File size: 36,122 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
from __future__ import annotations
from typing import Any

from functools import wraps

from sympy.core import Add, Mul, Pow, S, sympify, Float
from sympy.core.basic import Basic
from sympy.core.expr import UnevaluatedExpr
from sympy.core.function import Lambda
from sympy.core.mul import _keep_coeff
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Symbol
from sympy.functions.elementary.complexes import re
from sympy.printing.str import StrPrinter
from sympy.printing.precedence import precedence, PRECEDENCE


class requires:
    """ Decorator for registering requirements on print methods. """
    def __init__(self, **kwargs):
        self._req = kwargs

    def __call__(self, method):
        def _method_wrapper(self_, *args, **kwargs):
            for k, v in self._req.items():
                getattr(self_, k).update(v)
            return method(self_, *args, **kwargs)
        return wraps(method)(_method_wrapper)


class AssignmentError(Exception):
    """
    Raised if an assignment variable for a loop is missing.
    """
    pass

class PrintMethodNotImplementedError(NotImplementedError):
    """
    Raised if a _print_* method is missing in the Printer.
    """
    pass

def _convert_python_lists(arg):
    if isinstance(arg, list):
        from sympy.codegen.abstract_nodes import List
        return List(*(_convert_python_lists(e) for e in arg))
    elif isinstance(arg, tuple):
        return tuple(_convert_python_lists(e) for e in arg)
    else:
        return arg


class CodePrinter(StrPrinter):
    """
    The base class for code-printing subclasses.
    """

    _operators = {
        'and': '&&',
        'or': '||',
        'not': '!',
    }

    _default_settings: dict[str, Any] = {
        'order': None,
        'full_prec': 'auto',
        'error_on_reserved': False,
        'reserved_word_suffix': '_',
        'human': True,
        'inline': False,
        'allow_unknown_functions': False,
        'strict': None  # True or False; None => True if human == True
    }

    # Functions which are "simple" to rewrite to other functions that
    # may be supported
    # function_to_rewrite : (function_to_rewrite_to, iterable_with_other_functions_required)
    _rewriteable_functions = {
            'cot': ('tan', []),
            'csc': ('sin', []),
            'sec': ('cos', []),
            'acot': ('atan', []),
            'acsc': ('asin', []),
            'asec': ('acos', []),
            'coth': ('exp', []),
            'csch': ('exp', []),
            'sech': ('exp', []),
            'acoth': ('log', []),
            'acsch': ('log', []),
            'asech': ('log', []),
            'catalan': ('gamma', []),
            'fibonacci': ('sqrt', []),
            'lucas': ('sqrt', []),
            'beta': ('gamma', []),
            'sinc': ('sin', ['Piecewise']),
            'Mod': ('floor', []),
            'factorial': ('gamma', []),
            'factorial2': ('gamma', ['Piecewise']),
            'subfactorial': ('uppergamma', []),
            'RisingFactorial': ('gamma', ['Piecewise']),
            'FallingFactorial': ('gamma', ['Piecewise']),
            'binomial': ('gamma', []),
            'frac': ('floor', []),
            'Max': ('Piecewise', []),
            'Min': ('Piecewise', []),
            'Heaviside': ('Piecewise', []),
            'erf2': ('erf', []),
            'erfc': ('erf', []),
            'Li': ('li', []),
            'Ei': ('li', []),
            'dirichlet_eta': ('zeta', []),
            'riemann_xi': ('zeta', ['gamma']),
            'SingularityFunction': ('Piecewise', []),
    }

    def __init__(self, settings=None):
        super().__init__(settings=settings)
        if self._settings.get('strict', True) == None:
            # for backwards compatibility, human=False need not to throw:
            self._settings['strict'] = self._settings.get('human', True) == True
        if not hasattr(self, 'reserved_words'):
            self.reserved_words = set()

    def _handle_UnevaluatedExpr(self, expr):
        return expr.replace(re, lambda arg: arg if isinstance(
            arg, UnevaluatedExpr) and arg.args[0].is_real else re(arg))

    def doprint(self, expr, assign_to=None):
        """
        Print the expression as code.

