File size: 96,563 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
### The base class for all series
from collections.abc import Callable
from sympy.calculus.util import continuous_domain
from sympy.concrete import Sum, Product
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import arity
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Symbol
from sympy.functions import atan2, zeta, frac, ceiling, floor, im
from sympy.core.relational import (Equality, GreaterThan,
    LessThan, Relational, Ne)
from sympy.core.sympify import sympify
from sympy.external import import_module
from sympy.logic.boolalg import BooleanFunction
from sympy.plotting.utils import _get_free_symbols, extract_solution
from sympy.printing.latex import latex
from sympy.printing.pycode import PythonCodePrinter
from sympy.printing.precedence import precedence
from sympy.sets.sets import Set, Interval, Union
from sympy.simplify.simplify import nsimplify
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.lambdify import lambdify
from .intervalmath import interval
import warnings


class IntervalMathPrinter(PythonCodePrinter):
    """A printer to be used inside `plot_implicit` when `adaptive=True`,
    in which case the interval arithmetic module is going to be used, which
    requires the following edits.
    """
    def _print_And(self, expr):
        PREC = precedence(expr)
        return " & ".join(self.parenthesize(a, PREC)
                for a in sorted(expr.args, key=default_sort_key))

    def _print_Or(self, expr):
        PREC = precedence(expr)
        return " | ".join(self.parenthesize(a, PREC)
                for a in sorted(expr.args, key=default_sort_key))


def _uniform_eval(f1, f2, *args, modules=None,
    force_real_eval=False, has_sum=False):
    """
    Note: this is an experimental function, as such it is prone to changes.
    Please, do not use it in your code.
    """
    np = import_module('numpy')

    def wrapper_func(func, *args):
        try:
            return complex(func(*args))
        except (ZeroDivisionError, OverflowError):
            return complex(np.nan, np.nan)

    # NOTE: np.vectorize is much slower than numpy vectorized operations.
    # However, this modules must be able to evaluate functions also with
    # mpmath or sympy.
    wrapper_func = np.vectorize(wrapper_func, otypes=[complex])

    def _eval_with_sympy(err=None):
        if f2 is None:
            msg = "Impossible to evaluate the provided numerical function"
            if err is None:
                msg += "."
            else:
                msg += "because the following exception was raised:\n"
                "{}: {}".format(type(err).__name__, err)
            raise RuntimeError(msg)
        if err:
            warnings.warn(
                "The evaluation with %s failed.\n" % (
                    "NumPy/SciPy" if not modules else modules) +
                "{}: {}\n".format(type(err).__name__, err) +
                "Trying to evaluate the expression with Sympy, but it might "
                "be a slow operation."
            )
        return wrapper_func(f2, *args)

    if modules == "sympy":
        return _eval_with_sympy()

    try:
        return wrapper_func(f1, *args)
    except Exception as err:
        return _eval_with_sympy(err)


def _adaptive_eval(f, x):
    """Evaluate f(x) with an adaptive algorithm. Post-process the result.
    If a symbolic expression is evaluated with SymPy, it might returns
    another symbolic expression, containing additions, ...
    Force evaluation to a float.

    Parameters
    ==========
    f : callable
    x : float
    """
    np = import_module('numpy')

    y = f(x)
    if isinstance(y, Expr) and (not y.is_Number):
        y = y.evalf()
    y = complex(y)
    if y.imag > 1e-08:
        return np.nan
    return y.real


def _get_wrapper_for_expr(ret):
    wrapper = "%s"
    if ret == "real":
        wrapper = "re(%s)"
    elif ret == "imag":
        wrapper = "im(%s)"
    elif ret == "abs":
        wrapper = "abs(%s)"
    elif ret == "arg":
        wrapper = "arg(%s)"
    return wrapper


class BaseSeries:
    """Base class for the data objects containing stuff to be plotted.

    Notes
    =====

    The backend should check if it supports the data series that is given.
    (e.g. TextBackend supports only LineOver1DRangeSeries).
    It is the backend responsibility to know how to use the class of
    data series that is given.

    Some data series classes are grouped (using a class attribute like is_2Dline)
    according to the api they present (based only on convention). The backend is
    not obliged to use that api (e.g. LineOver1DRangeSeries belongs to the
    is_2Dline group and presents the get_points method, but the
    TextBackend does not use the get_points method).

    BaseSeries
    """

    # Some flags follow. The rationale for using flags instead of checking base
    # classes is that setting multiple flags is simpler than multiple
    # inheritance.

    is_2Dline = False
    # Some of the backends expect:
    #  - get_points returning 1D np.arrays list_x, list_y
    #  - get_color_array returning 1D np.array (done in Line2DBaseSeries)
    # with the colors calculated at the points from get_points

    is_3Dline = False
    # Some of the backends expect:
    #  - get_points returning 1D np.arrays list_x, list_y, list_y
    #  - get_color_array returning 1D np.array (done in Line2DBaseSeries)
    # with the colors calculated at the points from get_points

    is_3Dsurface = False
    # Some of the backends expect:
    #   - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
    #   - get_points an alias for get_meshes

    is_contour = False
    # Some of the backends expect:
    #   - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
    #   - get_points an alias for get_meshes

    is_implicit = False
    # Some of the backends expect:
    #   - get_meshes returning mesh_x (1D array), mesh_y(1D array,
    #     mesh_z (2D np.arrays)
    #   - get_points an alias for get_meshes
    # Different from is_contour as the colormap in backend will be
    # different

    is_interactive = False
    # An interactive series can update its data.

    is_parametric = False
    # The calculation of aesthetics expects:
    #   - get_parameter_points returning one or two np.arrays (1D or 2D)
    # used for calculation aesthetics

    is_generic = False
    # Represent generic user-provided numerical data

    is_vector = False
    is_2Dvector = False
    is_3Dvector = False
    # Represents a 2D or 3D vector data series

    _N = 100
    # default number of discretization points for uniform sampling. Each
    # subclass can set its number.

    def __init__(self, *args, **kwargs):
        kwargs = _set_discretization_points(kwargs.copy(), type(self))
        # discretize the domain using only integer numbers
        self.only_integers = kwargs.get("only_integers", False)
        # represents the evaluation modules to be used by lambdify
        self.modules = kwargs.get("modules", None)
        # plot functions might create data series that might not be useful to
        # be shown on the legend, for example wireframe lines on 3D plots.
        self.show_in_legend = kwargs.get("show_in_legend", True)
        # line and surface series can show data with a colormap, hence a
        # colorbar is essential to understand the data. However, sometime it
        # is useful to hide it on series-by-series base. The following keyword
        # controls wheter the series should show a colorbar or not.
        self.colorbar = kwargs.get("colorbar", True)
        # Some series might use a colormap as default coloring. Setting this
        # attribute to False will inform the backends to use solid color.
        self.use_cm = kwargs.get("use_cm", False)
        # If True, the backend will attempt to render it on a polar-projection
        # axis, or using a polar discretization if a 3D plot is requested
        self.is_polar = kwargs.get("is_polar", kwargs.get("polar", False))
        # If True, the rendering will use points, not lines.
        self.is_point = kwargs.get("is_point", kwargs.get("point", False))
        # some backend is able to render latex, other needs standard text
        self._label = self._latex_label = ""

        self._ranges = []
        self._n = [
            int(kwargs.get("n1", self._N)),
            int(kwargs.get("n2", self._N)),
            int(kwargs.get("n3", self._N))
        ]
        self._scales = [
            kwargs.get("xscale", "linear"),
            kwargs.get("yscale", "linear"),
            kwargs.get("zscale", "linear")
        ]

        # enable interactive widget plots
        self._params = kwargs.get("params", {})
        if not isinstance(self._params, dict):
            raise TypeError("`params` must be a dictionary mapping symbols "
                "to numeric values.")
        if len(self._params) > 0:
            self.is_interactive = True

        # contains keyword arguments that will be passed to the rendering
        # function of the chosen plotting library
        self.rendering_kw = kwargs.get("rendering_kw", {})

        # numerical transformation functions to be applied to the output data:
        # x, y, z (coordinates), p (parameter on parametric plots)
        self._tx = kwargs.get("tx", None)
        self._ty = kwargs.get("ty", None)
        self._tz = kwargs.get("tz", None)
        self._tp = kwargs.get("tp", None)
        if not all(callable(t) or (t is None) for t in
            [self._tx, self._ty, self._tz, self._tp]):
            raise TypeError("`tx`, `ty`, `tz`, `tp` must be functions.")

        # list of numerical functions representing the expressions to evaluate
        self._functions = []
        # signature for the numerical functions
        self._signature = []
        # some expressions don't like to be evaluated over complex data.
        # if that's the case, set this to True
        self._force_real_eval = kwargs.get("force_real_eval", None)
        # this attribute will eventually contain a dictionary with the
        # discretized ranges
        self._discretized_domain = None
        # wheter the series contains any interactive range, which is a range
        # where the minimum and maximum values can be changed with an
        # interactive widget
        self._interactive_ranges = False
        # NOTE: consider a generic summation, for example:
        #   s = Sum(cos(pi * x), (x, 1, y))
        # This gets lambdified to something:
        #   sum(cos(pi*x) for x in range(1, y+1))
        # Hence, y needs to be an integer, otherwise it raises:
        #   TypeError: 'complex' object cannot be interpreted as an integer
        # This list will contains symbols that are upper bound to summations
        # or products
        self._needs_to_be_int = []
        # a color function will be responsible to set the line/surface color
        # according to some logic. Each data series will et an appropriate
        # default value.
        self.color_func = None
        # NOTE: color_func usually receives numerical functions that are going
        # to be evaluated over the coordinates of the computed points (or the
        # discretized meshes).
        # However, if an expression is given to color_func, then it will be
        # lambdified with symbols in self._signature, and it will be evaluated
        # with the same data used to evaluate the plotted expression.
        self._eval_color_func_with_signature = False

    def _block_lambda_functions(self, *exprs):
        """Some data series can be used to plot numerical functions, others
        cannot. Execute this method inside the `__init__` to prevent the
        processing of numerical functions.
        """
        if any(callable(e) for e in exprs):
            raise TypeError(type(self).__name__ + " requires a symbolic "
                "expression.")

    def _check_fs(self):
        """ Checks if there are enogh parameters and free symbols.
        """
        exprs, ranges = self.expr, self.ranges
        params, label = self.params, self.label
        exprs = exprs if hasattr(exprs, "__iter__") else [exprs]
        if any(callable(e) for e in exprs):
            return

