Spaces:
Sleeping
Sleeping
File size: 40,761 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 |
"""Plotting module for SymPy.
A plot is represented by the ``Plot`` class that contains a reference to the
backend and a list of the data series to be plotted. The data series are
instances of classes meant to simplify getting points and meshes from SymPy
expressions. ``plot_backends`` is a dictionary with all the backends.
This module gives only the essential. For all the fancy stuff use directly
the backend. You can get the backend wrapper for every plot from the
``_backend`` attribute. Moreover the data series classes have various useful
methods like ``get_points``, ``get_meshes``, etc, that may
be useful if you wish to use another plotting library.
Especially if you need publication ready graphs and this module is not enough
for you - just get the ``_backend`` attribute and add whatever you want
directly to it. In the case of matplotlib (the common way to graph data in
python) just copy ``_backend.fig`` which is the figure and ``_backend.ax``
which is the axis and work on them as you would on any other matplotlib object.
Simplicity of code takes much greater importance than performance. Do not use it
if you care at all about performance. A new backend instance is initialized
every time you call ``show()`` and the old one is left to the garbage collector.
"""
from sympy.concrete.summations import Sum
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Function, AppliedUndef
from sympy.core.symbol import (Dummy, Symbol, Wild)
from sympy.external import import_module
from sympy.functions import sign
from sympy.plotting.backends.base_backend import Plot
from sympy.plotting.backends.matplotlibbackend import MatplotlibBackend
from sympy.plotting.backends.textbackend import TextBackend
from sympy.plotting.series import (
LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries,
ParametricSurfaceSeries, SurfaceOver2DRangeSeries, ContourSeries)
from sympy.plotting.utils import _check_arguments, _plot_sympify
from sympy.tensor.indexed import Indexed
# to maintain back-compatibility
from sympy.plotting.plotgrid import PlotGrid # noqa: F401
from sympy.plotting.series import BaseSeries # noqa: F401
from sympy.plotting.series import Line2DBaseSeries # noqa: F401
from sympy.plotting.series import Line3DBaseSeries # noqa: F401
from sympy.plotting.series import SurfaceBaseSeries # noqa: F401
from sympy.plotting.series import List2DSeries # noqa: F401
from sympy.plotting.series import GenericDataSeries # noqa: F401
from sympy.plotting.series import centers_of_faces # noqa: F401
from sympy.plotting.series import centers_of_segments # noqa: F401
from sympy.plotting.series import flat # noqa: F401
from sympy.plotting.backends.base_backend import unset_show # noqa: F401
from sympy.plotting.backends.matplotlibbackend import _matplotlib_list # noqa: F401
from sympy.plotting.textplot import textplot # noqa: F401
__doctest_requires__ = {
('plot3d',
'plot3d_parametric_line',
'plot3d_parametric_surface',
'plot_parametric'): ['matplotlib'],
# XXX: The plot doctest possibly should not require matplotlib. It fails at
# plot(x**2, (x, -5, 5)) which should be fine for text backend.
('plot',): ['matplotlib'],
}
def _process_summations(sum_bound, *args):
"""Substitute oo (infinity) in the lower/upper bounds of a summation with
some integer number.
Parameters
==========
sum_bound : int
oo will be substituted with this integer number.
*args : list/tuple
pre-processed arguments of the form (expr, range, ...)
Notes
=====
Let's consider the following summation: ``Sum(1 / x**2, (x, 1, oo))``.
The current implementation of lambdify (SymPy 1.12 at the time of
writing this) will create something of this form:
``sum(1 / x**2 for x in range(1, INF))``
The problem is that ``type(INF)`` is float, while ``range`` requires
integers: the evaluation fails.
Instead of modifying ``lambdify`` (which requires a deep knowledge), just
replace it with some integer number.
"""
def new_bound(t, bound):
if (not t.is_number) or t.is_finite:
return t
if sign(t) >= 0:
return bound
return -bound
args = list(args)
expr = args[0]
# select summations whose lower/upper bound is infinity
w = Wild("w", properties=[
lambda t: isinstance(t, Sum),
lambda t: any((not a[1].is_finite) or (not a[2].is_finite) for i, a in enumerate(t.args) if i > 0)
])
for t in list(expr.find(w)):
sums_args = list(t.args)
for i, a in enumerate(sums_args):
if i > 0:
sums_args[i] = (a[0], new_bound(a[1], sum_bound),
new_bound(a[2], sum_bound))
s = Sum(*sums_args)
expr = expr.subs(t, s)
args[0] = expr
return args
def _build_line_series(*args, **kwargs):
"""Loop over the provided arguments and create the necessary line series.
