresnelS',
    'lerchphi' : 'LerchPhi',
}

for _func in _known_func_same_name:
    known_functions[_func] = _func

number_symbols = {
    # SymPy -> Maple
    S.Pi: 'Pi',
    S.Exp1: 'exp(1)',
    S.Catalan: 'Catalan',
    S.EulerGamma: 'gamma',
    S.GoldenRatio: '(1/2 + (1/2)*sqrt(5))'
}

spec_relational_ops = {
    # SymPy -> Maple
    '==': '=',
    '!=': '<>'
}

not_supported_symbol = [
    S.ComplexInfinity
]

class MapleCodePrinter(CodePrinter):
    """
    Printer which converts a SymPy expression into a maple code.
    """
    printmethod = "_maple"
    language = "maple"

    _operators = {
        'and': 'and',
        'or': 'or',
        'not': 'not ',
    }

    _default_settings = dict(CodePrinter._default_settings, **{
        'inline': True,
        'allow_unknown_functions': True,
    })

    def __init__(self, settings=None):
        if settings is None:
            settings = {}
        super().__init__(settings)
        self.known_functions = dict(known_functions)
        userfuncs = settings.get('user_functions', {})
        self.known_functions.update(userfuncs)

    def _get_statement(self, codestring):
        return "%s;" % codestring

    def _get_comment(self, text):
        return "# {}".format(text)

    def _declare_number_const(self, name, value):
        return "{} := {};".format(name,
                                    value.evalf(self._settings['precision']))

    def _format_code(self, lines):
        return lines

    def _print_tuple(self, expr):
        return self._print(list(expr))

    def _print_Tuple(self, expr):
        return self._print(list(expr))

    def _print_Assignment(self, expr):
        lhs = self._print(expr.lhs)
        rhs = self._print(expr.rhs)
        return "{lhs} := {rhs}".format(lhs=lhs, rhs=rhs)

    def _print_Pow(self, expr, **kwargs):
        PREC = precedence(expr)
        if equal_valued(expr.exp, -1):
            return '1/%s' % (self.parenthesize(expr.base, PREC))
        elif equal_valued(expr.exp, 0.5):
            return 'sqrt(%s)' % self._print(expr.base)
        elif equal_valued(expr.exp, -0.5):
            return '1/sqrt(%s)' % self._print(expr.base)
        else:
            return '{base}^{exp}'.format(
                base=self.parenthesize(expr.base, PREC),
                exp=self.parenthesize(expr.exp, PREC))

    def _print_Piecewise(self, expr):
        if (expr.args[-1].cond is not True) and (expr.args[-1].cond != S.BooleanTrue):
            # We need the last conditional to be a True, otherwise the resulting
            # function may not return a result.
            raise ValueError("All Piecewise expressions must contain an "
                             "(expr, True) statement to be used as a default "
                             "condition. Without one, the generated "
                             "expression may not evaluate to anything under "
                             "some condition.")
        _coup_list = [
            ("{c}, {e}".format(c=self._print(c),
                               e=self._print(e)) if c is not True and c is not S.BooleanTrue else "{e}".format(
                e=self._print(e)))
            for e, c in expr.args]
        _inbrace = ', '.join(_coup_list)
        return 'piecewise({_inbrace})'.format(_inbrace=_inbrace)

    def _print_Rational(self, expr):
        p, q = int(expr.p), int(expr.q)
        return "{p}/{q}".format(p=str(p), q=str(q))

    def _print_Relational(self, expr):
        PREC=precedence(expr)
        lhs_code = self.parenthesize(expr.lhs, PREC)
        rhs_code = self.parenthesize(expr.rhs, PREC)
        op = expr.rel_op
        if op in spec_relational_ops:
            op = spec_relational_ops[op]
        return "{lhs} {rel_op} {rhs}".format(lhs=lhs_code, rel_op=op, rhs=rhs_code)

    def _print_NumberSymbol(self, expr):
        return number_symbols[expr]

    def _print_NegativeInfinity(self, expr):
        return '-infinity'

    def _print_Infinity(self, expr):
        return 'infinity'

    def _print_Idx(self, expr):
        return self._print(expr.label)

    def _print_BooleanTrue(self, expr):
        return "true"

    def _print_BooleanFalse(self, expr):
        return "false"

    def _print_bool(self, expr):
        return 'true' if expr else 'false'