        Parameters
        ----------
        expr : Expression
            The expression to be printed.

        assign_to : Symbol, string, MatrixSymbol, list of strings or Symbols (optional)
            If provided, the printed code will set the expression to a variable or multiple variables
            with the name or names given in ``assign_to``.
        """
        from sympy.matrices.expressions.matexpr import MatrixSymbol
        from sympy.codegen.ast import CodeBlock, Assignment

        def _handle_assign_to(expr, assign_to):
            if assign_to is None:
                return sympify(expr)
            if isinstance(assign_to, (list, tuple)):
                if len(expr) != len(assign_to):
                    raise ValueError('Failed to assign an expression of length {} to {} variables'.format(len(expr), len(assign_to)))
                return CodeBlock(*[_handle_assign_to(lhs, rhs) for lhs, rhs in zip(expr, assign_to)])
            if isinstance(assign_to, str):
                if expr.is_Matrix:
                    assign_to = MatrixSymbol(assign_to, *expr.shape)
                else:
                    assign_to = Symbol(assign_to)
            elif not isinstance(assign_to, Basic):
                raise TypeError("{} cannot assign to object of type {}".format(
                        type(self).__name__, type(assign_to)))
            return Assignment(assign_to, expr)

        expr = _convert_python_lists(expr)
        expr = _handle_assign_to(expr, assign_to)

        # Remove re(...) nodes due to UnevaluatedExpr.is_real always is None:
        expr = self._handle_UnevaluatedExpr(expr)

        # keep a set of expressions that are not strictly translatable to Code
        # and number constants that must be declared and initialized
        self._not_supported = set()
        self._number_symbols = set()

        lines = self._print(expr).splitlines()

        # format the output
        if self._settings["human"]:
            frontlines = []
            if self._not_supported:
                frontlines.append(self._get_comment(
                        "Not supported in {}:".format(self.language)))
                for expr in sorted(self._not_supported, key=str):
                    frontlines.append(self._get_comment(type(expr).__name__))
            for name, value in sorted(self._number_symbols, key=str):
                frontlines.append(self._declare_number_const(name, value))
            lines = frontlines + lines
            lines = self._format_code(lines)
            result = "\n".join(lines)
        else:
            lines = self._format_code(lines)
            num_syms = {(k, self._print(v)) for k, v in self._number_symbols}
            result = (num_syms, self._not_supported, "\n".join(lines))
        self._not_supported = set()
        self._number_symbols = set()
        return result

    def _doprint_loops(self, expr, assign_to=None):
        # Here we print an expression that contains Indexed objects, they
        # correspond to arrays in the generated code.  The low-level implementation
        # involves looping over array elements and possibly storing results in temporary
        # variables or accumulate it in the assign_to object.

        if self._settings.get('contract', True):
            from sympy.tensor import get_contraction_structure
            # Setup loops over non-dummy indices  --  all terms need these
            indices = self._get_expression_indices(expr, assign_to)
            # Setup loops over dummy indices  --  each term needs separate treatment
            dummies = get_contraction_structure(expr)
        else:
            indices = []
            dummies = {None: (expr,)}
        openloop, closeloop = self._get_loop_opening_ending(indices)

        # terms with no summations first
        if None in dummies:
            text = StrPrinter.doprint(self, Add(*dummies[None]))
        else:
            # If all terms have summations we must initialize array to Zero
            text = StrPrinter.doprint(self, 0)

        # skip redundant assignments (where lhs == rhs)
        lhs_printed = self._print(assign_to)
        lines = []
        if text != lhs_printed:
            lines.extend(openloop)
            if assign_to is not None:
                text = self._get_statement("%s = %s" % (lhs_printed, text))
            lines.append(text)
            lines.extend(closeloop)