"""
series = []
sum_bound = int(kwargs.get("sum_bound", 1000))
for arg in args:
expr, r, label, rendering_kw = arg
kw = kwargs.copy()
if rendering_kw is not None:
kw["rendering_kw"] = rendering_kw
# TODO: _process_piecewise check goes here
if not callable(expr):
arg = _process_summations(sum_bound, *arg)
series.append(LineOver1DRangeSeries(*arg[:-1], **kw))
return series
def _create_series(series_type, plot_expr, **kwargs):
"""Extract the rendering_kw dictionary from the provided arguments and
create an appropriate data series.
"""
series = []
for args in plot_expr:
kw = kwargs.copy()
if args[-1] is not None:
kw["rendering_kw"] = args[-1]
series.append(series_type(*args[:-1], **kw))
return series
def _set_labels(series, labels, rendering_kw):
"""Apply the `label` and `rendering_kw` keyword arguments to the series.
"""
if not isinstance(labels, (list, tuple)):
labels = [labels]
if len(labels) > 0:
if len(labels) == 1 and len(series) > 1:
# if one label is provided and multiple series are being plotted,
# set the same label to all data series. It maintains
# back-compatibility
labels *= len(series)
if len(series) != len(labels):
raise ValueError("The number of labels must be equal to the "
"number of expressions being plotted.\nReceived "
f"{len(series)} expressions and {len(labels)} labels")
for s, l in zip(series, labels):
s.label = l
if rendering_kw:
if isinstance(rendering_kw, dict):
rendering_kw = [rendering_kw]
if len(rendering_kw) == 1:
rendering_kw *= len(series)
elif len(series) != len(rendering_kw):
raise ValueError("The number of rendering dictionaries must be "
"equal to the number of expressions being plotted.\nReceived "
f"{len(series)} expressions and {len(labels)} labels")
for s, r in zip(series, rendering_kw):
s.rendering_kw = r
def plot_factory(*args, **kwargs):
backend = kwargs.pop("backend", "default")
if isinstance(backend, str):
if backend == "default":
matplotlib = import_module('matplotlib',
min_module_version='1.1.0', catch=(RuntimeError,))
if matplotlib:
return MatplotlibBackend(*args, **kwargs)
return TextBackend(*args, **kwargs)
return plot_backends[backend](*args, **kwargs)
elif (type(backend) == type) and issubclass(backend, Plot):
return backend(*args, **kwargs)
else:
raise TypeError("backend must be either a string or a subclass of ``Plot``.")
plot_backends = {
'matplotlib': MatplotlibBackend,
'text': TextBackend,
}
####New API for plotting module ####
# TODO: Add color arrays for plots.
# TODO: Add more plotting options for 3d plots.
# TODO: Adaptive sampling for 3D plots.
def plot(*args, show=True, **kwargs):
"""Plots a function of a single variable as a curve.
Parameters
==========
args :
The first argument is the expression representing the function
of single variable to be plotted.
The last argument is a 3-tuple denoting the range of the free
variable. e.g. ``(x, 0, 5)``
Typical usage examples are in the following:
- Plotting a single expression with a single range.
``plot(expr, range, **kwargs)``
- Plotting a single expression with the default range (-10, 10).
``plot(expr, **kwargs)``
- Plotting multiple expressions with a single range.
``plot(expr1, expr2, ..., range, **kwargs)``
- Plotting multiple expressions with multiple ranges.
``plot((expr1, range1), (expr2, range2), ..., **kwargs)``
It is best practice to specify range explicitly because default
range may change in the future if a more advanced default range
detection algorithm is implemented.
show : bool, optional
The default value is set to ``True``. Set show to ``False`` and
the function will not display the plot. The returned instance of
the ``Plot`` class can then be used to save or display the plot
by calling the ``save()`` and ``show()`` methods respectively.
line_color : string, or float, or function, optional
Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
Note that by setting ``line_color``, it would be applied simultaneously
to all the series.
title : str, optional
Title of the plot. It is set to the latex representation of
the expression, if the plot has only one expression.
label : str, optional
The label of the expression in the plot. It will be used when
called with ``legend``. Default is the name of the expression.
e.g. ``sin(x)``
xlabel : str or expression, optional
Label for the x-axis.
ylabel : str or expression, optional
Label for the y-axis.
xscale : 'linear' or 'log', optional
Sets the scaling of the x-axis.
yscale : 'linear' or 'log', optional
Sets the scaling of the y-axis.
axis_center : (float, float), optional
Tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
xlim : (float, float), optional
Denotes the x-axis limits, ``(min, max)```.
ylim : (float, float), optional
Denotes the y-axis limits, ``(min, max)```.
annotations : list, optional
A list of dictionaries specifying the type of annotation
required. The keys in the dictionary should be equivalent
to the arguments of the :external:mod:`matplotlib`'s
:external:meth:`~matplotlib.axes.Axes.annotate` method.
markers : list, optional
A list of dictionaries specifying the type the markers required.