        # from the expression's free symbols, remove the ones used in
        # the parameters and the ranges
        fs = _get_free_symbols(exprs)
        fs = fs.difference(params.keys())
        if ranges is not None:
            fs = fs.difference([r[0] for r in ranges])

        if len(fs) > 0:
            raise ValueError(
                "Incompatible expression and parameters.\n"
                + "Expression: {}\n".format(
                    (exprs, ranges, label) if ranges is not None else (exprs, label))
                + "params: {}\n".format(params)
                + "Specify what these symbols represent: {}\n".format(fs)
                + "Are they ranges or parameters?"
            )

        # verify that all symbols are known (they either represent plotting
        # ranges or parameters)
        range_symbols = [r[0] for r in ranges]
        for r in ranges:
            fs = set().union(*[e.free_symbols for e in r[1:]])
            if any(t in fs for t in range_symbols):
                # ranges can't depend on each other, for example this are
                # not allowed:
                # (x, 0, y), (y, 0, 3)
                # (x, 0, y), (y, x + 2, 3)
                raise ValueError("Range symbols can't be included into "
                    "minimum and maximum of a range. "
                    "Received range: %s" % str(r))
            if len(fs) > 0:
                self._interactive_ranges = True
            remaining_fs = fs.difference(params.keys())
            if len(remaining_fs) > 0:
                raise ValueError(
                    "Unkown symbols found in plotting range: %s. " % (r,) +
                    "Are the following parameters? %s" % remaining_fs)

    def _create_lambda_func(self):
        """Create the lambda functions to be used by the uniform meshing
        strategy.

        Notes
        =====
        The old sympy.plotting used experimental_lambdify. It created one
        lambda function each time an evaluation was requested. If that failed,
        it went on to create a different lambda function and evaluated it,
        and so on.

        This new module changes strategy: it creates right away the default
        lambda function as well as the backup one. The reason is that the
        series could be interactive, hence the numerical function will be
        evaluated multiple times. So, let's create the functions just once.

        This approach works fine for the majority of cases, in which the
        symbolic expression is relatively short, hence the lambdification
        is fast. If the expression is very long, this approach takes twice
        the time to create the lambda functions. Be aware of that!
        """
        exprs = self.expr if hasattr(self.expr, "__iter__") else [self.expr]
        if not any(callable(e) for e in exprs):
            fs = _get_free_symbols(exprs)
            self._signature = sorted(fs, key=lambda t: t.name)

            # Generate a list of lambda functions, two for each expression:
            # 1. the default one.
            # 2. the backup one, in case of failures with the default one.
            self._functions = []
            for e in exprs:
                # TODO: set cse=True once this issue is solved:
                # https://github.com/sympy/sympy/issues/24246
                self._functions.append([
                    lambdify(self._signature, e, modules=self.modules),
                    lambdify(self._signature, e, modules="sympy", dummify=True),
                ])
        else:
            self._signature = sorted([r[0] for r in self.ranges], key=lambda t: t.name)
            self._functions = [(e, None) for e in exprs]

        # deal with symbolic color_func
        if isinstance(self.color_func, Expr):
            self.color_func = lambdify(self._signature, self.color_func)
            self._eval_color_func_with_signature = True

    def _update_range_value(self, t):
        """If the value of a plotting range is a symbolic expression,
        substitute the parameters in order to get a numerical value.
        """
        if not self._interactive_ranges:
            return complex(t)
        return complex(t.subs(self.params))

    def _create_discretized_domain(self):
        """Discretize the ranges for uniform meshing strategy.
        """
        # NOTE: the goal is to create a dictionary stored in
        # self._discretized_domain, mapping symbols to a numpy array
        # representing the discretization
        discr_symbols = []
        discretizations = []

        # create a 1D discretization
        for i, r in enumerate(self.ranges):
            discr_symbols.append(r[0])
            c_start = self._update_range_value(r[1])
            c_end = self._update_range_value(r[2])
            start = c_start.real if c_start.imag == c_end.imag == 0 else c_start
            end = c_end.real if c_start.imag == c_end.imag == 0 else c_end
            needs_integer_discr = self.only_integers or (r[0] in self._needs_to_be_int)
            d = BaseSeries._discretize(start, end, self.n[i],
                scale=self.scales[i],
                only_integers=needs_integer_discr)

            if ((not self._force_real_eval) and (not needs_integer_discr) and
                (d.dtype != "complex")):
                d = d + 1j * c_start.imag

            if needs_integer_discr:
                d = d.astype(int)

            discretizations.append(d)

        # create 2D or 3D
        self._create_discretized_domain_helper(discr_symbols, discretizations)

    def _create_discretized_domain_helper(self, discr_symbols, discretizations):
        """Create 2D or 3D discretized grids.

        Subclasses should override this method in order to implement a
        different behaviour.
        """
        np = import_module('numpy')

        # discretization suitable for 2D line plots, 3D surface plots,
        # contours plots, vector plots
        # NOTE: why indexing='ij'? Because it produces consistent results with
        # np.mgrid. This is important as Mayavi requires this indexing
        # to correctly compute 3D streamlines. While VTK is able to compute
        # streamlines regardless of the indexing, with indexing='xy' it
        # produces "strange" results with "voids" into the
        # discretization volume. indexing='ij' solves the problem.
        # Also note that matplotlib 2D streamlines requires indexing='xy'.
        indexing = "xy"
        if self.is_3Dvector or (self.is_3Dsurface and self.is_implicit):
            indexing = "ij"
        meshes = np.meshgrid(*discretizations, indexing=indexing)
        self._discretized_domain = dict(zip(discr_symbols, meshes))

    def _evaluate(self, cast_to_real=True):
        """Evaluation of the symbolic expression (or expressions) with the
        uniform meshing strategy, based on current values of the parameters.
        """
        np = import_module('numpy')

        # create lambda functions
        if not self._functions:
            self._create_lambda_func()
        # create (or update) the discretized domain
        if (not self._discretized_domain) or self._interactive_ranges:
            self._create_discretized_domain()
        # ensure that discretized domains are returned with the proper order
        discr = [self._discretized_domain[s[0]] for s in self.ranges]

        args = self._aggregate_args()

        results = []
        for f in self._functions:
            r = _uniform_eval(*f, *args)
            # the evaluation might produce an int/float. Need this correction.
            r = self._correct_shape(np.array(r), discr[0])
            # sometime the evaluation is performed over arrays of type object.
            # hence, `result` might be of type object, which don't work well
            # with numpy real and imag functions.
            r = r.astype(complex)
            results.append(r)

        if cast_to_real:
            discr = [np.real(d.astype(complex)) for d in discr]
        return [*discr, *results]

    def _aggregate_args(self):
        """Create a list of arguments to be passed to the lambda function,
        sorted accoring to self._signature.
        """
        args = []
        for s in self._signature:
            if s in self._params.keys():
                args.append(
                    int(self._params[s]) if s in self._needs_to_be_int else
                    self._params[s] if self._force_real_eval
                    else complex(self._params[s]))
            else:
                args.append(self._discretized_domain[s])
        return args

    @property
    def expr(self):
        """Return the expression (or expressions) of the series."""
        return self._expr

    @expr.setter
    def expr(self, e):
        """Set the expression (or expressions) of the series."""
        is_iter = hasattr(e, "__iter__")
        is_callable = callable(e) if not is_iter else any(callable(t) for t in e)
        if is_callable:
            self._expr = e
        else:
            self._expr = sympify(e) if not is_iter else Tuple(*e)

            # look for the upper bound of summations and products
            s = set()
            for e in self._expr.atoms(Sum, Product):
                for a in e.args[1:]:
                    if isinstance(a[-1], Symbol):
                        s.add(a[-1])
            self._needs_to_be_int = list(s)

            # list of sympy functions that when lambdified, the corresponding
            # numpy functions don't like complex-type arguments
            pf = [ceiling, floor, atan2, frac, zeta]
            if self._force_real_eval is not True:
                check_res = [self._expr.has(f) for f in pf]
                self._force_real_eval = any(check_res)
                if self._force_real_eval and ((self.modules is None) or
                    (isinstance(self.modules, str) and "numpy" in self.modules)):
                    funcs = [f for f, c in zip(pf, check_res) if c]
                    warnings.warn("NumPy is unable to evaluate with complex "
                        "numbers some of the functions included in this "
                        "symbolic expression: %s. " % funcs +
                        "Hence, the evaluation will use real numbers. "
                        "If you believe the resulting plot is incorrect, "
                        "change the evaluation module by setting the "
                        "`modules` keyword argument.")
            if self._functions:
                # update lambda functions
                self._create_lambda_func()

    @property
    def is_3D(self):
        flags3D = [self.is_3Dline, self.is_3Dsurface, self.is_3Dvector]
        return any(flags3D)

    @property
    def is_line(self):
        flagslines = [self.is_2Dline, self.is_3Dline]
        return any(flagslines)

    def _line_surface_color(self, prop, val):
        """This method enables back-compatibility with old sympy.plotting"""
        # NOTE: color_func is set inside the init method of the series.
        # If line_color/surface_color is not a callable, then color_func will
        # be set to None.
        setattr(self, prop, val)
        if callable(val) or isinstance(val, Expr):
            self.color_func = val
            setattr(self, prop, None)
        elif val is not None:
            self.color_func = None

    @property
    def line_color(self):
        return self._line_color

    @line_color.setter
    def line_color(self, val):
        self._line_surface_color("_line_color", val)

    @property
    def n(self):
        """Returns a list [n1, n2, n3] of numbers of discratization points.
        """
        return self._n

    @n.setter
    def n(self, v):
        """Set the numbers of discretization points. ``v`` must be an int or
        a list.

        Let ``s`` be a series. Then:

        * to set the number of discretization points along the x direction (or
          first parameter): ``s.n = 10``
        * to set the number of discretization points along the x and y
          directions (or first and second parameters): ``s.n = [10, 15]``
        * to set the number of discretization points along the x, y and z
          directions: ``s.n = [10, 15, 20]``

        The following is highly unreccomended, because it prevents
        the execution of necessary code in order to keep updated data:
        ``s.n[1] = 15``
        """
        if not hasattr(v, "__iter__"):
            self._n[0] = v
        else:
            self._n[:len(v)] = v
        if self._discretized_domain:
            # update the discretized domain
            self._create_discretized_domain()

    @property
    def params(self):
        """Get or set the current parameters dictionary.