        # then terms with summations
        for d in dummies:
            if isinstance(d, tuple):
                indices = self._sort_optimized(d, expr)
                openloop_d, closeloop_d = self._get_loop_opening_ending(
                    indices)

                for term in dummies[d]:
                    if term in dummies and not ([list(f.keys()) for f in dummies[term]]
                            == [[None] for f in dummies[term]]):
                        # If one factor in the term has it's own internal
                        # contractions, those must be computed first.
                        # (temporary variables?)
                        raise NotImplementedError(
                            "FIXME: no support for contractions in factor yet")
                    else:

                        # We need the lhs expression as an accumulator for
                        # the loops, i.e
                        #
                        # for (int d=0; d < dim; d++){
                        #    lhs[] = lhs[] + term[][d]
                        # }           ^.................. the accumulator
                        #
                        # We check if the expression already contains the
                        # lhs, and raise an exception if it does, as that
                        # syntax is currently undefined.  FIXME: What would be
                        # a good interpretation?
                        if assign_to is None:
                            raise AssignmentError(
                                "need assignment variable for loops")
                        if term.has(assign_to):
                            raise ValueError("FIXME: lhs present in rhs,\
                                this is undefined in CodePrinter")

                        lines.extend(openloop)
                        lines.extend(openloop_d)
                        text = "%s = %s" % (lhs_printed, StrPrinter.doprint(
                            self, assign_to + term))
                        lines.append(self._get_statement(text))
                        lines.extend(closeloop_d)
                        lines.extend(closeloop)

        return "\n".join(lines)

    def _get_expression_indices(self, expr, assign_to):
        from sympy.tensor import get_indices
        rinds, junk = get_indices(expr)
        linds, junk = get_indices(assign_to)

        # support broadcast of scalar
        if linds and not rinds:
            rinds = linds
        if rinds != linds:
            raise ValueError("lhs indices must match non-dummy"
                    " rhs indices in %s" % expr)

        return self._sort_optimized(rinds, assign_to)

    def _sort_optimized(self, indices, expr):

        from sympy.tensor.indexed import Indexed

        if not indices:
            return []

        # determine optimized loop order by giving a score to each index
        # the index with the highest score are put in the innermost loop.
        score_table = {}
        for i in indices:
            score_table[i] = 0

        arrays = expr.atoms(Indexed)
        for arr in arrays:
            for p, ind in enumerate(arr.indices):
                try:
                    score_table[ind] += self._rate_index_position(p)
                except KeyError:
                    pass

        return sorted(indices, key=lambda x: score_table[x])

    def _rate_index_position(self, p):
        """function to calculate score based on position among indices

        This method is used to sort loops in an optimized order, see
        CodePrinter._sort_optimized()
        """
        raise NotImplementedError("This function must be implemented by "
                                  "subclass of CodePrinter.")

    def _get_statement(self, codestring):
        """Formats a codestring with the proper line ending."""
        raise NotImplementedError("This function must be implemented by "
                                  "subclass of CodePrinter.")

    def _get_comment(self, text):
        """Formats a text string as a comment."""
        raise NotImplementedError("This function must be implemented by "
                                  "subclass of CodePrinter.")

    def _declare_number_const(self, name, value):
        """Declare a numeric constant at the top of a function"""
        raise NotImplementedError("This function must be implemented by "
                                  "subclass of CodePrinter.")

    def _format_code(self, lines):
        """Take in a list of lines of code, and format them accordingly.

        This may include indenting, wrapping long lines, etc..."""
        raise NotImplementedError("This function must be implemented by "
                                  "subclass of CodePrinter.")

    def _get_loop_opening_ending(self, indices):
        """Returns a tuple (open_lines, close_lines) containing lists
        of codelines"""
        raise NotImplementedError("This function must be implemented by "
                                  "subclass of CodePrinter.")