The keys in the dictionary should be equivalent to the arguments
of the :external:mod:`matplotlib`'s :external:func:`~matplotlib.pyplot.plot()` function
along with the marker related keyworded arguments.
rectangles : list, optional
A list of dictionaries specifying the dimensions of the
rectangles to be plotted. The keys in the dictionary should be
equivalent to the arguments of the :external:mod:`matplotlib`'s
:external:class:`~matplotlib.patches.Rectangle` class.
fill : dict, optional
A dictionary specifying the type of color filling required in
the plot. The keys in the dictionary should be equivalent to the
arguments of the :external:mod:`matplotlib`'s
:external:meth:`~matplotlib.axes.Axes.fill_between` method.
adaptive : bool, optional
The default value is set to ``True``. Set adaptive to ``False``
and specify ``n`` if uniform sampling is required.
The plotting uses an adaptive algorithm which samples
recursively to accurately plot. The adaptive algorithm uses a
random point near the midpoint of two points that has to be
further sampled. Hence the same plots can appear slightly
different.
depth : int, optional
Recursion depth of the adaptive algorithm. A depth of value
`n` samples a maximum of `2^{n}` points.
If the ``adaptive`` flag is set to ``False``, this will be
ignored.
n : int, optional
Used when the ``adaptive`` is set to ``False``. The function
is uniformly sampled at ``n`` number of points. If the ``adaptive``
flag is set to ``True``, this will be ignored.
This keyword argument replaces ``nb_of_points``, which should be
considered deprecated.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of
the overall figure. The default value is set to ``None``, meaning
the size will be set by the default backend.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
Single Plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
Multiple plots with single range.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x, x**2, x**3, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
No adaptive sampling.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, adaptive=False, n=400)
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
See Also
========
Plot, LineOver1DRangeSeries
"""
args = _plot_sympify(args)
plot_expr = _check_arguments(args, 1, 1, **kwargs)
params = kwargs.get("params", None)
free = set()
for p in plot_expr:
if not isinstance(p[1][0], str):
free |= {p[1][0]}
else:
free |= {Symbol(p[1][0])}
if params:
free = free.difference(params.keys())
x = free.pop() if free else Symbol("x")
kwargs.setdefault('xlabel', x)
kwargs.setdefault('ylabel', Function('f')(x))
labels = kwargs.pop("label", [])
rendering_kw = kwargs.pop("rendering_kw", None)
series = _build_line_series(*plot_expr, **kwargs)
_set_labels(series, labels, rendering_kw)
plots = plot_factory(*series, **kwargs)
if show:
plots.show()
return plots
def plot_parametric(*args, show=True, **kwargs):
"""
Plots a 2D parametric curve.
Parameters
==========
args
Common specifications are:
- Plotting a single parametric curve with a range
``plot_parametric((expr_x, expr_y), range)``
- Plotting multiple parametric curves with the same range
``plot_parametric((expr_x, expr_y), ..., range)``
- Plotting multiple parametric curves with different ranges
``plot_parametric((expr_x, expr_y, range), ...)``
``expr_x`` is the expression representing $x$ component of the
parametric function.
``expr_y`` is the expression representing $y$ component of the
parametric function.
``range`` is a 3-tuple denoting the parameter symbol, start and
stop. For example, ``(u, 0, 5)``.
If the range is not specified, then a default range of (-10, 10)
is used.
However, if the arguments are specified as
``(expr_x, expr_y, range), ...``, you must specify the ranges
for each expressions manually.
Default range may change in the future if a more advanced
algorithm is implemented.
adaptive : bool, optional
Specifies whether to use the adaptive sampling or not.
The default value is set to ``True``. Set adaptive to ``False``
and specify ``n`` if uniform sampling is required.
depth : int, optional
The recursion depth of the adaptive algorithm. A depth of
value $n$ samples a maximum of $2^n$ points.
n : int, optional
Used when the ``adaptive`` flag is set to ``False``. Specifies the
number of the points used for the uniform sampling.