        Parameters
        ==========

        p : dict

            * key: symbol associated to the parameter
            * val: the numeric value
        """
        return self._params

    @params.setter
    def params(self, p):
        self._params = p

    def _post_init(self):
        exprs = self.expr if hasattr(self.expr, "__iter__") else [self.expr]
        if any(callable(e) for e in exprs) and self.params:
            raise TypeError("`params` was provided, hence an interactive plot "
                "is expected. However, interactive plots do not support "
                "user-provided numerical functions.")

        # if the expressions is a lambda function and no label has been
        # provided, then its better to do the following in order to avoid
        # suprises on the backend
        if any(callable(e) for e in exprs):
            if self._label == str(self.expr):
                self.label = ""

        self._check_fs()

        if hasattr(self, "adaptive") and self.adaptive and self.params:
            warnings.warn("`params` was provided, hence an interactive plot "
                "is expected. However, interactive plots do not support "
                "adaptive evaluation. Automatically switched to "
                "adaptive=False.")
            self.adaptive = False

    @property
    def scales(self):
        return self._scales

    @scales.setter
    def scales(self, v):
        if isinstance(v, str):
            self._scales[0] = v
        else:
            self._scales[:len(v)] = v

    @property
    def surface_color(self):
        return self._surface_color

    @surface_color.setter
    def surface_color(self, val):
        self._line_surface_color("_surface_color", val)

    @property
    def rendering_kw(self):
        return self._rendering_kw

    @rendering_kw.setter
    def rendering_kw(self, kwargs):
        if isinstance(kwargs, dict):
            self._rendering_kw = kwargs
        else:
            self._rendering_kw = {}
            if kwargs is not None:
                warnings.warn(
                    "`rendering_kw` must be a dictionary, instead an "
                    "object of type %s was received. " % type(kwargs) +
                    "Automatically setting `rendering_kw` to an empty "
                    "dictionary")

    @staticmethod
    def _discretize(start, end, N, scale="linear", only_integers=False):
        """Discretize a 1D domain.

        Returns
        =======

        domain : np.ndarray with dtype=float or complex
            The domain's dtype will be float or complex (depending on the
            type of start/end) even if only_integers=True. It is left for
            the downstream code to perform further casting, if necessary.
        """
        np = import_module('numpy')

        if only_integers is True:
            start, end = int(start), int(end)
            N = end - start + 1

        if scale == "linear":
            return np.linspace(start, end, N)
        return np.geomspace(start, end, N)

    @staticmethod
    def _correct_shape(a, b):
        """Convert ``a`` to a np.ndarray of the same shape of ``b``.

        Parameters
        ==========

        a : int, float, complex, np.ndarray
            Usually, this is the result of a numerical evaluation of a
            symbolic expression. Even if a discretized domain was used to
            evaluate the function, the result can be a scalar (int, float,
            complex). Think for example to ``expr = Float(2)`` and
            ``f = lambdify(x, expr)``. No matter the shape of the numerical
            array representing x, the result of the evaluation will be
            a single value.

        b : np.ndarray
            It represents the correct shape that ``a`` should have.

        Returns
        =======
        new_a : np.ndarray
            An array with the correct shape.
        """
        np = import_module('numpy')

        if not isinstance(a, np.ndarray):
            a = np.array(a)
        if a.shape != b.shape:
            if a.shape == ():
                a = a * np.ones_like(b)
            else:
                a = a.reshape(b.shape)
        return a

    def eval_color_func(self, *args):
        """Evaluate the color function.

        Parameters
        ==========

        args : tuple
            Arguments to be passed to the coloring function. Can be coordinates
            or parameters or both.

        Notes
        =====

        The backend will request the data series to generate the numerical
        data. Depending on the data series, either the data series itself or
        the backend will eventually execute this function to generate the
        appropriate coloring value.
        """
        np = import_module('numpy')
        if self.color_func is None:
            # NOTE: with the line_color and surface_color attributes
            # (back-compatibility with the old sympy.plotting module) it is
            # possible to create a plot with a callable line_color (or
            # surface_color). For example:
            # p = plot(sin(x), line_color=lambda x, y: -y)
            # This creates a ColoredLineOver1DRangeSeries with line_color=None
            # and color_func=lambda x, y: -y, which efffectively is a
            # parametric series. Later we could change it to a string value:
            # p[0].line_color = "red"
            # However, this sets ine_color="red" and color_func=None, but the
            # series is still ColoredLineOver1DRangeSeries (a parametric
            # series), which will render using a color_func...
            warnings.warn("This is likely not the result you were "
                "looking for. Please, re-execute the plot command, this time "
                "with the appropriate an appropriate value to line_color "
                "or surface_color.")
            return np.ones_like(args[0])

        if self._eval_color_func_with_signature:
            args = self._aggregate_args()
            color = self.color_func(*args)
            _re, _im = np.real(color), np.imag(color)
            _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan
            return _re

        nargs = arity(self.color_func)
        if nargs == 1:
            if self.is_2Dline and self.is_parametric:
                if len(args) == 2:
                    # ColoredLineOver1DRangeSeries
                    return self._correct_shape(self.color_func(args[0]), args[0])
                # Parametric2DLineSeries
                return self._correct_shape(self.color_func(args[2]), args[2])
            elif self.is_3Dline and self.is_parametric:
                return self._correct_shape(self.color_func(args[3]), args[3])
            elif self.is_3Dsurface and self.is_parametric:
                return self._correct_shape(self.color_func(args[3]), args[3])
            return self._correct_shape(self.color_func(args[0]), args[0])
        elif nargs == 2:
            if self.is_3Dsurface and self.is_parametric:
                return self._correct_shape(self.color_func(*args[3:]), args[3])
            return self._correct_shape(self.color_func(*args[:2]), args[0])
        return self._correct_shape(self.color_func(*args[:nargs]), args[0])

    def get_data(self):
        """Compute and returns the numerical data.

        The number of parameters returned by this method depends on the
        specific instance. If ``s`` is the series, make sure to read
        ``help(s.get_data)`` to understand what it returns.
        """
        raise NotImplementedError

    def _get_wrapped_label(self, label, wrapper):
        """Given a latex representation of an expression, wrap it inside
        some characters. Matplotlib needs "$%s%$", K3D-Jupyter needs "%s".
        """
        return wrapper % label

    def get_label(self, use_latex=False, wrapper="$%s$"):
        """Return the label to be used to display the expression.

        Parameters
        ==========
        use_latex : bool
            If False, the string representation of the expression is returned.
            If True, the latex representation is returned.
        wrapper : str
            The backend might need the latex representation to be wrapped by
            some characters. Default to ``"$%s$"``.

        Returns
        =======
        label : str
        """
        if use_latex is False:
            return self._label
        if self._label == str(self.expr):
            # when the backend requests a latex label and user didn't provide
            # any label
            return self._get_wrapped_label(self._latex_label, wrapper)
        return self._latex_label

    @property
    def label(self):
        return self.get_label()

    @label.setter
    def label(self, val):
        """Set the labels associated to this series."""
        # NOTE: the init method of any series requires a label. If the user do
        # not provide it, the preprocessing function will set label=None, which
        # informs the series to initialize two attributes:
        # _label contains the string representation of the expression.
        # _latex_label contains the latex representation of the expression.
        self._label = self._latex_label = val

    @property
    def ranges(self):
        return self._ranges

    @ranges.setter
    def ranges(self, val):
        new_vals = []
        for v in val:
            if v is not None:
                new_vals.append(tuple([sympify(t) for t in v]))
        self._ranges = new_vals

    def _apply_transform(self, *args):
        """Apply transformations to the results of numerical evaluation.

        Parameters
        ==========
        args : tuple
            Results of numerical evaluation.

        Returns
        =======
        transformed_args : tuple
            Tuple containing the transformed results.
        """
        t = lambda x, transform: x if transform is None else transform(x)
        x, y, z = None, None, None
        if len(args) == 2:
            x, y = args
            return t(x, self._tx), t(y, self._ty)
        elif (len(args) == 3) and isinstance(self, Parametric2DLineSeries):
            x, y, u = args
            return (t(x, self._tx), t(y, self._ty), t(u, self._tp))
        elif len(args) == 3:
            x, y, z = args
            return t(x, self._tx), t(y, self._ty), t(z, self._tz)
        elif (len(args) == 4) and isinstance(self, Parametric3DLineSeries):
            x, y, z, u = args
            return (t(x, self._tx), t(y, self._ty), t(z, self._tz), t(u, self._tp))
        elif len(args) == 4: # 2D vector plot
            x, y, u, v = args
            return (
                t(x, self._tx), t(y, self._ty),
                t(u, self._tx), t(v, self._ty)
            )
        elif (len(args) == 5) and isinstance(self, ParametricSurfaceSeries):
            x, y, z, u, v = args
            return (t(x, self._tx), t(y, self._ty), t(z, self._tz), u, v)
        elif (len(args) == 6) and self.is_3Dvector: # 3D vector plot
            x, y, z, u, v, w = args
            return (
                t(x, self._tx), t(y, self._ty), t(z, self._tz),
                t(u, self._tx), t(v, self._ty), t(w, self._tz)
            )
        elif len(args) == 6: # complex plot
            x, y, _abs, _arg, img, colors = args
            return (
                x, y, t(_abs, self._tz), _arg, img, colors)
        return args

    def _str_helper(self, s):
        pre, post = "", ""
        if self.is_interactive:
            pre = "interactive "
            post = " and parameters " + str(tuple(self.params.keys()))
        return pre + s + post


def _detect_poles_numerical_helper(x, y, eps=0.01, expr=None, symb=None, symbolic=False):
    """Compute the steepness of each segment. If it's greater than a
    threshold, set the right-point y-value non NaN and record the
    corresponding x-location for further processing.

    Returns
    =======
    x : np.ndarray
        Unchanged x-data.
    yy : np.ndarray
        Modified y-data with NaN values.
    """
    np = import_module('numpy')

    yy = y.copy()
    threshold = np.pi / 2 - eps
    for i in range(len(x) - 1):
        dx = x[i + 1] - x[i]
        dy = abs(y[i + 1] - y[i])
        angle = np.arctan(dy / dx)
        if abs(angle) >= threshold:
            yy[i + 1] = np.nan

    return x, yy

def _detect_poles_symbolic_helper(expr, symb, start, end):
    """Attempts to compute symbolic discontinuities.