    def _print_Dummy(self, expr):
        if expr.name.startswith('Dummy_'):
            return '_' + expr.name
        else:
            return '%s_%d' % (expr.name, expr.dummy_index)

    def _print_CodeBlock(self, expr):
        return '\n'.join([self._print(i) for i in expr.args])

    def _print_String(self, string):
        return str(string)

    def _print_QuotedString(self, arg):
        return '"%s"' % arg.text

    def _print_Comment(self, string):
        return self._get_comment(str(string))

    def _print_Assignment(self, expr):
        from sympy.codegen.ast import Assignment
        from sympy.functions.elementary.piecewise import Piecewise
        from sympy.matrices.expressions.matexpr import MatrixSymbol
        from sympy.tensor.indexed import IndexedBase
        lhs = expr.lhs
        rhs = expr.rhs
        # We special case assignments that take multiple lines
        if isinstance(expr.rhs, Piecewise):
            # Here we modify Piecewise so each expression is now
            # an Assignment, and then continue on the print.
            expressions = []
            conditions = []
            for (e, c) in rhs.args:
                expressions.append(Assignment(lhs, e))
                conditions.append(c)
            temp = Piecewise(*zip(expressions, conditions))
            return self._print(temp)
        elif isinstance(lhs, MatrixSymbol):
            # Here we form an Assignment for each element in the array,
            # printing each one.
            lines = []
            for (i, j) in self._traverse_matrix_indices(lhs):
                temp = Assignment(lhs[i, j], rhs[i, j])
                code0 = self._print(temp)
                lines.append(code0)
            return "\n".join(lines)
        elif self._settings.get("contract", False) and (lhs.has(IndexedBase) or
                rhs.has(IndexedBase)):
            # Here we check if there is looping to be done, and if so
            # print the required loops.
            return self._doprint_loops(rhs, lhs)
        else:
            lhs_code = self._print(lhs)
            rhs_code = self._print(rhs)
            return self._get_statement("%s = %s" % (lhs_code, rhs_code))

    def _print_AugmentedAssignment(self, expr):
        lhs_code = self._print(expr.lhs)
        rhs_code = self._print(expr.rhs)
        return self._get_statement("{} {} {}".format(
            *(self._print(arg) for arg in [lhs_code, expr.op, rhs_code])))

    def _print_FunctionCall(self, expr):
        return '%s(%s)' % (
            expr.name,
            ', '.join((self._print(arg) for arg in expr.function_args)))

    def _print_Variable(self, expr):
        return self._print(expr.symbol)

    def _print_Symbol(self, expr):

        name = super()._print_Symbol(expr)

        if name in self.reserved_words:
            if self._settings['error_on_reserved']:
                msg = ('This expression includes the symbol "{}" which is a '
                       'reserved keyword in this language.')
                raise ValueError(msg.format(name))
            return name + self._settings['reserved_word_suffix']
        else:
            return name

    def _can_print(self, name):
        """ Check if function ``name`` is either a known function or has its own
            printing method. Used to check if rewriting is possible."""
        return name in self.known_functions or getattr(self, '_print_{}'.format(name), False)

    def _print_Function(self, expr):
        if expr.func.__name__ in self.known_functions:
            cond_func = self.known_functions[expr.func.__name__]
            if isinstance(cond_func, str):
                return "%s(%s)" % (cond_func, self.stringify(expr.args, ", "))
            else:
                for cond, func in cond_func:
                    if cond(*expr.args):
                        break
                if func is not None:
                    try:
                        return func(*[self.parenthesize(item, 0) for item in expr.args])
                    except TypeError:
                        return "%s(%s)" % (func, self.stringify(expr.args, ", "))
        elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda):
            # inlined function
            return self._print(expr._imp_(*expr.args))
        elif expr.func.__name__ in self._rewriteable_functions:
            # Simple rewrite to supported function possible
            target_f, required_fs = self._rewriteable_functions[expr.func.__name__]
            if self._can_print(target_f) and all(self._can_print(f) for f in required_fs):
                return '(' + self._print(expr.rewrite(target_f)) + ')'

        if expr.is_Function and self._settings.get('allow_unknown_functions', False):
            return '%s(%s)' % (self._print(expr.func), ', '.join(map(self._print, expr.args)))
        else:
            return self._print_not_supported(expr)

