Spaces:
Sleeping
Sleeping
File size: 4,621 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
try:
from ctypes import c_float, c_int, c_double
except ImportError:
pass
import pyglet.gl as pgl
from sympy.core import S
def get_model_matrix(array_type=c_float, glGetMethod=pgl.glGetFloatv):
"""
Returns the current modelview matrix.
"""
m = (array_type*16)()
glGetMethod(pgl.GL_MODELVIEW_MATRIX, m)
return m
def get_projection_matrix(array_type=c_float, glGetMethod=pgl.glGetFloatv):
"""
Returns the current modelview matrix.
"""
m = (array_type*16)()
glGetMethod(pgl.GL_PROJECTION_MATRIX, m)
return m
def get_viewport():
"""
Returns the current viewport.
"""
m = (c_int*4)()
pgl.glGetIntegerv(pgl.GL_VIEWPORT, m)
return m
def get_direction_vectors():
m = get_model_matrix()
return ((m[0], m[4], m[8]),
(m[1], m[5], m[9]),
(m[2], m[6], m[10]))
def get_view_direction_vectors():
m = get_model_matrix()
return ((m[0], m[1], m[2]),
(m[4], m[5], m[6]),
(m[8], m[9], m[10]))
def get_basis_vectors():
return ((1, 0, 0), (0, 1, 0), (0, 0, 1))
def screen_to_model(x, y, z):
m = get_model_matrix(c_double, pgl.glGetDoublev)
p = get_projection_matrix(c_double, pgl.glGetDoublev)
w = get_viewport()
mx, my, mz = c_double(), c_double(), c_double()
pgl.gluUnProject(x, y, z, m, p, w, mx, my, mz)
return float(mx.value), float(my.value), float(mz.value)
def model_to_screen(x, y, z):
m = get_model_matrix(c_double, pgl.glGetDoublev)
p = get_projection_matrix(c_double, pgl.glGetDoublev)
w = get_viewport()
mx, my, mz = c_double(), c_double(), c_double()
pgl.gluProject(x, y, z, m, p, w, mx, my, mz)
return float(mx.value), float(my.value), float(mz.value)
def vec_subs(a, b):
return tuple(a[i] - b[i] for i in range(len(a)))
def billboard_matrix():
"""
Removes rotational components of
current matrix so that primitives
are always drawn facing the viewer.
|1|0|0|x|
|0|1|0|x|
|0|0|1|x| (x means left unchanged)
|x|x|x|x|
"""
m = get_model_matrix()
# XXX: for i in range(11): m[i] = i ?
m[0] = 1
m[1] = 0
m[2] = 0
m[4] = 0
m[5] = 1
m[6] = 0
m[8] = 0
m[9] = 0
m[10] = 1
pgl.glLoadMatrixf(m)
def create_bounds():
return [[S.Infinity, S.NegativeInfinity, 0],
[S.Infinity, S.NegativeInfinity, 0],
[S.Infinity, S.NegativeInfinity, 0]]
def update_bounds(b, v):
if v is None:
return
for axis in range(3):
b[axis][0] = min([b[axis][0], v[axis]])
b[axis][1] = max([b[axis][1], v[axis]])
def interpolate(a_min, a_max, a_ratio):
return a_min + a_ratio * (a_max - a_min)
def rinterpolate(a_min, a_max, a_value):
a_range = a_max - a_min
if a_max == a_min:
a_range = 1.0
return (a_value - a_min) / float(a_range)
def interpolate_color(color1, color2, ratio):
return tuple(interpolate(color1[i], color2[i], ratio) for i in range(3))
def scale_value(v, v_min, v_len):
return (v - v_min) / v_len
def scale_value_list(flist):
v_min, v_max = min(flist), max(flist)
v_len = v_max - v_min
return [scale_value(f, v_min, v_len) for f in flist]
def strided_range(r_min, r_max, stride, max_steps=50):
o_min, o_max = r_min, r_max
if abs(r_min - r_max) < 0.001:
return []
try:
range(int(r_min - r_max))
except (TypeError, OverflowError):
return []
if r_min > r_max:
raise ValueError("r_min cannot be greater than r_max")
r_min_s = (r_min % stride)
r_max_s = stride - (r_max % stride)
if abs(r_max_s - stride) < 0.001:
r_max_s = 0.0
r_min -= r_min_s
r_max += r_max_s
r_steps = int((r_max - r_min)/stride)
if max_steps and r_steps > max_steps:
return strided_range(o_min, o_max, stride*2)
return [r_min] + [r_min + e*stride for e in range(1, r_steps + 1)] + [r_max]
def parse_option_string(s):
if not isinstance(s, str):
return None
options = {}
for token in s.split(';'):
pieces = token.split('=')
if len(pieces) == 1:
option, value = pieces[0], ""
elif len(pieces) == 2:
option, value = pieces
else:
raise ValueError("Plot option string '%s' is malformed." % (s))
options[option.strip()] = value.strip()
return options
def dot_product(v1, v2):
return sum(v1[i]*v2[i] for i in range(3))
def vec_sub(v1, v2):
return tuple(v1[i] - v2[i] for i in range(3))
def vec_mag(v):
return sum(v[i]**2 for i in range(3))**(0.5)
|