Spaces:
Sleeping
Sleeping
File size: 20,386 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
from __future__ import annotations
from sympy.core import Basic, S
from sympy.core.function import Lambda
from sympy.core.numbers import equal_valued
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence
from functools import reduce
known_functions = {
'Abs': 'abs',
'sin': 'sin',
'cos': 'cos',
'tan': 'tan',
'acos': 'acos',
'asin': 'asin',
'atan': 'atan',
'atan2': 'atan',
'ceiling': 'ceil',
'floor': 'floor',
'sign': 'sign',
'exp': 'exp',
'log': 'log',
'add': 'add',
'sub': 'sub',
'mul': 'mul',
'pow': 'pow'
}
class GLSLPrinter(CodePrinter):
"""
Rudimentary, generic GLSL printing tools.
Additional settings:
'use_operators': Boolean (should the printer use operators for +,-,*, or functions?)
"""
_not_supported: set[Basic] = set()
printmethod = "_glsl"
language = "GLSL"
_default_settings = dict(CodePrinter._default_settings, **{
'use_operators': True,
'zero': 0,
'mat_nested': False,
'mat_separator': ',\n',
'mat_transpose': False,
'array_type': 'float',
'glsl_types': True,
'precision': 9,
'user_functions': {},
'contract': True,
})
def __init__(self, settings={}):
CodePrinter.__init__(self, settings)
self.known_functions = dict(known_functions)
userfuncs = settings.get('user_functions', {})
self.known_functions.update(userfuncs)
def _rate_index_position(self, p):
return p*5
def _get_statement(self, codestring):
return "%s;" % codestring
def _get_comment(self, text):
return "// {}".format(text)
def _declare_number_const(self, name, value):
return "float {} = {};".format(name, value)
def _format_code(self, lines):
return self.indent_code(lines)
def indent_code(self, code):
"""Accepts a string of code or a list of code lines"""
if isinstance(code, str):
code_lines = self.indent_code(code.splitlines(True))
return ''.join(code_lines)
tab = " "
inc_token = ('{', '(', '{\n', '(\n')
dec_token = ('}', ')')
code = [line.lstrip(' \t') for line in code]
increase = [int(any(map(line.endswith, inc_token))) for line in code]
decrease = [int(any(map(line.startswith, dec_token))) for line in code]
pretty = []
level = 0
for n, line in enumerate(code):
if line in ('', '\n'):
pretty.append(line)
continue
level -= decrease[n]
pretty.append("%s%s" % (tab*level, line))
level += increase[n]
return pretty
def _print_MatrixBase(self, mat):
mat_separator = self._settings['mat_separator']
mat_transpose = self._settings['mat_transpose']
column_vector = (mat.rows == 1) if mat_transpose else (mat.cols == 1)
A = mat.transpose() if mat_transpose != column_vector else mat
glsl_types = self._settings['glsl_types']
array_type = self._settings['array_type']
array_size = A.cols*A.rows
array_constructor = "{}[{}]".format(array_type, array_size)
if A.cols == 1:
return self._print(A[0]);
if A.rows <= 4 and A.cols <= 4 and glsl_types:
if A.rows == 1:
return "vec{}{}".format(
A.cols, A.table(self,rowstart='(',rowend=')')
)
elif A.rows == A.cols:
return "mat{}({})".format(
A.rows, A.table(self,rowsep=', ',
rowstart='',rowend='')
)
else:
return "mat{}x{}({})".format(
A.cols, A.rows,
A.table(self,rowsep=', ',
rowstart='',rowend='')
)
elif S.One in A.shape:
return "{}({})".format(
array_constructor,
A.table(self,rowsep=mat_separator,rowstart='',rowend='')
)
elif not self._settings['mat_nested']:
return "{}(\n{}\n) /* a {}x{} matrix */".format(
array_constructor,
A.table(self,rowsep=mat_separator,rowstart='',rowend=''),
A.rows, A.cols
)
elif self._settings['mat_nested']:
return "{}[{}][{}](\n{}\n)".format(
array_type, A.rows, A.cols,
A.table(self,rowsep=mat_separator,rowstart='float[](',rowend=')')
)
def _print_SparseRepMatrix(self, mat):
# do not allow sparse matrices to be made dense
return self._print_not_supported(mat)
def _traverse_matrix_indices(self, mat):
mat_transpose = self._settings['mat_transpose']
if mat_transpose:
rows,cols = mat.shape
else:
cols,rows = mat.shape
return ((i, j) for i in range(cols) for j in range(rows))
def _print_MatrixElement(self, expr):