    Returns
    =======
    pole : list
        List of symbolic poles, possibily empty.
    """
    poles = []
    interval = Interval(nsimplify(start), nsimplify(end))
    res = continuous_domain(expr, symb, interval)
    res = res.simplify()
    if res == interval:
        pass
    elif (isinstance(res, Union) and
        all(isinstance(t, Interval) for t in res.args)):
        poles = []
        for s in res.args:
            if s.left_open:
                poles.append(s.left)
            if s.right_open:
                poles.append(s.right)
        poles = list(set(poles))
    else:
        raise ValueError(
            f"Could not parse the following object: {res} .\n"
            "Please, submit this as a bug. Consider also to set "
            "`detect_poles=True`."
        )
    return poles


### 2D lines
class Line2DBaseSeries(BaseSeries):
    """A base class for 2D lines.

    - adding the label, steps and only_integers options
    - making is_2Dline true
    - defining get_segments and get_color_array
    """

    is_2Dline = True
    _dim = 2
    _N = 1000

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.steps = kwargs.get("steps", False)
        self.is_point = kwargs.get("is_point", kwargs.get("point", False))
        self.is_filled = kwargs.get("is_filled", kwargs.get("fill", True))
        self.adaptive = kwargs.get("adaptive", False)
        self.depth = kwargs.get('depth', 12)
        self.use_cm = kwargs.get("use_cm", False)
        self.color_func = kwargs.get("color_func", None)
        self.line_color = kwargs.get("line_color", None)
        self.detect_poles = kwargs.get("detect_poles", False)
        self.eps = kwargs.get("eps", 0.01)
        self.is_polar = kwargs.get("is_polar", kwargs.get("polar", False))
        self.unwrap = kwargs.get("unwrap", False)
        # when detect_poles="symbolic", stores the location of poles so that
        # they can be appropriately rendered
        self.poles_locations = []
        exclude = kwargs.get("exclude", [])
        if isinstance(exclude, Set):
            exclude = list(extract_solution(exclude, n=100))
        if not hasattr(exclude, "__iter__"):
            exclude = [exclude]
        exclude = [float(e) for e in exclude]
        self.exclude = sorted(exclude)

    def get_data(self):
        """Return coordinates for plotting the line.

        Returns
        =======

        x: np.ndarray
            x-coordinates

        y: np.ndarray
            y-coordinates

        z: np.ndarray (optional)
            z-coordinates in case of Parametric3DLineSeries,
            Parametric3DLineInteractiveSeries

        param : np.ndarray (optional)
            The parameter in case of Parametric2DLineSeries,
            Parametric3DLineSeries or AbsArgLineSeries (and their
            corresponding interactive series).
        """
        np = import_module('numpy')
        points = self._get_data_helper()

        if (isinstance(self, LineOver1DRangeSeries) and
            (self.detect_poles == "symbolic")):
            poles = _detect_poles_symbolic_helper(
                self.expr.subs(self.params), *self.ranges[0])
            poles = np.array([float(t) for t in poles])
            t = lambda x, transform: x if transform is None else transform(x)
            self.poles_locations = t(np.array(poles), self._tx)

        # postprocessing
        points = self._apply_transform(*points)

        if self.is_2Dline and self.detect_poles:
            if len(points) == 2:
                x, y = points
                x, y = _detect_poles_numerical_helper(
                    x, y, self.eps)
                points = (x, y)
            else:
                x, y, p = points
                x, y = _detect_poles_numerical_helper(x, y, self.eps)
                points = (x, y, p)

        if self.unwrap:
            kw = {}
            if self.unwrap is not True:
                kw = self.unwrap
            if self.is_2Dline:
                if len(points) == 2:
                    x, y = points
                    y = np.unwrap(y, **kw)
                    points = (x, y)
                else:
                    x, y, p = points
                    y = np.unwrap(y, **kw)
                    points = (x, y, p)

        if self.steps is True:
            if self.is_2Dline:
                x, y = points[0], points[1]
                x = np.array((x, x)).T.flatten()[1:]
                y = np.array((y, y)).T.flatten()[:-1]
                if self.is_parametric:
                    points = (x, y, points[2])
                else:
                    points = (x, y)
            elif self.is_3Dline:
                x = np.repeat(points[0], 3)[2:]
                y = np.repeat(points[1], 3)[:-2]
                z = np.repeat(points[2], 3)[1:-1]
                if len(points) > 3:
                    points = (x, y, z, points[3])
                else:
                    points = (x, y, z)

        if len(self.exclude) > 0:
            points = self._insert_exclusions(points)
        return points

    def get_segments(self):
        sympy_deprecation_warning(
            """
            The Line2DBaseSeries.get_segments() method is deprecated.

            Instead, use the MatplotlibBackend.get_segments() method, or use
            The get_points() or get_data() methods.
            """,
            deprecated_since_version="1.9",
            active_deprecations_target="deprecated-get-segments")

        np = import_module('numpy')
        points = type(self).get_data(self)
        points = np.ma.array(points).T.reshape(-1, 1, self._dim)
        return np.ma.concatenate([points[:-1], points[1:]], axis=1)

    def _insert_exclusions(self, points):
        """Add NaN to each of the exclusion point. Practically, this adds a
        NaN to the exlusion point, plus two other nearby points evaluated with
        the numerical functions associated to this data series.
        These nearby points are important when the number of discretization
        points is low, or the scale is logarithm.

        NOTE: it would be easier to just add exclusion points to the
        discretized domain before evaluation, then after evaluation add NaN
        to the exclusion points. But that's only work with adaptive=False.
        The following approach work even with adaptive=True.
        """
        np = import_module("numpy")
        points = list(points)
        n = len(points)
        # index of the x-coordinate (for 2d plots) or parameter (for 2d/3d
        # parametric plots)
        k = n - 1
        if n == 2:
            k = 0
        # indeces of the other coordinates
        j_indeces = sorted(set(range(n)).difference([k]))
        # TODO: for now, I assume that numpy functions are going to succeed
        funcs = [f[0] for f in self._functions]

        for e in self.exclude:
            res = points[k] - e >= 0
            # if res contains both True and False, ie, if e is found
            if any(res) and any(~res):
                idx = np.nanargmax(res)
                # select the previous point with respect to e
                idx -= 1
                # TODO: what if points[k][idx]==e or points[k][idx+1]==e?

                if idx > 0 and idx < len(points[k]) - 1:
                    delta_prev = abs(e - points[k][idx])
                    delta_post = abs(e - points[k][idx + 1])
                    delta = min(delta_prev, delta_post) / 100
                    prev = e - delta
                    post = e + delta

                    # add points to the x-coord or the parameter
                    points[k] = np.concatenate(
                        (points[k][:idx], [prev, e, post], points[k][idx+1:]))

                    # add points to the other coordinates
                    c = 0
                    for j in j_indeces:
                        values = funcs[c](np.array([prev, post]))
                        c += 1
                        points[j] = np.concatenate(
                            (points[j][:idx], [values[0], np.nan, values[1]], points[j][idx+1:]))
        return points

    @property
    def var(self):
        return None if not self.ranges else self.ranges[0][0]

    @property
    def start(self):
        if not self.ranges:
            return None
        try:
            return self._cast(self.ranges[0][1])
        except TypeError:
            return self.ranges[0][1]

    @property
    def end(self):
        if not self.ranges:
            return None
        try:
            return self._cast(self.ranges[0][2])
        except TypeError:
            return self.ranges[0][2]

    @property
    def xscale(self):
        return self._scales[0]

    @xscale.setter
    def xscale(self, v):
        self.scales = v

    def get_color_array(self):
        np = import_module('numpy')
        c = self.line_color
        if hasattr(c, '__call__'):
            f = np.vectorize(c)
            nargs = arity(c)
            if nargs == 1 and self.is_parametric:
                x = self.get_parameter_points()
                return f(centers_of_segments(x))
            else:
                variables = list(map(centers_of_segments, self.get_points()))
                if nargs == 1:
                    return f(variables[0])
                elif nargs == 2:
                    return f(*variables[:2])
                else:  # only if the line is 3D (otherwise raises an error)
                    return f(*variables)
        else:
            return c*np.ones(self.nb_of_points)


class List2DSeries(Line2DBaseSeries):
    """Representation for a line consisting of list of points."""

    def __init__(self, list_x, list_y, label="", **kwargs):
        super().__init__(**kwargs)
        np = import_module('numpy')
        if len(list_x) != len(list_y):
            raise ValueError(
                "The two lists of coordinates must have the same "
                "number of elements.\n"
                "Received: len(list_x) = {} ".format(len(list_x)) +
                "and len(list_y) = {}".format(len(list_y))
            )
        self._block_lambda_functions(list_x, list_y)
        check = lambda l: [isinstance(t, Expr) and (not t.is_number) for t in l]
        if any(check(list_x) + check(list_y)) or self.params:
            if not self.params:
                raise ValueError("Some or all elements of the provided lists "
                    "are symbolic expressions, but the ``params`` dictionary "
                    "was not provided: those elements can't be evaluated.")
            self.list_x = Tuple(*list_x)
            self.list_y = Tuple(*list_y)
        else:
            self.list_x = np.array(list_x, dtype=np.float64)
            self.list_y = np.array(list_y, dtype=np.float64)

        self._expr = (self.list_x, self.list_y)
        if not any(isinstance(t, np.ndarray) for t in [self.list_x, self.list_y]):
            self._check_fs()
        self.is_polar = kwargs.get("is_polar", kwargs.get("polar", False))
        self.label = label
        self.rendering_kw = kwargs.get("rendering_kw", {})
        if self.use_cm and self.color_func:
            self.is_parametric = True
            if isinstance(self.color_func, Expr):
                raise TypeError(
                    "%s don't support symbolic " % self.__class__.__name__ +
                    "expression for `color_func`.")