This keyword argument replaces ``nb_of_points``, which should be
considered deprecated.
line_color : string, or float, or function, optional
Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
Note that by setting ``line_color``, it would be applied simultaneously
to all the series.
label : str, optional
The label of the expression in the plot. It will be used when
called with ``legend``. Default is the name of the expression.
e.g. ``sin(x)``
xlabel : str, optional
Label for the x-axis.
ylabel : str, optional
Label for the y-axis.
xscale : 'linear' or 'log', optional
Sets the scaling of the x-axis.
yscale : 'linear' or 'log', optional
Sets the scaling of the y-axis.
axis_center : (float, float), optional
Tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
xlim : (float, float), optional
Denotes the x-axis limits, ``(min, max)```.
ylim : (float, float), optional
Denotes the y-axis limits, ``(min, max)```.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of
the overall figure. The default value is set to ``None``, meaning
the size will be set by the default backend.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import plot_parametric, symbols, cos, sin
>>> u = symbols('u')
A parametric plot with a single expression:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u)), (u, -5, 5))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
A parametric plot with multiple expressions with the same range:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u)), (u, cos(u)), (u, -10, 10))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)
A parametric plot with multiple expressions with different ranges
for each curve:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u), (u, -5, 5)),
... (cos(u), u, (u, -5, 5)))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
Notes
=====
The plotting uses an adaptive algorithm which samples recursively to
accurately plot the curve. The adaptive algorithm uses a random point
near the midpoint of two points that has to be further sampled.
Hence, repeating the same plot command can give slightly different
results because of the random sampling.
If there are multiple plots, then the same optional arguments are
applied to all the plots drawn in the same canvas. If you want to
set these options separately, you can index the returned ``Plot``
object and set it.
For example, when you specify ``line_color`` once, it would be
applied simultaneously to both series.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import pi
>>> expr1 = (u, cos(2*pi*u)/2 + 1/2)
>>> expr2 = (u, sin(2*pi*u)/2 + 1/2)
>>> p = plot_parametric(expr1, expr2, (u, 0, 1), line_color='blue')
If you want to specify the line color for the specific series, you
should index each item and apply the property manually.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p[0].line_color = 'red'
>>> p.show()
See Also
========
Plot, Parametric2DLineSeries
"""
args = _plot_sympify(args)
plot_expr = _check_arguments(args, 2, 1, **kwargs)
labels = kwargs.pop("label", [])
rendering_kw = kwargs.pop("rendering_kw", None)
series = _create_series(Parametric2DLineSeries, plot_expr, **kwargs)
_set_labels(series, labels, rendering_kw)
plots = plot_factory(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_line(*args, show=True, **kwargs):
"""
Plots a 3D parametric line plot.
Usage
=====
Single plot:
``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
expr_x : Expression representing the function along x.
expr_y : Expression representing the function along y.
expr_z : Expression representing the function along z.
range : (:class:`~.Symbol`, float, float)
A 3-tuple denoting the range of the parameter variable, e.g., (u, 0, 5).
Keyword Arguments
=================
Arguments for ``Parametric3DLineSeries`` class.
n : int
The range is uniformly sampled at ``n`` number of points.
This keyword argument replaces ``nb_of_points``, which should be
considered deprecated.
Aesthetics:
line_color : string, or float, or function, optional
Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
Note that by setting ``line_color``, it would be applied simultaneously
to all the series.
label : str
The label to the plot. It will be used when called with ``legend=True``
to denote the function with the given label in the plot.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class.
title : str
Title of the plot.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of
the overall figure. The default value is set to ``None``, meaning
the size will be set by the default backend.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_line
>>> u = symbols('u')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
Multiple plots.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
... (sin(u), u**2, u, (u, -5, 5)))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)
See Also
========
Plot, Parametric3DLineSeries
"""
args = _plot_sympify(args)
plot_expr = _check_arguments(args, 3, 1, **kwargs)
kwargs.setdefault("xlabel", "x")
kwargs.setdefault("ylabel", "y")
kwargs.setdefault("zlabel", "z")
labels = kwargs.pop("label", [])
rendering_kw = kwargs.pop("rendering_kw", None)
series = _create_series(Parametric3DLineSeries, plot_expr, **kwargs)
_set_labels(series, labels, rendering_kw)
plots = plot_factory(*series, **kwargs)
if show:
plots.show()
return plots
def _plot3d_plot_contour_helper(Series, *args, **kwargs):
"""plot3d and plot_contour are structurally identical. Let's reduce
code repetition.