    _print_Expr = _print_Function

    # Don't inherit the str-printer method for Heaviside to the code printers
    _print_Heaviside = None

    def _print_NumberSymbol(self, expr):
        if self._settings.get("inline", False):
            return self._print(Float(expr.evalf(self._settings["precision"])))
        else:
            # A Number symbol that is not implemented here or with _printmethod
            # is registered and evaluated
            self._number_symbols.add((expr,
                Float(expr.evalf(self._settings["precision"]))))
            return str(expr)

    def _print_Catalan(self, expr):
        return self._print_NumberSymbol(expr)
    def _print_EulerGamma(self, expr):
        return self._print_NumberSymbol(expr)
    def _print_GoldenRatio(self, expr):
        return self._print_NumberSymbol(expr)
    def _print_TribonacciConstant(self, expr):
        return self._print_NumberSymbol(expr)
    def _print_Exp1(self, expr):
        return self._print_NumberSymbol(expr)
    def _print_Pi(self, expr):
        return self._print_NumberSymbol(expr)

    def _print_And(self, expr):
        PREC = precedence(expr)
        return (" %s " % self._operators['and']).join(self.parenthesize(a, PREC)
                for a in sorted(expr.args, key=default_sort_key))

    def _print_Or(self, expr):
        PREC = precedence(expr)
        return (" %s " % self._operators['or']).join(self.parenthesize(a, PREC)
                for a in sorted(expr.args, key=default_sort_key))

    def _print_Xor(self, expr):
        if self._operators.get('xor') is None:
            return self._print(expr.to_nnf())
        PREC = precedence(expr)
        return (" %s " % self._operators['xor']).join(self.parenthesize(a, PREC)
                for a in expr.args)

    def _print_Equivalent(self, expr):
        if self._operators.get('equivalent') is None:
            return self._print(expr.to_nnf())
        PREC = precedence(expr)
        return (" %s " % self._operators['equivalent']).join(self.parenthesize(a, PREC)
                for a in expr.args)

    def _print_Not(self, expr):
        PREC = precedence(expr)
        return self._operators['not'] + self.parenthesize(expr.args[0], PREC)

    def _print_BooleanFunction(self, expr):
        return self._print(expr.to_nnf())

    def _print_Mul(self, expr):

        prec = precedence(expr)

        c, e = expr.as_coeff_Mul()
        if c < 0:
            expr = _keep_coeff(-c, e)
            sign = "-"
        else:
            sign = ""

        a = []  # items in the numerator
        b = []  # items that are in the denominator (if any)

        pow_paren = []  # Will collect all pow with more than one base element and exp = -1

        if self.order not in ('old', 'none'):
            args = expr.as_ordered_factors()
        else:
            # use make_args in case expr was something like -x -> x
            args = Mul.make_args(expr)

        # Gather args for numerator/denominator
        for item in args:
            if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
                if item.exp != -1:
                    b.append(Pow(item.base, -item.exp, evaluate=False))
                else:
                    if len(item.args[0].args) != 1 and isinstance(item.base, Mul):   # To avoid situations like #14160
                        pow_paren.append(item)
                    b.append(Pow(item.base, -item.exp))
            else:
                a.append(item)

        a = a or [S.One]

        if len(a) == 1 and sign == "-":
            # Unary minus does not have a SymPy class, and hence there's no
            # precedence weight associated with it, Python's unary minus has
            # an operator precedence between multiplication and exponentiation,
            # so we use this to compute a weight.
            a_str = [self.parenthesize(a[0], 0.5*(PRECEDENCE["Pow"]+PRECEDENCE["Mul"]))]
        else:
            a_str = [self.parenthesize(x, prec) for x in a]
        b_str = [self.parenthesize(x, prec) for x in b]

