Spaces:
Sleeping
Sleeping
File size: 12,259 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
from sympy.core.containers import Tuple
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.function import AppliedUndef
from sympy.core.relational import Relational
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.logic.boolalg import BooleanFunction
from sympy.sets.fancysets import ImageSet
from sympy.sets.sets import FiniteSet
from sympy.tensor.indexed import Indexed
def _get_free_symbols(exprs):
"""Returns the free symbols of a symbolic expression.
If the expression contains any of these elements, assume that they are
the "free symbols" of the expression:
* indexed objects
* applied undefined function (useful for sympy.physics.mechanics module)
"""
if not isinstance(exprs, (list, tuple, set)):
exprs = [exprs]
if all(callable(e) for e in exprs):
return set()
free = set().union(*[e.atoms(Indexed) for e in exprs])
free = free.union(*[e.atoms(AppliedUndef) for e in exprs])
return free or set().union(*[e.free_symbols for e in exprs])
def extract_solution(set_sol, n=10):
"""Extract numerical solutions from a set solution (computed by solveset,
linsolve, nonlinsolve). Often, it is not trivial do get something useful
out of them.
Parameters
==========
n : int, optional
In order to replace ImageSet with FiniteSet, an iterator is created
for each ImageSet contained in `set_sol`, starting from 0 up to `n`.
Default value: 10.
"""
images = set_sol.find(ImageSet)
for im in images:
it = iter(im)
s = FiniteSet(*[next(it) for n in range(0, n)])
set_sol = set_sol.subs(im, s)
return set_sol
def _plot_sympify(args):
"""This function recursively loop over the arguments passed to the plot
functions: the sympify function will be applied to all arguments except
those of type string/dict.
Generally, users can provide the following arguments to a plot function:
expr, range1 [tuple, opt], ..., label [str, opt], rendering_kw [dict, opt]
`expr, range1, ...` can be sympified, whereas `label, rendering_kw` can't.
In particular, whenever a special character like $, {, }, ... is used in
the `label`, sympify will raise an error.
"""
if isinstance(args, Expr):
return args
args = list(args)
for i, a in enumerate(args):
if isinstance(a, (list, tuple)):
args[i] = Tuple(*_plot_sympify(a), sympify=False)
elif not (isinstance(a, (str, dict)) or callable(a)
# NOTE: check if it is a vector from sympy.physics.vector module
# without importing the module (because it slows down SymPy's
# import process and triggers SymPy's optional-dependencies
# tests to fail).
or ((a.__class__.__name__ == "Vector") and not isinstance(a, Basic))
):
args[i] = sympify(a)
return args
def _create_ranges(exprs, ranges, npar, label="", params=None):
"""This function does two things:
1. Check if the number of free symbols is in agreement with the type of
plot chosen. For example, plot() requires 1 free symbol;
plot3d() requires 2 free symbols.
2. Sometime users create plots without providing ranges for the variables.
Here we create the necessary ranges.
Parameters
==========
exprs : iterable
The expressions from which to extract the free symbols
ranges : iterable
The limiting ranges provided by the user
npar : int
The number of free symbols required by the plot functions.
For example,
npar=1 for plot, npar=2 for plot3d, ...
params : dict
A dictionary mapping symbols to parameters for interactive plot.
"""
get_default_range = lambda symbol: Tuple(symbol, -10, 10)
free_symbols = _get_free_symbols(exprs)
if params is not None:
free_symbols = free_symbols.difference(params.keys())
if len(free_symbols) > npar:
raise ValueError(
"Too many free symbols.\n"
+ "Expected {} free symbols.\n".format(npar)
+ "Received {}: {}".format(len(free_symbols), free_symbols)
)
if len(ranges) > npar:
raise ValueError(
"Too many ranges. Received %s, expected %s" % (len(ranges), npar))
# free symbols in the ranges provided by the user
rfs = set().union([r[0] for r in ranges])
if len(rfs) != len(ranges):
raise ValueError("Multiple ranges with the same symbol")
if len(ranges) < npar:
symbols = free_symbols.difference(rfs)
if symbols != set():
# add a range for each missing free symbols
for s in symbols:
ranges.append(get_default_range(s))
# if there is still room, fill them with dummys
for i in range(npar - len(ranges)):
ranges.append(get_default_range(Dummy()))
if len(free_symbols) == npar:
# there could be times when this condition is not met, for example
# plotting the function f(x, y) = x (which is a plane); in this case,
# free_symbols = {x} whereas rfs = {x, y} (or x and Dummy)
rfs = set().union([r[0] for r in ranges])
if len(free_symbols.difference(rfs)) > 0:
raise ValueError(
"Incompatible free symbols of the expressions with "
"the ranges.\n"
+ "Free symbols in the expressions: {}\n".format(free_symbols)
+ "Free symbols in the ranges: {}".format(rfs)
)
return ranges
def _is_range(r):
"""A range is defined as (symbol, start, end). start and end should
be numbers.
"""
# TODO: prange check goes here
return (
isinstance(r, Tuple)
and (len(r) == 3)
and (not isinstance(r.args[1], str)) and r.args[1].is_number
and (not isinstance(r.args[2], str)) and r.args[2].is_number
)
def _unpack_args(*args):
"""Given a list/tuple of arguments previously processed by _plot_sympify()
and/or _check_arguments(), separates and returns its components:
expressions, ranges, label and rendering keywords.