    def __str__(self):
        return "2D list plot"

    def _get_data_helper(self):
        """Returns coordinates that needs to be postprocessed."""
        lx, ly = self.list_x, self.list_y

        if not self.is_interactive:
            return self._eval_color_func_and_return(lx, ly)

        np = import_module('numpy')
        lx = np.array([t.evalf(subs=self.params) for t in lx], dtype=float)
        ly = np.array([t.evalf(subs=self.params) for t in ly], dtype=float)
        return self._eval_color_func_and_return(lx, ly)

    def _eval_color_func_and_return(self, *data):
        if self.use_cm and callable(self.color_func):
            return [*data, self.eval_color_func(*data)]
        return data


class LineOver1DRangeSeries(Line2DBaseSeries):
    """Representation for a line consisting of a SymPy expression over a range."""

    def __init__(self, expr, var_start_end, label="", **kwargs):
        super().__init__(**kwargs)
        self.expr = expr if callable(expr) else sympify(expr)
        self._label = str(self.expr) if label is None else label
        self._latex_label = latex(self.expr) if label is None else label
        self.ranges = [var_start_end]
        self._cast = complex
        # for complex-related data series, this determines what data to return
        # on the y-axis
        self._return = kwargs.get("return", None)
        self._post_init()

        if not self._interactive_ranges:
            # NOTE: the following check is only possible when the minimum and
            # maximum values of a plotting range are numeric
            start, end = [complex(t) for t in self.ranges[0][1:]]
            if im(start) != im(end):
                raise ValueError(
                    "%s requires the imaginary " % self.__class__.__name__ +
                    "part of the start and end values of the range "
                    "to be the same.")

        if self.adaptive and self._return:
            warnings.warn("The adaptive algorithm is unable to deal with "
                "complex numbers. Automatically switching to uniform meshing.")
            self.adaptive = False

    @property
    def nb_of_points(self):
        return self.n[0]

    @nb_of_points.setter
    def nb_of_points(self, v):
        self.n = v

    def __str__(self):
        def f(t):
            if isinstance(t, complex):
                if t.imag != 0:
                    return t
                return t.real
            return t
        pre = "interactive " if self.is_interactive else ""
        post = ""
        if self.is_interactive:
            post = " and parameters " + str(tuple(self.params.keys()))
        wrapper = _get_wrapper_for_expr(self._return)
        return pre + "cartesian line: %s for %s over %s" % (
            wrapper % self.expr,
            str(self.var),
            str((f(self.start), f(self.end))),
        ) + post

    def get_points(self):
        """Return lists of coordinates for plotting. Depending on the
        ``adaptive`` option, this function will either use an adaptive algorithm
        or it will uniformly sample the expression over the provided range.

        This function is available for back-compatibility purposes. Consider
        using ``get_data()`` instead.

        Returns
        =======
            x : list
                List of x-coordinates

            y : list
                List of y-coordinates
        """
        return self._get_data_helper()

    def _adaptive_sampling(self):
        try:
            if callable(self.expr):
                f = self.expr
            else:
                f = lambdify([self.var], self.expr, self.modules)
            x, y = self._adaptive_sampling_helper(f)
        except Exception as err:
            warnings.warn(
                "The evaluation with %s failed.\n" % (
                    "NumPy/SciPy" if not self.modules else self.modules) +
                "{}: {}\n".format(type(err).__name__, err) +
                "Trying to evaluate the expression with Sympy, but it might "
                "be a slow operation."
            )
            f = lambdify([self.var], self.expr, "sympy")
            x, y = self._adaptive_sampling_helper(f)
        return x, y

    def _adaptive_sampling_helper(self, f):
        """The adaptive sampling is done by recursively checking if three
        points are almost collinear. If they are not collinear, then more
        points are added between those points.

        References
        ==========

        .. [1] Adaptive polygonal approximation of parametric curves,
               Luiz Henrique de Figueiredo.
        """
        np = import_module('numpy')

        x_coords = []
        y_coords = []
        def sample(p, q, depth):
            """ Samples recursively if three points are almost collinear.
            For depth < 6, points are added irrespective of whether they
            satisfy the collinearity condition or not. The maximum depth
            allowed is 12.
            """
            # Randomly sample to avoid aliasing.
            random = 0.45 + np.random.rand() * 0.1
            if self.xscale == 'log':
                xnew = 10**(np.log10(p[0]) + random * (np.log10(q[0]) -
                                                        np.log10(p[0])))
            else:
                xnew = p[0] + random * (q[0] - p[0])
            ynew = _adaptive_eval(f, xnew)
            new_point = np.array([xnew, ynew])

            # Maximum depth
            if depth > self.depth:
                x_coords.append(q[0])
                y_coords.append(q[1])

            # Sample to depth of 6 (whether the line is flat or not)
            # without using linspace (to avoid aliasing).
            elif depth < 6:
                sample(p, new_point, depth + 1)
                sample(new_point, q, depth + 1)

            # Sample ten points if complex values are encountered
            # at both ends. If there is a real value in between, then
            # sample those points further.
            elif p[1] is None and q[1] is None:
                if self.xscale == 'log':
                    xarray = np.logspace(p[0], q[0], 10)
                else:
                    xarray = np.linspace(p[0], q[0], 10)
                yarray = list(map(f, xarray))
                if not all(y is None for y in yarray):
                    for i in range(len(yarray) - 1):
                        if not (yarray[i] is None and yarray[i + 1] is None):
                            sample([xarray[i], yarray[i]],
                                [xarray[i + 1], yarray[i + 1]], depth + 1)

            # Sample further if one of the end points in None (i.e. a
            # complex value) or the three points are not almost collinear.
            elif (p[1] is None or q[1] is None or new_point[1] is None
                    or not flat(p, new_point, q)):
                sample(p, new_point, depth + 1)
                sample(new_point, q, depth + 1)
            else:
                x_coords.append(q[0])
                y_coords.append(q[1])

        f_start = _adaptive_eval(f, self.start.real)
        f_end = _adaptive_eval(f, self.end.real)
        x_coords.append(self.start.real)
        y_coords.append(f_start)
        sample(np.array([self.start.real, f_start]),
                np.array([self.end.real, f_end]), 0)

        return (x_coords, y_coords)

    def _uniform_sampling(self):
        np = import_module('numpy')

        x, result = self._evaluate()
        _re, _im = np.real(result), np.imag(result)
        _re = self._correct_shape(_re, x)
        _im = self._correct_shape(_im, x)
        return x, _re, _im

    def _get_data_helper(self):
        """Returns coordinates that needs to be postprocessed.
        """
        np = import_module('numpy')
        if self.adaptive and (not self.only_integers):
            x, y = self._adaptive_sampling()
            return [np.array(t) for t in [x, y]]

        x, _re, _im = self._uniform_sampling()

        if self._return is None:
            # The evaluation could produce complex numbers. Set real elements
            # to NaN where there are non-zero imaginary elements
            _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan
        elif self._return == "real":
            pass
        elif self._return == "imag":
            _re = _im
        elif self._return == "abs":
            _re = np.sqrt(_re**2 + _im**2)
        elif self._return == "arg":
            _re = np.arctan2(_im, _re)
        else:
            raise ValueError("`_return` not recognized. "
                "Received: %s" % self._return)

        return x, _re


class ParametricLineBaseSeries(Line2DBaseSeries):
    is_parametric = True

    def _set_parametric_line_label(self, label):
        """Logic to set the correct label to be shown on the plot.
        If `use_cm=True` there will be a colorbar, so we show the parameter.
        If `use_cm=False`, there might be a legend, so we show the expressions.

        Parameters
        ==========
        label : str
            label passed in by the pre-processor or the user
        """
        self._label = str(self.var) if label is None else label
        self._latex_label = latex(self.var) if label is None else label
        if (self.use_cm is False) and (self._label == str(self.var)):
            self._label = str(self.expr)
            self._latex_label = latex(self.expr)
        # if the expressions is a lambda function and use_cm=False and no label
        # has been provided, then its better to do the following in order to
        # avoid suprises on the backend
        if any(callable(e) for e in self.expr) and (not self.use_cm):
            if self._label == str(self.expr):
                self._label = ""

    def get_label(self, use_latex=False, wrapper="$%s$"):
        # parametric lines returns the representation of the parameter to be
        # shown on the colorbar if `use_cm=True`, otherwise it returns the
        # representation of the expression to be placed on the legend.
        if self.use_cm:
            if str(self.var) == self._label:
                if use_latex:
                    return self._get_wrapped_label(latex(self.var), wrapper)
                return str(self.var)
            # here the user has provided a custom label
            return self._label
        if use_latex:
            if self._label != str(self.expr):
                return self._latex_label
            return self._get_wrapped_label(self._latex_label, wrapper)
        return self._label

    def _get_data_helper(self):
        """Returns coordinates that needs to be postprocessed.
        Depending on the `adaptive` option, this function will either use an
        adaptive algorithm or it will uniformly sample the expression over the
        provided range.
        """
        if self.adaptive:
            np = import_module("numpy")
            coords = self._adaptive_sampling()
            coords = [np.array(t) for t in coords]
        else:
            coords = self._uniform_sampling()

        if self.is_2Dline and self.is_polar:
            # when plot_polar is executed with polar_axis=True
            np = import_module('numpy')
            x, y, _ = coords
            r = np.sqrt(x**2 + y**2)
            t = np.arctan2(y, x)
            coords = [t, r, coords[-1]]

        if callable(self.color_func):
            coords = list(coords)
            coords[-1] = self.eval_color_func(*coords)

        return coords

    def _uniform_sampling(self):
        """Returns coordinates that needs to be postprocessed."""
        np = import_module('numpy')

        results = self._evaluate()
        for i, r in enumerate(results):
            _re, _im = np.real(r), np.imag(r)
            _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan
            results[i] = _re

        return [*results[1:], results[0]]

    def get_parameter_points(self):
        return self.get_data()[-1]

    def get_points(self):
        """ Return lists of coordinates for plotting. Depending on the
        ``adaptive`` option, this function will either use an adaptive algorithm
        or it will uniformly sample the expression over the provided range.

        This function is available for back-compatibility purposes. Consider
        using ``get_data()`` instead.