# print('begin _print_MatrixElement')
nest = self._settings['mat_nested'];
glsl_types = self._settings['glsl_types'];
mat_transpose = self._settings['mat_transpose'];
if mat_transpose:
cols,rows = expr.parent.shape
i,j = expr.j,expr.i
else:
rows,cols = expr.parent.shape
i,j = expr.i,expr.j
pnt = self._print(expr.parent)
if glsl_types and ((rows <= 4 and cols <=4) or nest):
return "{}[{}][{}]".format(pnt, i, j)
else:
return "{}[{}]".format(pnt, i + j*rows)
def _print_list(self, expr):
l = ', '.join(self._print(item) for item in expr)
glsl_types = self._settings['glsl_types']
array_type = self._settings['array_type']
array_size = len(expr)
array_constructor = '{}[{}]'.format(array_type, array_size)
if array_size <= 4 and glsl_types:
return 'vec{}({})'.format(array_size, l)
else:
return '{}({})'.format(array_constructor, l)
_print_tuple = _print_list
_print_Tuple = _print_list
def _get_loop_opening_ending(self, indices):
open_lines = []
close_lines = []
loopstart = "for (int %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){"
for i in indices:
# GLSL arrays start at 0 and end at dimension-1
open_lines.append(loopstart % {
'varble': self._print(i.label),
'start': self._print(i.lower),
'end': self._print(i.upper + 1)})
close_lines.append("}")
return open_lines, close_lines
def _print_Function_with_args(self, func, func_args):
if func in self.known_functions:
cond_func = self.known_functions[func]
func = None
if isinstance(cond_func, str):
func = cond_func
else:
for cond, func in cond_func:
if cond(func_args):
break
if func is not None:
try:
return func(*[self.parenthesize(item, 0) for item in func_args])
except TypeError:
return '{}({})'.format(func, self.stringify(func_args, ", "))
elif isinstance(func, Lambda):
# inlined function
return self._print(func(*func_args))
else:
return self._print_not_supported(func)
def _print_Piecewise(self, expr):
from sympy.codegen.ast import Assignment
if expr.args[-1].cond != True:
# We need the last conditional to be a True, otherwise the resulting
# function may not return a result.
raise ValueError("All Piecewise expressions must contain an "
"(expr, True) statement to be used as a default "
"condition. Without one, the generated "
"expression may not evaluate to anything under "
"some condition.")
lines = []
if expr.has(Assignment):
for i, (e, c) in enumerate(expr.args):
if i == 0:
lines.append("if (%s) {" % self._print(c))
elif i == len(expr.args) - 1 and c == True:
lines.append("else {")
else:
lines.append("else if (%s) {" % self._print(c))
code0 = self._print(e)
lines.append(code0)
lines.append("}")
return "\n".join(lines)
else:
# The piecewise was used in an expression, need to do inline
# operators. This has the downside that inline operators will
# not work for statements that span multiple lines (Matrix or
# Indexed expressions).
ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c),
self._print(e))
for e, c in expr.args[:-1]]
last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])
def _print_Idx(self, expr):
return self._print(expr.label)
def _print_Indexed(self, expr):
# calculate index for 1d array
dims = expr.shape
elem = S.Zero
offset = S.One
for i in reversed(range(expr.rank)):
elem += expr.indices[i]*offset
offset *= dims[i]
return "{}[{}]".format(
self._print(expr.base.label),
self._print(elem)
)
def _print_Pow(self, expr):
PREC = precedence(expr)
if equal_valued(expr.exp, -1):
return '1.0/%s' % (self.parenthesize(expr.base, PREC))
elif equal_valued(expr.exp, 0.5):
return 'sqrt(%s)' % self._print(expr.base)
else:
try:
e = self._print(float(expr.exp))
except TypeError:
e = self._print(expr.exp)
return self._print_Function_with_args('pow', (
self._print(expr.base),
e
))
def _print_int(self, expr):
return str(float(expr))
def _print_Rational(self, expr):
return "{}.0/{}.0".format(expr.p, expr.q)
def _print_Relational(self, expr):
lhs_code = self._print(expr.lhs)
rhs_code = self._print(expr.rhs)
op = expr.rel_op
return "{} {} {}".format(lhs_code, op, rhs_code)
