File size: 12,259 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
from sympy.core.containers import Tuple
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.function import AppliedUndef
from sympy.core.relational import Relational
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.logic.boolalg import BooleanFunction
from sympy.sets.fancysets import ImageSet
from sympy.sets.sets import FiniteSet
from sympy.tensor.indexed import Indexed


def _get_free_symbols(exprs):
    """Returns the free symbols of a symbolic expression.

    If the expression contains any of these elements, assume that they are
    the "free symbols" of the expression:

    * indexed objects
    * applied undefined function (useful for sympy.physics.mechanics module)
    """
    if not isinstance(exprs, (list, tuple, set)):
        exprs = [exprs]
    if all(callable(e) for e in exprs):
        return set()

    free = set().union(*[e.atoms(Indexed) for e in exprs])
    free = free.union(*[e.atoms(AppliedUndef) for e in exprs])
    return free or set().union(*[e.free_symbols for e in exprs])


def extract_solution(set_sol, n=10):
    """Extract numerical solutions from a set solution (computed by solveset,
    linsolve, nonlinsolve). Often, it is not trivial do get something useful
    out of them.

    Parameters
    ==========

    n : int, optional
        In order to replace ImageSet with FiniteSet, an iterator is created
        for each ImageSet contained in `set_sol`, starting from 0 up to `n`.
        Default value: 10.
    """
    images = set_sol.find(ImageSet)
    for im in images:
        it = iter(im)
        s = FiniteSet(*[next(it) for n in range(0, n)])
        set_sol = set_sol.subs(im, s)
    return set_sol


def _plot_sympify(args):
    """This function recursively loop over the arguments passed to the plot
    functions: the sympify function will be applied to all arguments except
    those of type string/dict.

    Generally, users can provide the following arguments to a plot function:

    expr, range1 [tuple, opt], ..., label [str, opt], rendering_kw [dict, opt]

    `expr, range1, ...` can be sympified, whereas `label, rendering_kw` can't.
    In particular, whenever a special character like $, {, }, ... is used in
    the `label`, sympify will raise an error.
    """
    if isinstance(args, Expr):
        return args

    args = list(args)
    for i, a in enumerate(args):
        if isinstance(a, (list, tuple)):
            args[i] = Tuple(*_plot_sympify(a), sympify=False)
        elif not (isinstance(a, (str, dict)) or callable(a)
            # NOTE: check if it is a vector from sympy.physics.vector module
            # without importing the module (because it slows down SymPy's
            # import process and triggers SymPy's optional-dependencies
            # tests to fail).
            or ((a.__class__.__name__ == "Vector") and not isinstance(a, Basic))
        ):
            args[i] = sympify(a)
    return args


def _create_ranges(exprs, ranges, npar, label="", params=None):
    """This function does two things:

    1. Check if the number of free symbols is in agreement with the type of
       plot chosen. For example, plot() requires 1 free symbol;
       plot3d() requires 2 free symbols.
    2. Sometime users create plots without providing ranges for the variables.
       Here we create the necessary ranges.

    Parameters
    ==========

    exprs : iterable
        The expressions from which to extract the free symbols
    ranges : iterable
        The limiting ranges provided by the user
    npar : int
        The number of free symbols required by the plot functions.
        For example,
        npar=1 for plot, npar=2 for plot3d, ...
    params : dict
        A dictionary mapping symbols to parameters for interactive plot.
    """
    get_default_range = lambda symbol: Tuple(symbol, -10, 10)

    free_symbols = _get_free_symbols(exprs)
    if params is not None:
        free_symbols = free_symbols.difference(params.keys())

    if len(free_symbols) > npar:
        raise ValueError(
            "Too many free symbols.\n"
            + "Expected {} free symbols.\n".format(npar)
            + "Received {}: {}".format(len(free_symbols), free_symbols)
        )

    if len(ranges) > npar:
        raise ValueError(
            "Too many ranges. Received %s, expected %s" % (len(ranges), npar))