"""
# NOTE: if this import would be at the top-module level, it would trigger
# SymPy's optional-dependencies tests to fail.
from sympy.vector import BaseScalar
args = _plot_sympify(args)
plot_expr = _check_arguments(args, 1, 2, **kwargs)
free_x = set()
free_y = set()
_types = (Symbol, BaseScalar, Indexed, AppliedUndef)
for p in plot_expr:
free_x |= {p[1][0]} if isinstance(p[1][0], _types) else {Symbol(p[1][0])}
free_y |= {p[2][0]} if isinstance(p[2][0], _types) else {Symbol(p[2][0])}
x = free_x.pop() if free_x else Symbol("x")
y = free_y.pop() if free_y else Symbol("y")
kwargs.setdefault("xlabel", x)
kwargs.setdefault("ylabel", y)
kwargs.setdefault("zlabel", Function('f')(x, y))
# if a polar discretization is requested and automatic labelling has ben
# applied, hide the labels on the x-y axis.
if kwargs.get("is_polar", False):
if callable(kwargs["xlabel"]):
kwargs["xlabel"] = ""
if callable(kwargs["ylabel"]):
kwargs["ylabel"] = ""
labels = kwargs.pop("label", [])
rendering_kw = kwargs.pop("rendering_kw", None)
series = _create_series(Series, plot_expr, **kwargs)
_set_labels(series, labels, rendering_kw)
plots = plot_factory(*series, **kwargs)
if kwargs.get("show", True):
plots.show()
return plots
def plot3d(*args, show=True, **kwargs):
"""
Plots a 3D surface plot.
Usage
=====
Single plot
``plot3d(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot3d(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
expr : Expression representing the function along x.
range_x : (:class:`~.Symbol`, float, float)
A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).
range_y : (:class:`~.Symbol`, float, float)
A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).
Keyword Arguments
=================
Arguments for ``SurfaceOver2DRangeSeries`` class:
n1 : int
The x range is sampled uniformly at ``n1`` of points.
This keyword argument replaces ``nb_of_points_x``, which should be
considered deprecated.
n2 : int
The y range is sampled uniformly at ``n2`` of points.
This keyword argument replaces ``nb_of_points_y``, which should be
considered deprecated.
Aesthetics:
surface_color : Function which returns a float
Specifies the color for the surface of the plot.
See :class:`~.Plot` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
title : str
Title of the plot.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of the
overall figure. The default value is set to ``None``, meaning the size will
be set by the default backend.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot3d
>>> x, y = symbols('x y')
Single plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with same range
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
... (x*y, (x, -3, 3), (y, -3, 3)))
Plot object containing:
[0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)
See Also
========
Plot, SurfaceOver2DRangeSeries
"""
kwargs.setdefault("show", show)
return _plot3d_plot_contour_helper(
SurfaceOver2DRangeSeries, *args, **kwargs)
def plot3d_parametric_surface(*args, show=True, **kwargs):
"""
Plots a 3D parametric surface plot.
Explanation
===========
Single plot.
``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)``
If the ranges is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
expr_x : Expression representing the function along ``x``.
expr_y : Expression representing the function along ``y``.
expr_z : Expression representing the function along ``z``.
range_u : (:class:`~.Symbol`, float, float)
A 3-tuple denoting the range of the u variable, e.g. (u, 0, 5).
range_v : (:class:`~.Symbol`, float, float)
A 3-tuple denoting the range of the v variable, e.g. (v, 0, 5).
Keyword Arguments
=================
Arguments for ``ParametricSurfaceSeries`` class:
n1 : int
The ``u`` range is sampled uniformly at ``n1`` of points.
This keyword argument replaces ``nb_of_points_u``, which should be
considered deprecated.
n2 : int
The ``v`` range is sampled uniformly at ``n2`` of points.
This keyword argument replaces ``nb_of_points_v``, which should be
considered deprecated.
Aesthetics:
surface_color : Function which returns a float
Specifies the color for the surface of the plot. See
:class:`~Plot` for more details.