Examples
========
>>> from sympy import cos, sin, symbols
>>> from sympy.plotting.utils import _plot_sympify, _unpack_args
>>> x, y = symbols('x, y')
>>> args = (sin(x), (x, -10, 10), "f1")
>>> args = _plot_sympify(args)
>>> _unpack_args(*args)
([sin(x)], [(x, -10, 10)], 'f1', None)
>>> args = (sin(x**2 + y**2), (x, -2, 2), (y, -3, 3), "f2")
>>> args = _plot_sympify(args)
>>> _unpack_args(*args)
([sin(x**2 + y**2)], [(x, -2, 2), (y, -3, 3)], 'f2', None)
>>> args = (sin(x + y), cos(x - y), x + y, (x, -2, 2), (y, -3, 3), "f3")
>>> args = _plot_sympify(args)
>>> _unpack_args(*args)
([sin(x + y), cos(x - y), x + y], [(x, -2, 2), (y, -3, 3)], 'f3', None)
"""
ranges = [t for t in args if _is_range(t)]
labels = [t for t in args if isinstance(t, str)]
label = None if not labels else labels[0]
rendering_kw = [t for t in args if isinstance(t, dict)]
rendering_kw = None if not rendering_kw else rendering_kw[0]
# NOTE: why None? because args might have been preprocessed by
# _check_arguments, so None might represent the rendering_kw
results = [not (_is_range(a) or isinstance(a, (str, dict)) or (a is None)) for a in args]
exprs = [a for a, b in zip(args, results) if b]
return exprs, ranges, label, rendering_kw
def _check_arguments(args, nexpr, npar, **kwargs):
"""Checks the arguments and converts into tuples of the
form (exprs, ranges, label, rendering_kw).
Parameters
==========
args
The arguments provided to the plot functions
nexpr
The number of sub-expression forming an expression to be plotted.
For example:
nexpr=1 for plot.
nexpr=2 for plot_parametric: a curve is represented by a tuple of two
elements.
nexpr=1 for plot3d.
nexpr=3 for plot3d_parametric_line: a curve is represented by a tuple
of three elements.
npar
The number of free symbols required by the plot functions. For example,
npar=1 for plot, npar=2 for plot3d, ...
**kwargs :
keyword arguments passed to the plotting function. It will be used to
verify if ``params`` has ben provided.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import cos, sin, symbols
>>> from sympy.plotting.plot import _check_arguments
>>> x = symbols('x')
>>> _check_arguments([cos(x), sin(x)], 2, 1)
[(cos(x), sin(x), (x, -10, 10), None, None)]
>>> _check_arguments([cos(x), sin(x), "test"], 2, 1)
[(cos(x), sin(x), (x, -10, 10), 'test', None)]
>>> _check_arguments([cos(x), sin(x), "test", {"a": 0, "b": 1}], 2, 1)
[(cos(x), sin(x), (x, -10, 10), 'test', {'a': 0, 'b': 1})]
>>> _check_arguments([x, x**2], 1, 1)
[(x, (x, -10, 10), None, None), (x**2, (x, -10, 10), None, None)]
"""
if not args:
return []
output = []
params = kwargs.get("params", None)
if all(isinstance(a, (Expr, Relational, BooleanFunction)) for a in args[:nexpr]):
# In this case, with a single plot command, we are plotting either:
# 1. one expression
# 2. multiple expressions over the same range
exprs, ranges, label, rendering_kw = _unpack_args(*args)
free_symbols = set().union(*[e.free_symbols for e in exprs])
ranges = _create_ranges(exprs, ranges, npar, label, params)
if nexpr > 1:
# in case of plot_parametric or plot3d_parametric_line, there will
# be 2 or 3 expressions defining a curve. Group them together.
if len(exprs) == nexpr:
exprs = (tuple(exprs),)
for expr in exprs:
# need this if-else to deal with both plot/plot3d and
# plot_parametric/plot3d_parametric_line
is_expr = isinstance(expr, (Expr, Relational, BooleanFunction))
e = (expr,) if is_expr else expr
output.append((*e, *ranges, label, rendering_kw))
else:
# In this case, we are plotting multiple expressions, each one with its
# range. Each "expression" to be plotted has the following form:
# (expr, range, label) where label is optional
_, ranges, labels, rendering_kw = _unpack_args(*args)
labels = [labels] if labels else []
# number of expressions
n = (len(ranges) + len(labels) +
(len(rendering_kw) if rendering_kw is not None else 0))
new_args = args[:-n] if n > 0 else args
# at this point, new_args might just be [expr]. But I need it to be
# [[expr]] in order to be able to loop over
# [expr, range [opt], label [opt]]
if not isinstance(new_args[0], (list, tuple, Tuple)):
new_args = [new_args]
# Each arg has the form (expr1, expr2, ..., range1 [optional], ...,
# label [optional], rendering_kw [optional])
for arg in new_args:
# look for "local" range and label. If there is not, use "global".
l = [a for a in arg if isinstance(a, str)]
if not l:
l = labels
r = [a for a in arg if _is_range(a)]
if not r:
r = ranges.copy()
rend_kw = [a for a in arg if isinstance(a, dict)]
rend_kw = rendering_kw if len(rend_kw) == 0 else rend_kw[0]
# NOTE: arg = arg[:nexpr] may raise an exception if lambda
# functions are used. Execute the following instead:
arg = [arg[i] for i in range(nexpr)]
free_symbols = set()
if all(not callable(a) for a in arg):
free_symbols = free_symbols.union(*[a.free_symbols for a in arg])
if len(r) != npar:
r = _create_ranges(arg, r, npar, "", params)
label = None if not l else l[0]
output.append((*arg, *r, label, rend_kw))
return output
|