        Returns
        =======
            x : list
                List of x-coordinates
            y : list
                List of y-coordinates
            z : list
                List of z-coordinates, only for 3D parametric line plot.
        """
        return self._get_data_helper()[:-1]

    @property
    def nb_of_points(self):
        return self.n[0]

    @nb_of_points.setter
    def nb_of_points(self, v):
        self.n = v


class Parametric2DLineSeries(ParametricLineBaseSeries):
    """Representation for a line consisting of two parametric SymPy expressions
    over a range."""

    is_2Dline = True

    def __init__(self, expr_x, expr_y, var_start_end, label="", **kwargs):
        super().__init__(**kwargs)
        self.expr_x = expr_x if callable(expr_x) else sympify(expr_x)
        self.expr_y = expr_y if callable(expr_y) else sympify(expr_y)
        self.expr = (self.expr_x, self.expr_y)
        self.ranges = [var_start_end]
        self._cast = float
        self.use_cm = kwargs.get("use_cm", True)
        self._set_parametric_line_label(label)
        self._post_init()

    def __str__(self):
        return self._str_helper(
            "parametric cartesian line: (%s, %s) for %s over %s" % (
            str(self.expr_x),
            str(self.expr_y),
            str(self.var),
            str((self.start, self.end))
        ))

    def _adaptive_sampling(self):
        try:
            if callable(self.expr_x) and callable(self.expr_y):
                f_x = self.expr_x
                f_y = self.expr_y
            else:
                f_x = lambdify([self.var], self.expr_x)
                f_y = lambdify([self.var], self.expr_y)
            x, y, p = self._adaptive_sampling_helper(f_x, f_y)
        except Exception as err:
            warnings.warn(
                "The evaluation with %s failed.\n" % (
                    "NumPy/SciPy" if not self.modules else self.modules) +
                "{}: {}\n".format(type(err).__name__, err) +
                "Trying to evaluate the expression with Sympy, but it might "
                "be a slow operation."
            )
            f_x = lambdify([self.var], self.expr_x, "sympy")
            f_y = lambdify([self.var], self.expr_y, "sympy")
            x, y, p = self._adaptive_sampling_helper(f_x, f_y)
        return x, y, p

    def _adaptive_sampling_helper(self, f_x, f_y):
        """The adaptive sampling is done by recursively checking if three
        points are almost collinear. If they are not collinear, then more
        points are added between those points.

        References
        ==========

        .. [1] Adaptive polygonal approximation of parametric curves,
            Luiz Henrique de Figueiredo.
        """
        x_coords = []
        y_coords = []
        param = []

        def sample(param_p, param_q, p, q, depth):
            """ Samples recursively if three points are almost collinear.
            For depth < 6, points are added irrespective of whether they
            satisfy the collinearity condition or not. The maximum depth
            allowed is 12.
            """
            # Randomly sample to avoid aliasing.
            np = import_module('numpy')
            random = 0.45 + np.random.rand() * 0.1
            param_new = param_p + random * (param_q - param_p)
            xnew = _adaptive_eval(f_x, param_new)
            ynew = _adaptive_eval(f_y, param_new)
            new_point = np.array([xnew, ynew])

            # Maximum depth
            if depth > self.depth:
                x_coords.append(q[0])
                y_coords.append(q[1])
                param.append(param_p)

            # Sample irrespective of whether the line is flat till the
            # depth of 6. We are not using linspace to avoid aliasing.
            elif depth < 6:
                sample(param_p, param_new, p, new_point, depth + 1)
                sample(param_new, param_q, new_point, q, depth + 1)

            # Sample ten points if complex values are encountered
            # at both ends. If there is a real value in between, then
            # sample those points further.
            elif ((p[0] is None and q[1] is None) or
                    (p[1] is None and q[1] is None)):
                param_array = np.linspace(param_p, param_q, 10)
                x_array = [_adaptive_eval(f_x, t) for t in param_array]
                y_array = [_adaptive_eval(f_y, t) for t in param_array]
                if not all(x is None and y is None
                           for x, y in zip(x_array, y_array)):
                    for i in range(len(y_array) - 1):
                        if ((x_array[i] is not None and y_array[i] is not None) or
                                (x_array[i + 1] is not None and y_array[i + 1] is not None)):
                            point_a = [x_array[i], y_array[i]]
                            point_b = [x_array[i + 1], y_array[i + 1]]
                            sample(param_array[i], param_array[i], point_a,
                                   point_b, depth + 1)

            # Sample further if one of the end points in None (i.e. a complex
            # value) or the three points are not almost collinear.
            elif (p[0] is None or p[1] is None
                    or q[1] is None or q[0] is None
                    or not flat(p, new_point, q)):
                sample(param_p, param_new, p, new_point, depth + 1)
                sample(param_new, param_q, new_point, q, depth + 1)
            else:
                x_coords.append(q[0])
                y_coords.append(q[1])
                param.append(param_p)

        f_start_x = _adaptive_eval(f_x, self.start)
        f_start_y = _adaptive_eval(f_y, self.start)
        start = [f_start_x, f_start_y]
        f_end_x = _adaptive_eval(f_x, self.end)
        f_end_y = _adaptive_eval(f_y, self.end)
        end = [f_end_x, f_end_y]
        x_coords.append(f_start_x)
        y_coords.append(f_start_y)
        param.append(self.start)
        sample(self.start, self.end, start, end, 0)

        return x_coords, y_coords, param


### 3D lines
class Line3DBaseSeries(Line2DBaseSeries):
    """A base class for 3D lines.

    Most of the stuff is derived from Line2DBaseSeries."""

    is_2Dline = False
    is_3Dline = True
    _dim = 3

    def __init__(self):
        super().__init__()


class Parametric3DLineSeries(ParametricLineBaseSeries):
    """Representation for a 3D line consisting of three parametric SymPy
    expressions and a range."""

    is_2Dline = False
    is_3Dline = True

    def __init__(self, expr_x, expr_y, expr_z, var_start_end, label="", **kwargs):
        super().__init__(**kwargs)
        self.expr_x = expr_x if callable(expr_x) else sympify(expr_x)
        self.expr_y = expr_y if callable(expr_y) else sympify(expr_y)
        self.expr_z = expr_z if callable(expr_z) else sympify(expr_z)
        self.expr = (self.expr_x, self.expr_y, self.expr_z)
        self.ranges = [var_start_end]
        self._cast = float
        self.adaptive = False
        self.use_cm = kwargs.get("use_cm", True)
        self._set_parametric_line_label(label)
        self._post_init()
        # TODO: remove this
        self._xlim = None
        self._ylim = None
        self._zlim = None

    def __str__(self):
        return self._str_helper(
            "3D parametric cartesian line: (%s, %s, %s) for %s over %s" % (
            str(self.expr_x),
            str(self.expr_y),
            str(self.expr_z),
            str(self.var),
            str((self.start, self.end))
        ))

    def get_data(self):
        # TODO: remove this
        np = import_module("numpy")
        x, y, z, p = super().get_data()
        self._xlim = (np.amin(x), np.amax(x))
        self._ylim = (np.amin(y), np.amax(y))
        self._zlim = (np.amin(z), np.amax(z))
        return x, y, z, p


### Surfaces
class SurfaceBaseSeries(BaseSeries):
    """A base class for 3D surfaces."""

    is_3Dsurface = True

    def __init__(self, *args, **kwargs):
        super().__init__(**kwargs)
        self.use_cm = kwargs.get("use_cm", False)
        # NOTE: why should SurfaceOver2DRangeSeries support is polar?
        # After all, the same result can be achieve with
        # ParametricSurfaceSeries. For example:
        # sin(r) for (r, 0, 2 * pi) and (theta, 0, pi/2) can be parameterized
        # as (r * cos(theta), r * sin(theta), sin(t)) for (r, 0, 2 * pi) and
        # (theta, 0, pi/2).
        # Because it is faster to evaluate (important for interactive plots).
        self.is_polar = kwargs.get("is_polar", kwargs.get("polar", False))
        self.surface_color = kwargs.get("surface_color", None)
        self.color_func = kwargs.get("color_func", lambda x, y, z: z)
        if callable(self.surface_color):
            self.color_func = self.surface_color
            self.surface_color = None

    def _set_surface_label(self, label):
        exprs = self.expr
        self._label = str(exprs) if label is None else label
        self._latex_label = latex(exprs) if label is None else label
        # if the expressions is a lambda function and no label
        # has been provided, then its better to do the following to avoid
        # suprises on the backend
        is_lambda = (callable(exprs) if not hasattr(exprs, "__iter__")
            else any(callable(e) for e in exprs))
        if is_lambda and (self._label == str(exprs)):
                self._label = ""
                self._latex_label = ""

    def get_color_array(self):
        np = import_module('numpy')
        c = self.surface_color
        if isinstance(c, Callable):
            f = np.vectorize(c)
            nargs = arity(c)
            if self.is_parametric:
                variables = list(map(centers_of_faces, self.get_parameter_meshes()))
                if nargs == 1:
                    return f(variables[0])
                elif nargs == 2:
                    return f(*variables)
            variables = list(map(centers_of_faces, self.get_meshes()))
            if nargs == 1:
                return f(variables[0])
            elif nargs == 2:
                return f(*variables[:2])
            else:
                return f(*variables)
        else:
            if isinstance(self, SurfaceOver2DRangeSeries):
                return c*np.ones(min(self.nb_of_points_x, self.nb_of_points_y))
            else:
                return c*np.ones(min(self.nb_of_points_u, self.nb_of_points_v))


class SurfaceOver2DRangeSeries(SurfaceBaseSeries):
    """Representation for a 3D surface consisting of a SymPy expression and 2D
    range."""

    def __init__(self, expr, var_start_end_x, var_start_end_y, label="", **kwargs):
        super().__init__(**kwargs)
        self.expr = expr if callable(expr) else sympify(expr)
        self.ranges = [var_start_end_x, var_start_end_y]
        self._set_surface_label(label)
        self._post_init()
        # TODO: remove this
        self._xlim = (self.start_x, self.end_x)
        self._ylim = (self.start_y, self.end_y)

    @property
    def var_x(self):
        return self.ranges[0][0]

    @property
    def var_y(self):
        return self.ranges[1][0]

    @property
    def start_x(self):
        try:
            return float(self.ranges[0][1])
        except TypeError:
            return self.ranges[0][1]

    @property
    def end_x(self):
        try:
            return float(self.ranges[0][2])
        except TypeError:
            return self.ranges[0][2]

    @property
    def start_y(self):
        try:
            return float(self.ranges[1][1])
        except TypeError:
            return self.ranges[1][1]

    @property
    def end_y(self):
        try:
            return float(self.ranges[1][2])
        except TypeError:
            return self.ranges[1][2]

    @property
    def nb_of_points_x(self):
        return self.n[0]

    @nb_of_points_x.setter
    def nb_of_points_x(self, v):
        n = self.n
        self.n = [v, n[1:]]

    @property
    def nb_of_points_y(self):
        return self.n[1]

    @nb_of_points_y.setter
    def nb_of_points_y(self, v):
        n = self.n
        self.n = [n[0], v, n[2]]

    def __str__(self):
        series_type = "cartesian surface" if self.is_3Dsurface else "contour"
        return self._str_helper(
            series_type + ": %s for" " %s over %s and %s over %s" % (
            str(self.expr),
            str(self.var_x), str((self.start_x, self.end_x)),
            str(self.var_y), str((self.start_y, self.end_y)),
        ))

    def get_meshes(self):
        """Return the x,y,z coordinates for plotting the surface.
        This function is available for back-compatibility purposes. Consider
        using ``get_data()`` instead.
        """
        return self.get_data()

    def get_data(self):
        """Return arrays of coordinates for plotting.