    # free symbols in the ranges provided by the user
    rfs = set().union([r[0] for r in ranges])
    if len(rfs) != len(ranges):
        raise ValueError("Multiple ranges with the same symbol")

    if len(ranges) < npar:
        symbols = free_symbols.difference(rfs)
        if symbols != set():
            # add a range for each missing free symbols
            for s in symbols:
                ranges.append(get_default_range(s))
        # if there is still room, fill them with dummys
        for i in range(npar - len(ranges)):
            ranges.append(get_default_range(Dummy()))

    if len(free_symbols) == npar:
        # there could be times when this condition is not met, for example
        # plotting the function f(x, y) = x (which is a plane); in this case,
        # free_symbols = {x} whereas rfs = {x, y} (or x and Dummy)
        rfs = set().union([r[0] for r in ranges])
        if len(free_symbols.difference(rfs)) > 0:
            raise ValueError(
                "Incompatible free symbols of the expressions with "
                "the ranges.\n"
                + "Free symbols in the expressions: {}\n".format(free_symbols)
                + "Free symbols in the ranges: {}".format(rfs)
            )
    return ranges


def _is_range(r):
    """A range is defined as (symbol, start, end). start and end should
    be numbers.
    """
    # TODO: prange check goes here
    return (
        isinstance(r, Tuple)
        and (len(r) == 3)
        and (not isinstance(r.args[1], str)) and r.args[1].is_number
        and (not isinstance(r.args[2], str)) and r.args[2].is_number
    )


def _unpack_args(*args):
    """Given a list/tuple of arguments previously processed by _plot_sympify()
    and/or _check_arguments(), separates and returns its components:
    expressions, ranges, label and rendering keywords.

    Examples
    ========

    >>> from sympy import cos, sin, symbols
    >>> from sympy.plotting.utils import _plot_sympify, _unpack_args
    >>> x, y = symbols('x, y')
    >>> args = (sin(x), (x, -10, 10), "f1")
    >>> args = _plot_sympify(args)
    >>> _unpack_args(*args)
    ([sin(x)], [(x, -10, 10)], 'f1', None)

    >>> args = (sin(x**2 + y**2), (x, -2, 2), (y, -3, 3), "f2")
    >>> args = _plot_sympify(args)
    >>> _unpack_args(*args)
    ([sin(x**2 + y**2)], [(x, -2, 2), (y, -3, 3)], 'f2', None)

    >>> args = (sin(x + y), cos(x - y), x + y, (x, -2, 2), (y, -3, 3), "f3")
    >>> args = _plot_sympify(args)
    >>> _unpack_args(*args)
    ([sin(x + y), cos(x - y), x + y], [(x, -2, 2), (y, -3, 3)], 'f3', None)
    """
    ranges = [t for t in args if _is_range(t)]
    labels = [t for t in args if isinstance(t, str)]
    label = None if not labels else labels[0]
    rendering_kw = [t for t in args if isinstance(t, dict)]
    rendering_kw = None if not rendering_kw else rendering_kw[0]
    # NOTE: why None? because args might have been preprocessed by
    # _check_arguments, so None might represent the rendering_kw
    results = [not (_is_range(a) or isinstance(a, (str, dict)) or (a is None)) for a in args]
    exprs = [a for a, b in zip(args, results) if b]
    return exprs, ranges, label, rendering_kw


def _check_arguments(args, nexpr, npar, **kwargs):
    """Checks the arguments and converts into tuples of the
    form (exprs, ranges, label, rendering_kw).

    Parameters
    ==========

    args
        The arguments provided to the plot functions
    nexpr
        The number of sub-expression forming an expression to be plotted.
        For example:
        nexpr=1 for plot.
        nexpr=2 for plot_parametric: a curve is represented by a tuple of two
            elements.
        nexpr=1 for plot3d.
        nexpr=3 for plot3d_parametric_line: a curve is represented by a tuple
            of three elements.
    npar
        The number of free symbols required by the plot functions. For example,
        npar=1 for plot, npar=2 for plot3d, ...
    **kwargs :
        keyword arguments passed to the plotting function. It will be used to
        verify if ``params`` has ben provided.