        # To parenthesize Pow with exp = -1 and having more than one Symbol
        for item in pow_paren:
            if item.base in b:
                b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]

        if not b:
            return sign + '*'.join(a_str)
        elif len(b) == 1:
            return sign + '*'.join(a_str) + "/" + b_str[0]
        else:
            return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)

    def _print_not_supported(self, expr):
        if self._settings.get('strict', False):
            raise PrintMethodNotImplementedError("Unsupported by %s: %s" % (str(type(self)), str(type(expr))) + \
                             "\nSet the printer option 'strict' to False in order to generate partially printed code.")
        try:
            self._not_supported.add(expr)
        except TypeError:
            # not hashable
            pass
        return self.emptyPrinter(expr)

    # The following can not be simply translated into C or Fortran
    _print_Basic = _print_not_supported
    _print_ComplexInfinity = _print_not_supported
    _print_Derivative = _print_not_supported
    _print_ExprCondPair = _print_not_supported
    _print_GeometryEntity = _print_not_supported
    _print_Infinity = _print_not_supported
    _print_Integral = _print_not_supported
    _print_Interval = _print_not_supported
    _print_AccumulationBounds = _print_not_supported
    _print_Limit = _print_not_supported
    _print_MatrixBase = _print_not_supported
    _print_DeferredVector = _print_not_supported
    _print_NaN = _print_not_supported
    _print_NegativeInfinity = _print_not_supported
    _print_Order = _print_not_supported
    _print_RootOf = _print_not_supported
    _print_RootsOf = _print_not_supported
    _print_RootSum = _print_not_supported
    _print_Uniform = _print_not_supported
    _print_Unit = _print_not_supported
    _print_Wild = _print_not_supported
    _print_WildFunction = _print_not_supported
    _print_Relational = _print_not_supported


# Code printer functions. These are included in this file so that they can be
# imported in the top-level __init__.py without importing the sympy.codegen
# module.

def ccode(expr, assign_to=None, standard='c99', **settings):
    """Converts an expr to a string of c code

    Parameters
    ==========

    expr : Expr
        A SymPy expression to be converted.
    assign_to : optional
        When given, the argument is used as the name of the variable to which
        the expression is assigned. Can be a string, ``Symbol``,
        ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
        line-wrapping, or for expressions that generate multi-line statements.
    standard : str, optional
        String specifying the standard. If your compiler supports a more modern
        standard you may set this to 'c99' to allow the printer to use more math
        functions. [default='c89'].
    precision : integer, optional
        The precision for numbers such as pi [default=17].
    user_functions : dict, optional
        A dictionary where the keys are string representations of either
        ``FunctionClass`` or ``UndefinedFunction`` instances and the values
        are their desired C string representations. Alternatively, the
        dictionary value can be a list of tuples i.e. [(argument_test,
        cfunction_string)] or [(argument_test, cfunction_formater)]. See below
        for examples.
    dereference : iterable, optional
        An iterable of symbols that should be dereferenced in the printed code
        expression. These would be values passed by address to the function.
        For example, if ``dereference=[a]``, the resulting code would print
        ``(*a)`` instead of ``a``.
    human : bool, optional
        If True, the result is a single string that may contain some constant
        declarations for the number symbols. If False, the same information is
        returned in a tuple of (symbols_to_declare, not_supported_functions,
        code_text). [default=True].
    contract: bool, optional
        If True, ``Indexed`` instances are assumed to obey tensor contraction
        rules and the corresponding nested loops over indices are generated.
        Setting contract=False will not generate loops, instead the user is
        responsible to provide values for the indices in the code.
        [default=True].