    def _print_NaN(self, expr):
        return 'undefined'

    def _get_matrix(self, expr, sparse=False):
        if S.Zero in expr.shape:
            _strM = 'Matrix([], storage = {storage})'.format(
                storage='sparse' if sparse else 'rectangular')
        else:
            _strM = 'Matrix({list}, storage = {storage})'.format(
                list=self._print(expr.tolist()),
                storage='sparse' if sparse else 'rectangular')
        return _strM

    def _print_MatrixElement(self, expr):
        return "{parent}[{i_maple}, {j_maple}]".format(
            parent=self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True),
            i_maple=self._print(expr.i + 1),
            j_maple=self._print(expr.j + 1))

    def _print_MatrixBase(self, expr):
        return self._get_matrix(expr, sparse=False)

    def _print_SparseRepMatrix(self, expr):
        return self._get_matrix(expr, sparse=True)

    def _print_Identity(self, expr):
        if isinstance(expr.rows, (Integer, IntegerConstant)):
            return self._print(sympy.SparseMatrix(expr))
        else:
            return "Matrix({var_size}, shape = identity)".format(var_size=self._print(expr.rows))

    def _print_MatMul(self, expr):
        PREC=precedence(expr)
        _fact_list = list(expr.args)
        _const = None
        if not isinstance(_fact_list[0], (sympy.MatrixBase, sympy.MatrixExpr,
                                          sympy.MatrixSlice, sympy.MatrixSymbol)):
            _const, _fact_list = _fact_list[0], _fact_list[1:]

        if _const is None or _const == 1:
            return '.'.join(self.parenthesize(_m, PREC) for _m in _fact_list)
        else:
            return '{c}*{m}'.format(c=_const, m='.'.join(self.parenthesize(_m, PREC) for _m in _fact_list))

    def _print_MatPow(self, expr):
        # This function requires LinearAlgebra Function in Maple
        return 'MatrixPower({A}, {n})'.format(A=self._print(expr.base), n=self._print(expr.exp))

    def _print_HadamardProduct(self, expr):
        PREC = precedence(expr)
        _fact_list = list(expr.args)
        return '*'.join(self.parenthesize(_m, PREC) for _m in _fact_list)

    def _print_Derivative(self, expr):
        _f, (_var, _order) = expr.args

        if _order != 1:
            _second_arg = '{var}${order}'.format(var=self._print(_var),
                                                 order=self._print(_order))
        else:
            _second_arg = '{var}'.format(var=self._print(_var))
        return 'diff({func_expr}, {sec_arg})'.format(func_expr=self._print(_f), sec_arg=_second_arg)


def maple_code(expr, assign_to=None, **settings):
    r"""Converts ``expr`` to a string of Maple code.

    Parameters
    ==========

    expr : Expr
        A SymPy expression to be converted.
    assign_to : optional
        When given, the argument is used as the name of the variable to which
        the expression is assigned.  Can be a string, ``Symbol``,
        ``MatrixSymbol``, or ``Indexed`` type.  This can be helpful for
        expressions that generate multi-line statements.
    precision : integer, optional
        The precision for numbers such as pi  [default=16].
    user_functions : dict, optional
        A dictionary where keys are ``FunctionClass`` instances and values are
        their string representations.  Alternatively, the dictionary value can
        be a list of tuples i.e. [(argument_test, cfunction_string)].  See
        below for examples.
    human : bool, optional
        If True, the result is a single string that may contain some constant
        declarations for the number symbols.  If False, the same information is
        returned in a tuple of (symbols_to_declare, not_supported_functions,
        code_text).  [default=True].
    contract: bool, optional
        If True, ``Indexed`` instances are assumed to obey tensor contraction
        rules and the corresponding nested loops over indices are generated.
        Setting contract=False will not generate loops, instead the user is
        responsible to provide values for the indices in the code.
        [default=True].
    inline: bool, optional
        If True, we try to create single-statement code instead of multiple
        statements.  [default=True].

    """
    return MapleCodePrinter(settings).doprint(expr, assign_to)


def print_maple_code(expr, **settings):
    """Prints the Maple representation of the given expression.

    See :func:`maple_code` for the meaning of the optional arguments.

    Examples
    ========

    >>> from sympy import print_maple_code, symbols
    >>> x, y = symbols('x y')
    >>> print_maple_code(x, assign_to=y)
    y := x
    """
    print(maple_code(expr, **settings))