If there are multiple plots, then the same series arguments are applied for
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
title : str
Title of the plot.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of the
overall figure. The default value is set to ``None``, meaning the size will
be set by the default backend.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_surface
>>> u, v = symbols('u v')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
... (u, -5, 5), (v, -5, 5))
Plot object containing:
[0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)
See Also
========
Plot, ParametricSurfaceSeries
"""
args = _plot_sympify(args)
plot_expr = _check_arguments(args, 3, 2, **kwargs)
kwargs.setdefault("xlabel", "x")
kwargs.setdefault("ylabel", "y")
kwargs.setdefault("zlabel", "z")
labels = kwargs.pop("label", [])
rendering_kw = kwargs.pop("rendering_kw", None)
series = _create_series(ParametricSurfaceSeries, plot_expr, **kwargs)
_set_labels(series, labels, rendering_kw)
plots = plot_factory(*series, **kwargs)
if show:
plots.show()
return plots
def plot_contour(*args, show=True, **kwargs):
"""
Draws contour plot of a function
Usage
=====
Single plot
``plot_contour(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
expr : Expression representing the function along x.
range_x : (:class:`Symbol`, float, float)
A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).
range_y : (:class:`Symbol`, float, float)
A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).
Keyword Arguments
=================
Arguments for ``ContourSeries`` class:
n1 : int
The x range is sampled uniformly at ``n1`` of points.
This keyword argument replaces ``nb_of_points_x``, which should be
considered deprecated.
n2 : int
The y range is sampled uniformly at ``n2`` of points.
This keyword argument replaces ``nb_of_points_y``, which should be
considered deprecated.
Aesthetics:
surface_color : Function which returns a float
Specifies the color for the surface of the plot. See
:class:`sympy.plotting.Plot` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
title : str
Title of the plot.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of
the overall figure. The default value is set to ``None``, meaning
the size will be set by the default backend.
See Also
========
Plot, ContourSeries
"""
kwargs.setdefault("show", show)
return _plot3d_plot_contour_helper(ContourSeries, *args, **kwargs)
def check_arguments(args, expr_len, nb_of_free_symbols):
"""
Checks the arguments and converts into tuples of the
form (exprs, ranges).
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import cos, sin, symbols
>>> from sympy.plotting.plot import check_arguments
>>> x = symbols('x')
>>> check_arguments([cos(x), sin(x)], 2, 1)
[(cos(x), sin(x), (x, -10, 10))]
>>> check_arguments([x, x**2], 1, 1)
[(x, (x, -10, 10)), (x**2, (x, -10, 10))]
"""
if not args:
return []
if expr_len > 1 and isinstance(args[0], Expr):
# Multiple expressions same range.
# The arguments are tuples when the expression length is
# greater than 1.
if len(args) < expr_len:
raise ValueError("len(args) should not be less than expr_len")
for i in range(len(args)):
if isinstance(args[i], Tuple):
break
else:
i = len(args) + 1
exprs = Tuple(*args[:i])
free_symbols = list(set().union(*[e.free_symbols for e in exprs]))
if len(args) == expr_len + nb_of_free_symbols:
#Ranges given
plots = [exprs + Tuple(*args[expr_len:])]
else:
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(len(free_symbols) - nb_of_free_symbols):
ranges.append(Tuple(Dummy()) + default_range)
plots = [exprs + Tuple(*ranges)]
return plots
if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and
len(args[0]) == expr_len and
expr_len != 3):
# Cannot handle expressions with number of expression = 3. It is
# not possible to differentiate between expressions and ranges.
#Series of plots with same range
for i in range(len(args)):
if isinstance(args[i], Tuple) and len(args[i]) != expr_len:
break
if not isinstance(args[i], Tuple):
args[i] = Tuple(args[i])
else:
i = len(args) + 1
exprs = args[:i]
assert all(isinstance(e, Expr) for expr in exprs for e in expr)
free_symbols = list(set().union(*[e.free_symbols for expr in exprs
for e in expr]))
if len(free_symbols) > nb_of_free_symbols:
raise ValueError("The number of free_symbols in the expression "
"is greater than %d" % nb_of_free_symbols)
if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple):
ranges = Tuple(*list(args[
i:i + nb_of_free_symbols]))
plots = [expr + ranges for expr in exprs]
return plots
else:
# Use default ranges.
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(nb_of_free_symbols - len(free_symbols)):
ranges.append(Tuple(Dummy()) + default_range)
ranges = Tuple(*ranges)
plots = [expr + ranges for expr in exprs]
return plots
elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols:
# Multiple plots with different ranges.
for arg in args:
for i in range(expr_len):
if not isinstance(arg[i], Expr):
raise ValueError("Expected an expression, given %s" %
str(arg[i]))
for i in range(nb_of_free_symbols):
if not len(arg[i + expr_len]) == 3:
raise ValueError("The ranges should be a tuple of "
"length 3, got %s" % str(arg[i + expr_len]))
return args
|