    Examples
    ========

    >>> from sympy import ccode, symbols, Rational, sin, ceiling, Abs, Function
    >>> x, tau = symbols("x, tau")
    >>> expr = (2*tau)**Rational(7, 2)
    >>> ccode(expr)
    '8*M_SQRT2*pow(tau, 7.0/2.0)'
    >>> ccode(expr, math_macros={})
    '8*sqrt(2)*pow(tau, 7.0/2.0)'
    >>> ccode(sin(x), assign_to="s")
    's = sin(x);'
    >>> from sympy.codegen.ast import real, float80
    >>> ccode(expr, type_aliases={real: float80})
    '8*M_SQRT2l*powl(tau, 7.0L/2.0L)'

    Simple custom printing can be defined for certain types by passing a
    dictionary of {"type" : "function"} to the ``user_functions`` kwarg.
    Alternatively, the dictionary value can be a list of tuples i.e.
    [(argument_test, cfunction_string)].

    >>> custom_functions = {
    ...   "ceiling": "CEIL",
    ...   "Abs": [(lambda x: not x.is_integer, "fabs"),
    ...           (lambda x: x.is_integer, "ABS")],
    ...   "func": "f"
    ... }
    >>> func = Function('func')
    >>> ccode(func(Abs(x) + ceiling(x)), standard='C89', user_functions=custom_functions)
    'f(fabs(x) + CEIL(x))'

    or if the C-function takes a subset of the original arguments:

    >>> ccode(2**x + 3**x, standard='C99', user_functions={'Pow': [
    ...   (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e),
    ...   (lambda b, e: b != 2, 'pow')]})
    'exp2(x) + pow(3, x)'

    ``Piecewise`` expressions are converted into conditionals. If an
    ``assign_to`` variable is provided an if statement is created, otherwise
    the ternary operator is used. Note that if the ``Piecewise`` lacks a
    default term, represented by ``(expr, True)`` then an error will be thrown.
    This is to prevent generating an expression that may not evaluate to
    anything.

    >>> from sympy import Piecewise
    >>> expr = Piecewise((x + 1, x > 0), (x, True))
    >>> print(ccode(expr, tau, standard='C89'))
    if (x > 0) {
    tau = x + 1;
    }
    else {
    tau = x;
    }

    Support for loops is provided through ``Indexed`` types. With
    ``contract=True`` these expressions will be turned into loops, whereas
    ``contract=False`` will just print the assignment expression that should be
    looped over:

    >>> from sympy import Eq, IndexedBase, Idx
    >>> len_y = 5
    >>> y = IndexedBase('y', shape=(len_y,))
    >>> t = IndexedBase('t', shape=(len_y,))
    >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
    >>> i = Idx('i', len_y-1)
    >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
    >>> ccode(e.rhs, assign_to=e.lhs, contract=False, standard='C89')
    'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'

    Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
    must be provided to ``assign_to``. Note that any expression that can be
    generated normally can also exist inside a Matrix:

    >>> from sympy import Matrix, MatrixSymbol
    >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
    >>> A = MatrixSymbol('A', 3, 1)
    >>> print(ccode(mat, A, standard='C89'))
    A[0] = pow(x, 2);
    if (x > 0) {
       A[1] = x + 1;
    }
    else {
       A[1] = x;
    }
    A[2] = sin(x);
    """
    from sympy.printing.c import c_code_printers
    return c_code_printers[standard.lower()](settings).doprint(expr, assign_to)

def print_ccode(expr, **settings):
    """Prints C representation of the given expression."""
    print(ccode(expr, **settings))

def fcode(expr, assign_to=None, **settings):
    """Converts an expr to a string of fortran code

