File size: 20,386 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
from __future__ import annotations

from sympy.core import Basic, S
from sympy.core.function import Lambda
from sympy.core.numbers import equal_valued
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence
from functools import reduce

known_functions = {
    'Abs': 'abs',
    'sin': 'sin',
    'cos': 'cos',
    'tan': 'tan',
    'acos': 'acos',
    'asin': 'asin',
    'atan': 'atan',
    'atan2': 'atan',
    'ceiling': 'ceil',
    'floor': 'floor',
    'sign': 'sign',
    'exp': 'exp',
    'log': 'log',
    'add': 'add',
    'sub': 'sub',
    'mul': 'mul',
    'pow': 'pow'
}

class GLSLPrinter(CodePrinter):
    """
    Rudimentary, generic GLSL printing tools.

    Additional settings:
    'use_operators': Boolean (should the printer use operators for +,-,*, or functions?)
    """
    _not_supported: set[Basic] = set()
    printmethod = "_glsl"
    language = "GLSL"

    _default_settings = dict(CodePrinter._default_settings, **{
        'use_operators': True,
        'zero': 0,
        'mat_nested': False,
        'mat_separator': ',\n',
        'mat_transpose': False,
        'array_type': 'float',
        'glsl_types': True,

        'precision': 9,
        'user_functions': {},
        'contract': True,
    })

    def __init__(self, settings={}):
        CodePrinter.__init__(self, settings)
        self.known_functions = dict(known_functions)
        userfuncs = settings.get('user_functions', {})
        self.known_functions.update(userfuncs)

    def _rate_index_position(self, p):
        return p*5

    def _get_statement(self, codestring):
        return "%s;" % codestring

    def _get_comment(self, text):
        return "// {}".format(text)

    def _declare_number_const(self, name, value):
        return "float {} = {};".format(name, value)

    def _format_code(self, lines):
        return self.indent_code(lines)

    def indent_code(self, code):
        """Accepts a string of code or a list of code lines"""

        if isinstance(code, str):
            code_lines = self.indent_code(code.splitlines(True))
            return ''.join(code_lines)

        tab = "   "
        inc_token = ('{', '(', '{\n', '(\n')
        dec_token = ('}', ')')

        code = [line.lstrip(' \t') for line in code]

        increase = [int(any(map(line.endswith, inc_token))) for line in code]
        decrease = [int(any(map(line.startswith, dec_token))) for line in code]

        pretty = []
        level = 0
        for n, line in enumerate(code):
            if line in ('', '\n'):
                pretty.append(line)
                continue
            level -= decrease[n]
            pretty.append("%s%s" % (tab*level, line))
            level += increase[n]
        return pretty

    def _print_MatrixBase(self, mat):
        mat_separator = self._settings['mat_separator']
        mat_transpose = self._settings['mat_transpose']
        column_vector = (mat.rows == 1) if mat_transpose else (mat.cols == 1)
        A = mat.transpose() if mat_transpose != column_vector else mat

        glsl_types = self._settings['glsl_types']
        array_type = self._settings['array_type']
        array_size = A.cols*A.rows
        array_constructor = "{}[{}]".format(array_type, array_size)

        if A.cols == 1:
            return self._print(A[0]);
        if A.rows <= 4 and A.cols <= 4 and glsl_types:
            if A.rows == 1:
                return "vec{}{}".format(
                    A.cols, A.table(self,rowstart='(',rowend=')')
                )
            elif A.rows == A.cols:
                return "mat{}({})".format(
                    A.rows, A.table(self,rowsep=', ',
                    rowstart='',rowend='')
                )
            else:
                return "mat{}x{}({})".format(
                    A.cols, A.rows,
                    A.table(self,rowsep=', ',
                    rowstart='',rowend='')
                )
        elif S.One in A.shape:
            return "{}({})".format(
                array_constructor,
                A.table(self,rowsep=mat_separator,rowstart='',rowend='')
            )
        elif not self._settings['mat_nested']:
            return "{}(\n{}\n) /* a {}x{} matrix */".format(
                array_constructor,
                A.table(self,rowsep=mat_separator,rowstart='',rowend=''),
                A.rows, A.cols
            )
        elif self._settings['mat_nested']:
            return "{}[{}][{}](\n{}\n)".format(
                array_type, A.rows, A.cols,
                A.table(self,rowsep=mat_separator,rowstart='float[](',rowend=')')
            )

    def _print_SparseRepMatrix(self, mat):
        # do not allow sparse matrices to be made dense
        return self._print_not_supported(mat)

    def _traverse_matrix_indices(self, mat):
        mat_transpose = self._settings['mat_transpose']
        if mat_transpose:
            rows,cols = mat.shape
        else:
            cols,rows = mat.shape
        return ((i, j) for i in range(cols) for j in range(rows))