        Returns
        =======
        mesh_x : np.ndarray
            Discretized x-domain.
        mesh_y : np.ndarray
            Discretized y-domain.
        mesh_z : np.ndarray
            Results of the evaluation.
        """
        np = import_module('numpy')

        results = self._evaluate()
        # mask out complex values
        for i, r in enumerate(results):
            _re, _im = np.real(r), np.imag(r)
            _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan
            results[i] = _re

        x, y, z = results
        if self.is_polar and self.is_3Dsurface:
            r = x.copy()
            x = r * np.cos(y)
            y = r * np.sin(y)

        # TODO: remove this
        self._zlim = (np.amin(z), np.amax(z))

        return self._apply_transform(x, y, z)


class ParametricSurfaceSeries(SurfaceBaseSeries):
    """Representation for a 3D surface consisting of three parametric SymPy
    expressions and a range."""

    is_parametric = True

    def __init__(self, expr_x, expr_y, expr_z,
        var_start_end_u, var_start_end_v, label="", **kwargs):
        super().__init__(**kwargs)
        self.expr_x = expr_x if callable(expr_x) else sympify(expr_x)
        self.expr_y = expr_y if callable(expr_y) else sympify(expr_y)
        self.expr_z = expr_z if callable(expr_z) else sympify(expr_z)
        self.expr = (self.expr_x, self.expr_y, self.expr_z)
        self.ranges = [var_start_end_u, var_start_end_v]
        self.color_func = kwargs.get("color_func", lambda x, y, z, u, v: z)
        self._set_surface_label(label)
        self._post_init()

    @property
    def var_u(self):
        return self.ranges[0][0]

    @property
    def var_v(self):
        return self.ranges[1][0]

    @property
    def start_u(self):
        try:
            return float(self.ranges[0][1])
        except TypeError:
            return self.ranges[0][1]

    @property
    def end_u(self):
        try:
            return float(self.ranges[0][2])
        except TypeError:
            return self.ranges[0][2]

    @property
    def start_v(self):
        try:
            return float(self.ranges[1][1])
        except TypeError:
            return self.ranges[1][1]

    @property
    def end_v(self):
        try:
            return float(self.ranges[1][2])
        except TypeError:
            return self.ranges[1][2]

    @property
    def nb_of_points_u(self):
        return self.n[0]

    @nb_of_points_u.setter
    def nb_of_points_u(self, v):
        n = self.n
        self.n = [v, n[1:]]

    @property
    def nb_of_points_v(self):
        return self.n[1]

    @nb_of_points_v.setter
    def nb_of_points_v(self, v):
        n = self.n
        self.n = [n[0], v, n[2]]

    def __str__(self):
        return self._str_helper(
            "parametric cartesian surface: (%s, %s, %s) for"
            " %s over %s and %s over %s" % (
            str(self.expr_x), str(self.expr_y), str(self.expr_z),
            str(self.var_u), str((self.start_u, self.end_u)),
            str(self.var_v), str((self.start_v, self.end_v)),
        ))

    def get_parameter_meshes(self):
        return self.get_data()[3:]

    def get_meshes(self):
        """Return the x,y,z coordinates for plotting the surface.
        This function is available for back-compatibility purposes. Consider
        using ``get_data()`` instead.
        """
        return self.get_data()[:3]

    def get_data(self):
        """Return arrays of coordinates for plotting.

        Returns
        =======
        x : np.ndarray [n2 x n1]
            x-coordinates.
        y : np.ndarray [n2 x n1]
            y-coordinates.
        z : np.ndarray [n2 x n1]
            z-coordinates.
        mesh_u : np.ndarray [n2 x n1]
            Discretized u range.
        mesh_v : np.ndarray [n2 x n1]
            Discretized v range.
        """
        np = import_module('numpy')

        results = self._evaluate()
        # mask out complex values
        for i, r in enumerate(results):
            _re, _im = np.real(r), np.imag(r)
            _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan
            results[i] = _re

        # TODO: remove this
        x, y, z = results[2:]
        self._xlim = (np.amin(x), np.amax(x))
        self._ylim = (np.amin(y), np.amax(y))
        self._zlim = (np.amin(z), np.amax(z))

        return self._apply_transform(*results[2:], *results[:2])


### Contours
class ContourSeries(SurfaceOver2DRangeSeries):
    """Representation for a contour plot."""

    is_3Dsurface = False
    is_contour = True

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.is_filled = kwargs.get("is_filled", kwargs.get("fill", True))
        self.show_clabels = kwargs.get("clabels", True)

        # NOTE: contour plots are used by plot_contour, plot_vector and
        # plot_complex_vector. By implementing contour_kw we are able to
        # quickly target the contour plot.
        self.rendering_kw = kwargs.get("contour_kw",
            kwargs.get("rendering_kw", {}))


class GenericDataSeries(BaseSeries):
    """Represents generic numerical data.

    Notes
    =====
    This class serves the purpose of back-compatibility with the "markers,
    annotations, fill, rectangles" keyword arguments that represent
    user-provided numerical data. In particular, it solves the problem of
    combining together two or more plot-objects with the ``extend`` or
    ``append`` methods: user-provided numerical data is also taken into
    consideration because it is stored in this series class.

    Also note that the current implementation is far from optimal, as each
    keyword argument is stored into an attribute in the ``Plot`` class, which
    requires a hard-coded if-statement in the ``MatplotlibBackend`` class.
    The implementation suggests that it is ok to add attributes and
    if-statements to provide more and more functionalities for user-provided
    numerical data (e.g. adding horizontal lines, or vertical lines, or bar
    plots, etc). However, in doing so one would reinvent the wheel: plotting
    libraries (like Matplotlib) already implements the necessary API.

    Instead of adding more keyword arguments and attributes, users interested
    in adding custom numerical data to a plot should retrieve the figure
    created by this plotting module. For example, this code:

    .. plot::
       :context: close-figs
       :include-source: True

       from sympy import Symbol, plot, cos
       x = Symbol("x")
       p = plot(cos(x), markers=[{"args": [[0, 1, 2], [0, 1, -1], "*"]}])

    Becomes:

    .. plot::
       :context: close-figs
       :include-source: True

       p = plot(cos(x), backend="matplotlib")
       fig, ax = p._backend.fig, p._backend.ax[0]
       ax.plot([0, 1, 2], [0, 1, -1], "*")
       fig

    Which is far better in terms of readibility. Also, it gives access to the
    full plotting library capabilities, without the need to reinvent the wheel.
    """
    is_generic = True

    def __init__(self, tp, *args, **kwargs):
        self.type = tp
        self.args = args
        self.rendering_kw = kwargs

    def get_data(self):
        return self.args


class ImplicitSeries(BaseSeries):
    """Representation for 2D Implicit plot."""

    is_implicit = True
    use_cm = False
    _N = 100

    def __init__(self, expr, var_start_end_x, var_start_end_y, label="", **kwargs):
        super().__init__(**kwargs)
        self.adaptive = kwargs.get("adaptive", False)
        self.expr = expr
        self._label = str(expr) if label is None else label
        self._latex_label = latex(expr) if label is None else label
        self.ranges = [var_start_end_x, var_start_end_y]
        self.var_x, self.start_x, self.end_x = self.ranges[0]
        self.var_y, self.start_y, self.end_y = self.ranges[1]
        self._color = kwargs.get("color", kwargs.get("line_color", None))

        if self.is_interactive and self.adaptive:
            raise NotImplementedError("Interactive plot with `adaptive=True` "
                "is not supported.")

        # Check whether the depth is greater than 4 or less than 0.
        depth = kwargs.get("depth", 0)
        if depth > 4:
            depth = 4
        elif depth < 0:
            depth = 0
        self.depth = 4 + depth
        self._post_init()

    @property
    def expr(self):
        if self.adaptive:
            return self._adaptive_expr
        return self._non_adaptive_expr

    @expr.setter
    def expr(self, expr):
        self._block_lambda_functions(expr)
        # these are needed for adaptive evaluation
        expr, has_equality = self._has_equality(sympify(expr))
        self._adaptive_expr = expr
        self.has_equality = has_equality
        self._label = str(expr)
        self._latex_label = latex(expr)

        if isinstance(expr, (BooleanFunction, Ne)) and (not self.adaptive):
            self.adaptive = True
            msg = "contains Boolean functions. "
            if isinstance(expr, Ne):
                msg = "is an unequality. "
            warnings.warn(
                "The provided expression " + msg
                + "In order to plot the expression, the algorithm "
                + "automatically switched to an adaptive sampling."
            )

        if isinstance(expr, BooleanFunction):
            self._non_adaptive_expr = None
            self._is_equality = False
        else:
            # these are needed for uniform meshing evaluation
            expr, is_equality = self._preprocess_meshgrid_expression(expr, self.adaptive)
            self._non_adaptive_expr = expr
            self._is_equality = is_equality

    @property
    def line_color(self):
        return self._color

    @line_color.setter
    def line_color(self, v):
        self._color = v

    color = line_color

    def _has_equality(self, expr):
        # Represents whether the expression contains an Equality, GreaterThan
        # or LessThan
        has_equality = False

        def arg_expand(bool_expr):
            """Recursively expands the arguments of an Boolean Function"""
            for arg in bool_expr.args:
                if isinstance(arg, BooleanFunction):
                    arg_expand(arg)
                elif isinstance(arg, Relational):
                    arg_list.append(arg)

        arg_list = []
        if isinstance(expr, BooleanFunction):
            arg_expand(expr)
            # Check whether there is an equality in the expression provided.
            if any(isinstance(e, (Equality, GreaterThan, LessThan)) for e in arg_list):
                has_equality = True
        elif not isinstance(expr, Relational):
            expr = Equality(expr, 0)
            has_equality = True
        elif isinstance(expr, (Equality, GreaterThan, LessThan)):
            has_equality = True

        return expr, has_equality

    def __str__(self):
        f = lambda t: float(t) if len(t.free_symbols) == 0 else t

        return self._str_helper(
            "Implicit expression: %s for %s over %s and %s over %s") % (
            str(self._adaptive_expr),
            str(self.var_x),
            str((f(self.start_x), f(self.end_x))),
            str(self.var_y),
            str((f(self.start_y), f(self.end_y))),
        )

    def get_data(self):
        """Returns numerical data.