    Parameters
    ==========

    expr : Expr
        A SymPy expression to be converted.
    assign_to : optional
        When given, the argument is used as the name of the variable to which
        the expression is assigned. Can be a string, ``Symbol``,
        ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
        line-wrapping, or for expressions that generate multi-line statements.
    precision : integer, optional
        DEPRECATED. Use type_mappings instead. The precision for numbers such
        as pi [default=17].
    user_functions : dict, optional
        A dictionary where keys are ``FunctionClass`` instances and values are
        their string representations. Alternatively, the dictionary value can
        be a list of tuples i.e. [(argument_test, cfunction_string)]. See below
        for examples.
    human : bool, optional
        If True, the result is a single string that may contain some constant
        declarations for the number symbols. If False, the same information is
        returned in a tuple of (symbols_to_declare, not_supported_functions,
        code_text). [default=True].
    contract: bool, optional
        If True, ``Indexed`` instances are assumed to obey tensor contraction
        rules and the corresponding nested loops over indices are generated.
        Setting contract=False will not generate loops, instead the user is
        responsible to provide values for the indices in the code.
        [default=True].
    source_format : optional
        The source format can be either 'fixed' or 'free'. [default='fixed']
    standard : integer, optional
        The Fortran standard to be followed. This is specified as an integer.
        Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77.
        Note that currently the only distinction internally is between
        standards before 95, and those 95 and after. This may change later as
        more features are added.
    name_mangling : bool, optional
        If True, then the variables that would become identical in
        case-insensitive Fortran are mangled by appending different number
        of ``_`` at the end. If False, SymPy Will not interfere with naming of
        variables. [default=True]

    Examples
    ========

    >>> from sympy import fcode, symbols, Rational, sin, ceiling, floor
    >>> x, tau = symbols("x, tau")
    >>> fcode((2*tau)**Rational(7, 2))
    '      8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)'
    >>> fcode(sin(x), assign_to="s")
    '      s = sin(x)'

    Custom printing can be defined for certain types by passing a dictionary of
    "type" : "function" to the ``user_functions`` kwarg. Alternatively, the
    dictionary value can be a list of tuples i.e. [(argument_test,
    cfunction_string)].

    >>> custom_functions = {
    ...   "ceiling": "CEIL",
    ...   "floor": [(lambda x: not x.is_integer, "FLOOR1"),
    ...             (lambda x: x.is_integer, "FLOOR2")]
    ... }
    >>> fcode(floor(x) + ceiling(x), user_functions=custom_functions)
    '      CEIL(x) + FLOOR1(x)'

    ``Piecewise`` expressions are converted into conditionals. If an
    ``assign_to`` variable is provided an if statement is created, otherwise
    the ternary operator is used. Note that if the ``Piecewise`` lacks a
    default term, represented by ``(expr, True)`` then an error will be thrown.
    This is to prevent generating an expression that may not evaluate to
    anything.

    >>> from sympy import Piecewise
    >>> expr = Piecewise((x + 1, x > 0), (x, True))
    >>> print(fcode(expr, tau))
          if (x > 0) then
             tau = x + 1
          else
             tau = x
          end if

    Support for loops is provided through ``Indexed`` types. With
    ``contract=True`` these expressions will be turned into loops, whereas
    ``contract=False`` will just print the assignment expression that should be
    looped over:

    >>> from sympy import Eq, IndexedBase, Idx
    >>> len_y = 5
    >>> y = IndexedBase('y', shape=(len_y,))
    >>> t = IndexedBase('t', shape=(len_y,))
    >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
    >>> i = Idx('i', len_y-1)
    >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
    >>> fcode(e.rhs, assign_to=e.lhs, contract=False)
    '      Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))'

    Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
    must be provided to ``assign_to``. Note that any expression that can be
    generated normally can also exist inside a Matrix:

    >>> from sympy import Matrix, MatrixSymbol
    >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
    >>> A = MatrixSymbol('A', 3, 1)
    >>> print(fcode(mat, A))
          A(1, 1) = x**2
             if (x > 0) then
          A(2, 1) = x + 1
             else
          A(2, 1) = x
             end if
          A(3, 1) = sin(x)
    """
    from sympy.printing.fortran import FCodePrinter
    return FCodePrinter(settings).doprint(expr, assign_to)


def print_fcode(expr, **settings):
    """Prints the Fortran representation of the given expression.

       See fcode for the meaning of the optional arguments.
    """
    print(fcode(expr, **settings))

def cxxcode(expr, assign_to=None, standard='c++11', **settings):
    """ C++ equivalent of :func:`~.ccode`. """
    from sympy.printing.cxx import cxx_code_printers
    return cxx_code_printers[standard.lower()](settings).doprint(expr, assign_to)