def _print_Add(self, expr, order=None):
if self._settings['use_operators']:
return CodePrinter._print_Add(self, expr, order=order)
terms = expr.as_ordered_terms()
def partition(p,l):
return reduce(lambda x, y: (x[0]+[y], x[1]) if p(y) else (x[0], x[1]+[y]), l, ([], []))
def add(a,b):
return self._print_Function_with_args('add', (a, b))
# return self.known_functions['add']+'(%s, %s)' % (a,b)
neg, pos = partition(lambda arg: arg.could_extract_minus_sign(), terms)
if pos:
s = pos = reduce(lambda a,b: add(a,b), (self._print(t) for t in pos))
else:
s = pos = self._print(self._settings['zero'])
if neg:
# sum the absolute values of the negative terms
neg = reduce(lambda a,b: add(a,b), (self._print(-n) for n in neg))
# then subtract them from the positive terms
s = self._print_Function_with_args('sub', (pos,neg))
# s = self.known_functions['sub']+'(%s, %s)' % (pos,neg)
return s
def _print_Mul(self, expr, **kwargs):
if self._settings['use_operators']:
return CodePrinter._print_Mul(self, expr, **kwargs)
terms = expr.as_ordered_factors()
def mul(a,b):
# return self.known_functions['mul']+'(%s, %s)' % (a,b)
return self._print_Function_with_args('mul', (a,b))
s = reduce(lambda a,b: mul(a,b), (self._print(t) for t in terms))
return s
def glsl_code(expr,assign_to=None,**settings):
"""Converts an expr to a string of GLSL code
Parameters
==========
expr : Expr
A SymPy expression to be converted.
assign_to : optional
When given, the argument is used for naming the variable or variables
to which the expression is assigned. Can be a string, ``Symbol``,
``MatrixSymbol`` or ``Indexed`` type object. In cases where ``expr``
would be printed as an array, a list of string or ``Symbol`` objects
can also be passed.
This is helpful in case of line-wrapping, or for expressions that
generate multi-line statements. It can also be used to spread an array-like
expression into multiple assignments.
use_operators: bool, optional
If set to False, then *,/,+,- operators will be replaced with functions
mul, add, and sub, which must be implemented by the user, e.g. for
implementing non-standard rings or emulated quad/octal precision.
[default=True]
glsl_types: bool, optional
Set this argument to ``False`` in order to avoid using the ``vec`` and ``mat``
types. The printer will instead use arrays (or nested arrays).
[default=True]
mat_nested: bool, optional
GLSL version 4.3 and above support nested arrays (arrays of arrays). Set this to ``True``
to render matrices as nested arrays.
[default=False]
mat_separator: str, optional
By default, matrices are rendered with newlines using this separator,
making them easier to read, but less compact. By removing the newline
this option can be used to make them more vertically compact.
[default=',\n']
mat_transpose: bool, optional
GLSL's matrix multiplication implementation assumes column-major indexing.
By default, this printer ignores that convention. Setting this option to
``True`` transposes all matrix output.
[default=False]
array_type: str, optional
The GLSL array constructor type.
[default='float']
precision : integer, optional
The precision for numbers such as pi [default=15].
user_functions : dict, optional
A dictionary where keys are ``FunctionClass`` instances and values are
their string representations. Alternatively, the dictionary value can
be a list of tuples i.e. [(argument_test, js_function_string)]. See
below for examples.
human : bool, optional
If True, the result is a single string that may contain some constant
declarations for the number symbols. If False, the same information is
returned in a tuple of (symbols_to_declare, not_supported_functions,
code_text). [default=True].
contract: bool, optional
If True, ``Indexed`` instances are assumed to obey tensor contraction
rules and the corresponding nested loops over indices are generated.
Setting contract=False will not generate loops, instead the user is
responsible to provide values for the indices in the code.
[default=True].