    def _print_MatrixElement(self, expr):
        # print('begin _print_MatrixElement')
        nest = self._settings['mat_nested'];
        glsl_types = self._settings['glsl_types'];
        mat_transpose = self._settings['mat_transpose'];
        if mat_transpose:
            cols,rows = expr.parent.shape
            i,j = expr.j,expr.i
        else:
            rows,cols = expr.parent.shape
            i,j = expr.i,expr.j
        pnt = self._print(expr.parent)
        if glsl_types and ((rows <= 4 and cols <=4) or nest):
            return "{}[{}][{}]".format(pnt, i, j)
        else:
            return "{}[{}]".format(pnt, i + j*rows)

    def _print_list(self, expr):
        l = ', '.join(self._print(item) for item in expr)
        glsl_types = self._settings['glsl_types']
        array_type = self._settings['array_type']
        array_size = len(expr)
        array_constructor = '{}[{}]'.format(array_type, array_size)

        if array_size <= 4 and glsl_types:
            return 'vec{}({})'.format(array_size, l)
        else:
            return '{}({})'.format(array_constructor, l)

    _print_tuple = _print_list
    _print_Tuple = _print_list

    def _get_loop_opening_ending(self, indices):
        open_lines = []
        close_lines = []
        loopstart = "for (int %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){"
        for i in indices:
            # GLSL arrays start at 0 and end at dimension-1
            open_lines.append(loopstart % {
                'varble': self._print(i.label),
                'start': self._print(i.lower),
                'end': self._print(i.upper + 1)})
            close_lines.append("}")
        return open_lines, close_lines

    def _print_Function_with_args(self, func, func_args):
        if func in self.known_functions:
            cond_func = self.known_functions[func]
            func = None
            if isinstance(cond_func, str):
                func = cond_func
            else:
                for cond, func in cond_func:
                    if cond(func_args):
                        break
            if func is not None:
                try:
                    return func(*[self.parenthesize(item, 0) for item in func_args])
                except TypeError:
                    return '{}({})'.format(func, self.stringify(func_args, ", "))
        elif isinstance(func, Lambda):
            # inlined function
            return self._print(func(*func_args))
        else:
            return self._print_not_supported(func)

    def _print_Piecewise(self, expr):
        from sympy.codegen.ast import Assignment
        if expr.args[-1].cond != True:
            # We need the last conditional to be a True, otherwise the resulting
            # function may not return a result.
            raise ValueError("All Piecewise expressions must contain an "
                             "(expr, True) statement to be used as a default "
                             "condition. Without one, the generated "
                             "expression may not evaluate to anything under "
                             "some condition.")
        lines = []
        if expr.has(Assignment):
            for i, (e, c) in enumerate(expr.args):
                if i == 0:
                    lines.append("if (%s) {" % self._print(c))
                elif i == len(expr.args) - 1 and c == True:
                    lines.append("else {")
                else:
                    lines.append("else if (%s) {" % self._print(c))
                code0 = self._print(e)
                lines.append(code0)
                lines.append("}")
            return "\n".join(lines)
        else:
            # The piecewise was used in an expression, need to do inline
            # operators. This has the downside that inline operators will
            # not work for statements that span multiple lines (Matrix or
            # Indexed expressions).
            ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c),
                                               self._print(e))
                    for e, c in expr.args[:-1]]
            last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
            return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])

    def _print_Idx(self, expr):
        return self._print(expr.label)

    def _print_Indexed(self, expr):
        # calculate index for 1d array
        dims = expr.shape
        elem = S.Zero
        offset = S.One
        for i in reversed(range(expr.rank)):
            elem += expr.indices[i]*offset
            offset *= dims[i]
        return "{}[{}]".format(
            self._print(expr.base.label),
            self._print(elem)
        )

    def _print_Pow(self, expr):
        PREC = precedence(expr)
        if equal_valued(expr.exp, -1):
            return '1.0/%s' % (self.parenthesize(expr.base, PREC))
        elif equal_valued(expr.exp, 0.5):
            return 'sqrt(%s)' % self._print(expr.base)
        else:
            try:
                e = self._print(float(expr.exp))
            except TypeError:
                e = self._print(expr.exp)
            return self._print_Function_with_args('pow', (
                self._print(expr.base),
                e
            ))

    def _print_int(self, expr):
        return str(float(expr))

    def _print_Rational(self, expr):
        return "{}.0/{}.0".format(expr.p, expr.q)

    def _print_Relational(self, expr):
        lhs_code = self._print(expr.lhs)
        rhs_code = self._print(expr.rhs)
        op = expr.rel_op
        return "{} {} {}".format(lhs_code, op, rhs_code)

    def _print_Add(self, expr, order=None):
        if self._settings['use_operators']:
            return CodePrinter._print_Add(self, expr, order=order)

        terms = expr.as_ordered_terms()