        Returns
        =======

        If the series is evaluated with the `adaptive=True` it returns:

        interval_list : list
            List of bounding rectangular intervals to be postprocessed and
            eventually used with Matplotlib's ``fill`` command.
        dummy : str
            A string containing ``"fill"``.

        Otherwise, it returns 2D numpy arrays to be used with Matplotlib's
        ``contour`` or ``contourf`` commands:

        x_array : np.ndarray
        y_array : np.ndarray
        z_array : np.ndarray
        plot_type : str
            A string specifying which plot command to use, ``"contour"``
            or ``"contourf"``.
        """
        if self.adaptive:
            data = self._adaptive_eval()
            if data is not None:
                return data

        return self._get_meshes_grid()

    def _adaptive_eval(self):
        """
        References
        ==========

        .. [1] Jeffrey Allen Tupper. Reliable Two-Dimensional Graphing Methods for
        Mathematical Formulae with Two Free Variables.

        .. [2] Jeffrey Allen Tupper. Graphing Equations with Generalized Interval
        Arithmetic. Master's thesis. University of Toronto, 1996
        """
        import sympy.plotting.intervalmath.lib_interval as li

        user_functions = {}
        printer = IntervalMathPrinter({
            'fully_qualified_modules': False, 'inline': True,
            'allow_unknown_functions': True,
            'user_functions': user_functions})

        keys = [t for t in dir(li) if ("__" not in t) and (t not in ["import_module", "interval"])]
        vals = [getattr(li, k) for k in keys]
        d = dict(zip(keys, vals))
        func = lambdify((self.var_x, self.var_y), self.expr, modules=[d], printer=printer)
        data = None

        try:
            data = self._get_raster_interval(func)
        except NameError as err:
            warnings.warn(
                "Adaptive meshing could not be applied to the"
                " expression, as some functions are not yet implemented"
                " in the interval math module:\n\n"
                "NameError: %s\n\n" % err +
                "Proceeding with uniform meshing."
                )
            self.adaptive = False
        except TypeError:
            warnings.warn(
                "Adaptive meshing could not be applied to the"
                " expression. Using uniform meshing.")
            self.adaptive = False

        return data

    def _get_raster_interval(self, func):
        """Uses interval math to adaptively mesh and obtain the plot"""
        np = import_module('numpy')

        k = self.depth
        interval_list = []
        sx, sy = [float(t) for t in [self.start_x, self.start_y]]
        ex, ey = [float(t) for t in [self.end_x, self.end_y]]
        # Create initial 32 divisions
        xsample = np.linspace(sx, ex, 33)
        ysample = np.linspace(sy, ey, 33)

        # Add a small jitter so that there are no false positives for equality.
        # Ex: y==x becomes True for x interval(1, 2) and y interval(1, 2)
        # which will draw a rectangle.
        jitterx = (
            (np.random.rand(len(xsample)) * 2 - 1)
            * (ex - sx)
            / 2 ** 20
        )
        jittery = (
            (np.random.rand(len(ysample)) * 2 - 1)
            * (ey - sy)
            / 2 ** 20
        )
        xsample += jitterx
        ysample += jittery

        xinter = [interval(x1, x2) for x1, x2 in zip(xsample[:-1], xsample[1:])]
        yinter = [interval(y1, y2) for y1, y2 in zip(ysample[:-1], ysample[1:])]
        interval_list = [[x, y] for x in xinter for y in yinter]
        plot_list = []

        # recursive call refinepixels which subdivides the intervals which are
        # neither True nor False according to the expression.
        def refine_pixels(interval_list):
            """Evaluates the intervals and subdivides the interval if the
            expression is partially satisfied."""
            temp_interval_list = []
            plot_list = []
            for intervals in interval_list:

                # Convert the array indices to x and y values
                intervalx = intervals[0]
                intervaly = intervals[1]
                func_eval = func(intervalx, intervaly)
                # The expression is valid in the interval. Change the contour
                # array values to 1.
                if func_eval[1] is False or func_eval[0] is False:
                    pass
                elif func_eval == (True, True):
                    plot_list.append([intervalx, intervaly])
                elif func_eval[1] is None or func_eval[0] is None:
                    # Subdivide
                    avgx = intervalx.mid
                    avgy = intervaly.mid
                    a = interval(intervalx.start, avgx)
                    b = interval(avgx, intervalx.end)
                    c = interval(intervaly.start, avgy)
                    d = interval(avgy, intervaly.end)
                    temp_interval_list.append([a, c])
                    temp_interval_list.append([a, d])
                    temp_interval_list.append([b, c])
                    temp_interval_list.append([b, d])
            return temp_interval_list, plot_list

        while k >= 0 and len(interval_list):
            interval_list, plot_list_temp = refine_pixels(interval_list)
            plot_list.extend(plot_list_temp)
            k = k - 1
        # Check whether the expression represents an equality
        # If it represents an equality, then none of the intervals
        # would have satisfied the expression due to floating point
        # differences. Add all the undecided values to the plot.
        if self.has_equality:
            for intervals in interval_list:
                intervalx = intervals[0]
                intervaly = intervals[1]
                func_eval = func(intervalx, intervaly)
                if func_eval[1] and func_eval[0] is not False:
                    plot_list.append([intervalx, intervaly])
        return plot_list, "fill"

    def _get_meshes_grid(self):
        """Generates the mesh for generating a contour.

        In the case of equality, ``contour`` function of matplotlib can
        be used. In other cases, matplotlib's ``contourf`` is used.
        """
        np = import_module('numpy')

        xarray, yarray, z_grid = self._evaluate()
        _re, _im = np.real(z_grid), np.imag(z_grid)
        _re[np.invert(np.isclose(_im, np.zeros_like(_im)))] = np.nan
        if self._is_equality:
            return xarray, yarray, _re, 'contour'
        return xarray, yarray, _re, 'contourf'

    @staticmethod
    def _preprocess_meshgrid_expression(expr, adaptive):
        """If the expression is a Relational, rewrite it as a single
        expression.

        Returns
        =======

        expr : Expr
            The rewritten expression

        equality : Boolean
            Wheter the original expression was an Equality or not.
        """
        equality = False
        if isinstance(expr, Equality):
            expr = expr.lhs - expr.rhs
            equality = True
        elif isinstance(expr, Relational):
            expr = expr.gts - expr.lts
        elif not adaptive:
            raise NotImplementedError(
                "The expression is not supported for "
                "plotting in uniform meshed plot."
            )
        return expr, equality

    def get_label(self, use_latex=False, wrapper="$%s$"):
        """Return the label to be used to display the expression.

        Parameters
        ==========
        use_latex : bool
            If False, the string representation of the expression is returned.
            If True, the latex representation is returned.
        wrapper : str
            The backend might need the latex representation to be wrapped by
            some characters. Default to ``"$%s$"``.

        Returns
        =======
        label : str
        """
        if use_latex is False:
            return self._label
        if self._label == str(self._adaptive_expr):
            return self._get_wrapped_label(self._latex_label, wrapper)
        return self._latex_label


##############################################################################
# Finding the centers of line segments or mesh faces
##############################################################################

def centers_of_segments(array):
    np = import_module('numpy')
    return np.mean(np.vstack((array[:-1], array[1:])), 0)


def centers_of_faces(array):
    np = import_module('numpy')
    return np.mean(np.dstack((array[:-1, :-1],
                             array[1:, :-1],
                             array[:-1, 1:],
                             array[:-1, :-1],
                             )), 2)


def flat(x, y, z, eps=1e-3):
    """Checks whether three points are almost collinear"""
    np = import_module('numpy')
    # Workaround plotting piecewise (#8577)
    vector_a = (x - y).astype(float)
    vector_b = (z - y).astype(float)
    dot_product = np.dot(vector_a, vector_b)
    vector_a_norm = np.linalg.norm(vector_a)
    vector_b_norm = np.linalg.norm(vector_b)
    cos_theta = dot_product / (vector_a_norm * vector_b_norm)
    return abs(cos_theta + 1) < eps


def _set_discretization_points(kwargs, pt):
    """Allow the use of the keyword arguments ``n, n1, n2`` to
    specify the number of discretization points in one and two
    directions, while keeping back-compatibility with older keyword arguments
    like, ``nb_of_points, nb_of_points_*, points``.

    Parameters
    ==========

    kwargs : dict
        Dictionary of keyword arguments passed into a plotting function.
    pt : type
        The type of the series, which indicates the kind of plot we are
        trying to create.
    """
    replace_old_keywords = {
        "nb_of_points": "n",
        "nb_of_points_x": "n1",
        "nb_of_points_y": "n2",
        "nb_of_points_u": "n1",
        "nb_of_points_v": "n2",
        "points": "n"
    }
    for k, v in replace_old_keywords.items():
        if k in kwargs.keys():
            kwargs[v] = kwargs.pop(k)

    if pt in [LineOver1DRangeSeries, Parametric2DLineSeries,
        Parametric3DLineSeries]:
        if "n" in kwargs.keys():
            kwargs["n1"] = kwargs["n"]
            if hasattr(kwargs["n"], "__iter__") and (len(kwargs["n"]) > 0):
                kwargs["n1"] = kwargs["n"][0]
    elif pt in [SurfaceOver2DRangeSeries, ContourSeries,
        ParametricSurfaceSeries, ImplicitSeries]:
        if "n" in kwargs.keys():
            if hasattr(kwargs["n"], "__iter__") and (len(kwargs["n"]) > 1):
                kwargs["n1"] = kwargs["n"][0]
                kwargs["n2"] = kwargs["n"][1]
            else:
                kwargs["n1"] = kwargs["n2"] = kwargs["n"]
    return kwargs