Examples
========
>>> from sympy import glsl_code, symbols, Rational, sin, ceiling, Abs
>>> x, tau = symbols("x, tau")
>>> glsl_code((2*tau)**Rational(7, 2))
'8*sqrt(2)*pow(tau, 3.5)'
>>> glsl_code(sin(x), assign_to="float y")
'float y = sin(x);'
Various GLSL types are supported:
>>> from sympy import Matrix, glsl_code
>>> glsl_code(Matrix([1,2,3]))
'vec3(1, 2, 3)'
>>> glsl_code(Matrix([[1, 2],[3, 4]]))
'mat2(1, 2, 3, 4)'
Pass ``mat_transpose = True`` to switch to column-major indexing:
>>> glsl_code(Matrix([[1, 2],[3, 4]]), mat_transpose = True)
'mat2(1, 3, 2, 4)'
By default, larger matrices get collapsed into float arrays:
>>> print(glsl_code( Matrix([[1,2,3,4,5],[6,7,8,9,10]]) ))
float[10](
1, 2, 3, 4, 5,
6, 7, 8, 9, 10
) /* a 2x5 matrix */
The type of array constructor used to print GLSL arrays can be controlled
via the ``array_type`` parameter:
>>> glsl_code(Matrix([1,2,3,4,5]), array_type='int')
'int[5](1, 2, 3, 4, 5)'
Passing a list of strings or ``symbols`` to the ``assign_to`` parameter will yield
a multi-line assignment for each item in an array-like expression:
>>> x_struct_members = symbols('x.a x.b x.c x.d')
>>> print(glsl_code(Matrix([1,2,3,4]), assign_to=x_struct_members))
x.a = 1;
x.b = 2;
x.c = 3;
x.d = 4;
This could be useful in cases where it's desirable to modify members of a
GLSL ``Struct``. It could also be used to spread items from an array-like
expression into various miscellaneous assignments:
>>> misc_assignments = ('x[0]', 'x[1]', 'float y', 'float z')
>>> print(glsl_code(Matrix([1,2,3,4]), assign_to=misc_assignments))
x[0] = 1;
x[1] = 2;
float y = 3;
float z = 4;
Passing ``mat_nested = True`` instead prints out nested float arrays, which are
supported in GLSL 4.3 and above.
>>> mat = Matrix([
... [ 0, 1, 2],
... [ 3, 4, 5],
... [ 6, 7, 8],
... [ 9, 10, 11],
... [12, 13, 14]])
>>> print(glsl_code( mat, mat_nested = True ))
float[5][3](
float[]( 0, 1, 2),
float[]( 3, 4, 5),
float[]( 6, 7, 8),
float[]( 9, 10, 11),
float[](12, 13, 14)
)
Custom printing can be defined for certain types by passing a dictionary of
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
dictionary value can be a list of tuples i.e. [(argument_test,
js_function_string)].
>>> custom_functions = {
... "ceiling": "CEIL",
... "Abs": [(lambda x: not x.is_integer, "fabs"),
... (lambda x: x.is_integer, "ABS")]
... }
>>> glsl_code(Abs(x) + ceiling(x), user_functions=custom_functions)
'fabs(x) + CEIL(x)'
If further control is needed, addition, subtraction, multiplication and
division operators can be replaced with ``add``, ``sub``, and ``mul``
functions. This is done by passing ``use_operators = False``:
>>> x,y,z = symbols('x,y,z')
>>> glsl_code(x*(y+z), use_operators = False)
'mul(x, add(y, z))'
>>> glsl_code(x*(y+z*(x-y)**z), use_operators = False)
'mul(x, add(y, mul(z, pow(sub(x, y), z))))'
``Piecewise`` expressions are converted into conditionals. If an
``assign_to`` variable is provided an if statement is created, otherwise
the ternary operator is used. Note that if the ``Piecewise`` lacks a
default term, represented by ``(expr, True)`` then an error will be thrown.
This is to prevent generating an expression that may not evaluate to
anything.
>>> from sympy import Piecewise
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(glsl_code(expr, tau))
if (x > 0) {
tau = x + 1;
}
else {
tau = x;
}
Support for loops is provided through ``Indexed`` types. With
``contract=True`` these expressions will be turned into loops, whereas
``contract=False`` will just print the assignment expression that should be
looped over:
>>> from sympy import Eq, IndexedBase, Idx
>>> len_y = 5
>>> y = IndexedBase('y', shape=(len_y,))
>>> t = IndexedBase('t', shape=(len_y,))
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
>>> i = Idx('i', len_y-1)
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> glsl_code(e.rhs, assign_to=e.lhs, contract=False)
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
>>> from sympy import Matrix, MatrixSymbol
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
>>> A = MatrixSymbol('A', 3, 1)
>>> print(glsl_code(mat, A))
A[0][0] = pow(x, 2.0);
if (x > 0) {
A[1][0] = x + 1;
}
else {
A[1][0] = x;
}
A[2][0] = sin(x);
"""
return GLSLPrinter(settings).doprint(expr,assign_to)
def print_glsl(expr, **settings):
"""Prints the GLSL representation of the given expression.
See GLSLPrinter init function for settings.
"""
print(glsl_code(expr, **settings))
|