        def partition(p,l):
            return reduce(lambda x, y: (x[0]+[y], x[1]) if p(y) else (x[0], x[1]+[y]), l,  ([], []))
        def add(a,b):
            return self._print_Function_with_args('add', (a, b))
            # return self.known_functions['add']+'(%s, %s)' % (a,b)
        neg, pos = partition(lambda arg: arg.could_extract_minus_sign(), terms)
        if pos:
            s = pos = reduce(lambda a,b: add(a,b), (self._print(t) for t in pos))
        else:
            s = pos = self._print(self._settings['zero'])

        if neg:
            # sum the absolute values of the negative terms
            neg = reduce(lambda a,b: add(a,b), (self._print(-n) for n in neg))
            # then subtract them from the positive terms
            s = self._print_Function_with_args('sub', (pos,neg))
            # s = self.known_functions['sub']+'(%s, %s)' % (pos,neg)
        return s

    def _print_Mul(self, expr, **kwargs):
        if self._settings['use_operators']:
            return CodePrinter._print_Mul(self, expr, **kwargs)
        terms = expr.as_ordered_factors()
        def mul(a,b):
            # return self.known_functions['mul']+'(%s, %s)' % (a,b)
            return self._print_Function_with_args('mul', (a,b))

        s = reduce(lambda a,b: mul(a,b), (self._print(t) for t in terms))
        return s

def glsl_code(expr,assign_to=None,**settings):
    """Converts an expr to a string of GLSL code

    Parameters
    ==========

    expr : Expr
        A SymPy expression to be converted.
    assign_to : optional
        When given, the argument is used for naming the variable or variables
        to which the expression is assigned. Can be a string, ``Symbol``,
        ``MatrixSymbol`` or ``Indexed`` type object. In cases where ``expr``
        would be printed as an array, a list of string or ``Symbol`` objects
        can also be passed.

        This is helpful in case of line-wrapping, or for expressions that
        generate multi-line statements.  It can also be used to spread an array-like
        expression into multiple assignments.
    use_operators: bool, optional
        If set to False, then *,/,+,- operators will be replaced with functions
        mul, add, and sub, which must be implemented by the user, e.g. for
        implementing non-standard rings or emulated quad/octal precision.
        [default=True]
    glsl_types: bool, optional
        Set this argument to ``False`` in order to avoid using the ``vec`` and ``mat``
        types.  The printer will instead use arrays (or nested arrays).
        [default=True]
    mat_nested: bool, optional
        GLSL version 4.3 and above support nested arrays (arrays of arrays).  Set this to ``True``
        to render matrices as nested arrays.
        [default=False]
    mat_separator: str, optional
        By default, matrices are rendered with newlines using this separator,
        making them easier to read, but less compact.  By removing the newline
        this option can be used to make them more vertically compact.
        [default=',\n']
    mat_transpose: bool, optional
        GLSL's matrix multiplication implementation assumes column-major indexing.
        By default, this printer ignores that convention. Setting this option to
        ``True`` transposes all matrix output.
        [default=False]
    array_type: str, optional
        The GLSL array constructor type.
        [default='float']
    precision : integer, optional
        The precision for numbers such as pi [default=15].
    user_functions : dict, optional
        A dictionary where keys are ``FunctionClass`` instances and values are
        their string representations. Alternatively, the dictionary value can
        be a list of tuples i.e. [(argument_test, js_function_string)]. See
        below for examples.
    human : bool, optional
        If True, the result is a single string that may contain some constant
        declarations for the number symbols. If False, the same information is
        returned in a tuple of (symbols_to_declare, not_supported_functions,
        code_text). [default=True].
    contract: bool, optional
        If True, ``Indexed`` instances are assumed to obey tensor contraction
        rules and the corresponding nested loops over indices are generated.
        Setting contract=False will not generate loops, instead the user is
        responsible to provide values for the indices in the code.
        [default=True].

    Examples
    ========

    >>> from sympy import glsl_code, symbols, Rational, sin, ceiling, Abs
    >>> x, tau = symbols("x, tau")
    >>> glsl_code((2*tau)**Rational(7, 2))
    '8*sqrt(2)*pow(tau, 3.5)'
    >>> glsl_code(sin(x), assign_to="float y")
    'float y = sin(x);'

    Various GLSL types are supported:
    >>> from sympy import Matrix, glsl_code
    >>> glsl_code(Matrix([1,2,3]))
    'vec3(1, 2, 3)'

    >>> glsl_code(Matrix([[1, 2],[3, 4]]))
    'mat2(1, 2, 3, 4)'

    Pass ``mat_transpose = True`` to switch to column-major indexing:
    >>> glsl_code(Matrix([[1, 2],[3, 4]]), mat_transpose = True)
    'mat2(1, 3, 2, 4)'