    Examples
    ========

    .. plot::
       :context: reset
       :format: doctest
       :include-source: True

       >>> from sympy import cos, sin, symbols
       >>> from sympy.plotting.plot import _check_arguments
       >>> x = symbols('x')
       >>> _check_arguments([cos(x), sin(x)], 2, 1)
       [(cos(x), sin(x), (x, -10, 10), None, None)]

       >>> _check_arguments([cos(x), sin(x), "test"], 2, 1)
       [(cos(x), sin(x), (x, -10, 10), 'test', None)]

       >>> _check_arguments([cos(x), sin(x), "test", {"a": 0, "b": 1}], 2, 1)
       [(cos(x), sin(x), (x, -10, 10), 'test', {'a': 0, 'b': 1})]

       >>> _check_arguments([x, x**2], 1, 1)
       [(x, (x, -10, 10), None, None), (x**2, (x, -10, 10), None, None)]
    """
    if not args:
        return []
    output = []
    params = kwargs.get("params", None)

    if all(isinstance(a, (Expr, Relational, BooleanFunction)) for a in args[:nexpr]):
        # In this case, with a single plot command, we are plotting either:
        #   1. one expression
        #   2. multiple expressions over the same range

        exprs, ranges, label, rendering_kw = _unpack_args(*args)
        free_symbols = set().union(*[e.free_symbols for e in exprs])
        ranges = _create_ranges(exprs, ranges, npar, label, params)

        if nexpr > 1:
            # in case of plot_parametric or plot3d_parametric_line, there will
            # be 2 or 3 expressions defining a curve. Group them together.
            if len(exprs) == nexpr:
                exprs = (tuple(exprs),)
        for expr in exprs:
            # need this if-else to deal with both plot/plot3d and
            # plot_parametric/plot3d_parametric_line
            is_expr = isinstance(expr, (Expr, Relational, BooleanFunction))
            e = (expr,) if is_expr else expr
            output.append((*e, *ranges, label, rendering_kw))

    else:
        # In this case, we are plotting multiple expressions, each one with its
        # range. Each "expression" to be plotted has the following form:
        # (expr, range, label) where label is optional

        _, ranges, labels, rendering_kw = _unpack_args(*args)
        labels = [labels] if labels else []

        # number of expressions
        n = (len(ranges) + len(labels) +
            (len(rendering_kw) if rendering_kw is not None else 0))
        new_args = args[:-n] if n > 0 else args

        # at this point, new_args might just be [expr]. But I need it to be
        # [[expr]] in order to be able to loop over
        # [expr, range [opt], label [opt]]
        if not isinstance(new_args[0], (list, tuple, Tuple)):
            new_args = [new_args]

        # Each arg has the form (expr1, expr2, ..., range1 [optional], ...,
        #   label [optional], rendering_kw [optional])
        for arg in new_args:
            # look for "local" range and label. If there is not, use "global".
            l = [a for a in arg if isinstance(a, str)]
            if not l:
                l = labels
            r = [a for a in arg if _is_range(a)]
            if not r:
                r = ranges.copy()
            rend_kw = [a for a in arg if isinstance(a, dict)]
            rend_kw = rendering_kw if len(rend_kw) == 0 else rend_kw[0]

            # NOTE: arg = arg[:nexpr] may raise an exception if lambda
            # functions are used. Execute the following instead:
            arg = [arg[i] for i in range(nexpr)]
            free_symbols = set()
            if all(not callable(a) for a in arg):
                free_symbols = free_symbols.union(*[a.free_symbols for a in arg])
            if len(r) != npar:
                r = _create_ranges(arg, r, npar, "", params)

            label = None if not l else l[0]
            output.append((*arg, *r, label, rend_kw))
    return output