    By default, larger matrices get collapsed into float arrays:
    >>> print(glsl_code( Matrix([[1,2,3,4,5],[6,7,8,9,10]]) ))
    float[10](
       1, 2, 3, 4,  5,
       6, 7, 8, 9, 10
    ) /* a 2x5 matrix */

    The type of array constructor used to print GLSL arrays can be controlled
    via the ``array_type`` parameter:
    >>> glsl_code(Matrix([1,2,3,4,5]), array_type='int')
    'int[5](1, 2, 3, 4, 5)'

    Passing a list of strings or ``symbols`` to the ``assign_to`` parameter will yield
    a multi-line assignment for each item in an array-like expression:
    >>> x_struct_members = symbols('x.a x.b x.c x.d')
    >>> print(glsl_code(Matrix([1,2,3,4]), assign_to=x_struct_members))
    x.a = 1;
    x.b = 2;
    x.c = 3;
    x.d = 4;

    This could be useful in cases where it's desirable to modify members of a
    GLSL ``Struct``.  It could also be used to spread items from an array-like
    expression into various miscellaneous assignments:
    >>> misc_assignments = ('x[0]', 'x[1]', 'float y', 'float z')
    >>> print(glsl_code(Matrix([1,2,3,4]), assign_to=misc_assignments))
    x[0] = 1;
    x[1] = 2;
    float y = 3;
    float z = 4;

    Passing ``mat_nested = True`` instead prints out nested float arrays, which are
    supported in GLSL 4.3 and above.
    >>> mat = Matrix([
    ... [ 0,  1,  2],
    ... [ 3,  4,  5],
    ... [ 6,  7,  8],
    ... [ 9, 10, 11],
    ... [12, 13, 14]])
    >>> print(glsl_code( mat, mat_nested = True ))
    float[5][3](
       float[]( 0,  1,  2),
       float[]( 3,  4,  5),
       float[]( 6,  7,  8),
       float[]( 9, 10, 11),
       float[](12, 13, 14)
    )



    Custom printing can be defined for certain types by passing a dictionary of
    "type" : "function" to the ``user_functions`` kwarg. Alternatively, the
    dictionary value can be a list of tuples i.e. [(argument_test,
    js_function_string)].

    >>> custom_functions = {
    ...   "ceiling": "CEIL",
    ...   "Abs": [(lambda x: not x.is_integer, "fabs"),
    ...           (lambda x: x.is_integer, "ABS")]
    ... }
    >>> glsl_code(Abs(x) + ceiling(x), user_functions=custom_functions)
    'fabs(x) + CEIL(x)'

    If further control is needed, addition, subtraction, multiplication and
    division operators can be replaced with ``add``, ``sub``, and ``mul``
    functions.  This is done by passing ``use_operators = False``:

    >>> x,y,z = symbols('x,y,z')
    >>> glsl_code(x*(y+z), use_operators = False)
    'mul(x, add(y, z))'
    >>> glsl_code(x*(y+z*(x-y)**z), use_operators = False)
    'mul(x, add(y, mul(z, pow(sub(x, y), z))))'

    ``Piecewise`` expressions are converted into conditionals. If an
    ``assign_to`` variable is provided an if statement is created, otherwise
    the ternary operator is used. Note that if the ``Piecewise`` lacks a
    default term, represented by ``(expr, True)`` then an error will be thrown.
    This is to prevent generating an expression that may not evaluate to
    anything.

    >>> from sympy import Piecewise
    >>> expr = Piecewise((x + 1, x > 0), (x, True))
    >>> print(glsl_code(expr, tau))
    if (x > 0) {
       tau = x + 1;
    }
    else {
       tau = x;
    }

    Support for loops is provided through ``Indexed`` types. With
    ``contract=True`` these expressions will be turned into loops, whereas
    ``contract=False`` will just print the assignment expression that should be
    looped over:

    >>> from sympy import Eq, IndexedBase, Idx
    >>> len_y = 5
    >>> y = IndexedBase('y', shape=(len_y,))
    >>> t = IndexedBase('t', shape=(len_y,))
    >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
    >>> i = Idx('i', len_y-1)
    >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
    >>> glsl_code(e.rhs, assign_to=e.lhs, contract=False)
    'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'

    >>> from sympy import Matrix, MatrixSymbol
    >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
    >>> A = MatrixSymbol('A', 3, 1)
    >>> print(glsl_code(mat, A))
    A[0][0] = pow(x, 2.0);
    if (x > 0) {
       A[1][0] = x + 1;
    }
    else {
       A[1][0] = x;
    }
    A[2][0] = sin(x);
    """
    return GLSLPrinter(settings).doprint(expr,assign_to)

def print_glsl(expr, **settings):
    """Prints the GLSL representation of the given expression.

       See GLSLPrinter init function for settings.
    """
    print(glsl_code(expr, **settings))