File size: 40,761 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
"""Plotting module for SymPy.

A plot is represented by the ``Plot`` class that contains a reference to the
backend and a list of the data series to be plotted. The data series are
instances of classes meant to simplify getting points and meshes from SymPy
expressions. ``plot_backends`` is a dictionary with all the backends.

This module gives only the essential. For all the fancy stuff use directly
the backend. You can get the backend wrapper for every plot from the
``_backend`` attribute. Moreover the data series classes have various useful
methods like ``get_points``, ``get_meshes``, etc, that may
be useful if you wish to use another plotting library.

Especially if you need publication ready graphs and this module is not enough
for you - just get the ``_backend`` attribute and add whatever you want
directly to it. In the case of matplotlib (the common way to graph data in
python) just copy ``_backend.fig`` which is the figure and ``_backend.ax``
which is the axis and work on them as you would on any other matplotlib object.

Simplicity of code takes much greater importance than performance. Do not use it
if you care at all about performance. A new backend instance is initialized
every time you call ``show()`` and the old one is left to the garbage collector.
"""

from sympy.concrete.summations import Sum
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Function, AppliedUndef
from sympy.core.symbol import (Dummy, Symbol, Wild)
from sympy.external import import_module
from sympy.functions import sign
from sympy.plotting.backends.base_backend import Plot
from sympy.plotting.backends.matplotlibbackend import MatplotlibBackend
from sympy.plotting.backends.textbackend import TextBackend
from sympy.plotting.series import (
    LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries,
    ParametricSurfaceSeries, SurfaceOver2DRangeSeries, ContourSeries)
from sympy.plotting.utils import _check_arguments, _plot_sympify
from sympy.tensor.indexed import Indexed
# to maintain back-compatibility
from sympy.plotting.plotgrid import PlotGrid # noqa: F401
from sympy.plotting.series import BaseSeries # noqa: F401
from sympy.plotting.series import Line2DBaseSeries # noqa: F401
from sympy.plotting.series import Line3DBaseSeries # noqa: F401
from sympy.plotting.series import SurfaceBaseSeries # noqa: F401
from sympy.plotting.series import List2DSeries # noqa: F401
from sympy.plotting.series import GenericDataSeries # noqa: F401
from sympy.plotting.series import centers_of_faces # noqa: F401
from sympy.plotting.series import centers_of_segments # noqa: F401
from sympy.plotting.series import flat # noqa: F401
from sympy.plotting.backends.base_backend import unset_show # noqa: F401
from sympy.plotting.backends.matplotlibbackend import _matplotlib_list # noqa: F401
from sympy.plotting.textplot import textplot # noqa: F401


__doctest_requires__ = {
    ('plot3d',
     'plot3d_parametric_line',
     'plot3d_parametric_surface',
     'plot_parametric'): ['matplotlib'],
    # XXX: The plot doctest possibly should not require matplotlib. It fails at
    # plot(x**2, (x, -5, 5)) which should be fine for text backend.
    ('plot',): ['matplotlib'],
}


def _process_summations(sum_bound, *args):
    """Substitute oo (infinity) in the lower/upper bounds of a summation with
    some integer number.

    Parameters
    ==========

    sum_bound : int
        oo will be substituted with this integer number.
    *args : list/tuple
        pre-processed arguments of the form (expr, range, ...)

    Notes
    =====
    Let's consider the following summation: ``Sum(1 / x**2, (x, 1, oo))``.
    The current implementation of lambdify (SymPy 1.12 at the time of
    writing this) will create something of this form:
    ``sum(1 / x**2 for x in range(1, INF))``
    The problem is that ``type(INF)`` is float, while ``range`` requires
    integers: the evaluation fails.
    Instead of modifying ``lambdify`` (which requires a deep knowledge), just
    replace it with some integer number.
    """
    def new_bound(t, bound):
        if (not t.is_number) or t.is_finite:
            return t
        if sign(t) >= 0:
            return bound
        return -bound

    args = list(args)
    expr = args[0]

    # select summations whose lower/upper bound is infinity
    w = Wild("w", properties=[
        lambda t: isinstance(t, Sum),
        lambda t: any((not a[1].is_finite) or (not a[2].is_finite) for i, a in enumerate(t.args) if i > 0)
    ])

    for t in list(expr.find(w)):
        sums_args = list(t.args)
        for i, a in enumerate(sums_args):
            if i > 0:
                sums_args[i] = (a[0], new_bound(a[1], sum_bound),
                    new_bound(a[2], sum_bound))
        s = Sum(*sums_args)
        expr = expr.subs(t, s)
    args[0] = expr
    return args


def _build_line_series(*args, **kwargs):
    """Loop over the provided arguments and create the necessary line series.
    """
    series = []
    sum_bound = int(kwargs.get("sum_bound", 1000))
    for arg in args:
        expr, r, label, rendering_kw = arg
        kw = kwargs.copy()
        if rendering_kw is not None:
            kw["rendering_kw"] = rendering_kw
        # TODO: _process_piecewise check goes here
        if not callable(expr):
            arg = _process_summations(sum_bound, *arg)
        series.append(LineOver1DRangeSeries(*arg[:-1], **kw))
    return series


def _create_series(series_type, plot_expr, **kwargs):
    """Extract the rendering_kw dictionary from the provided arguments and
    create an appropriate data series.
    """
    series = []
    for args in plot_expr:
        kw = kwargs.copy()
        if args[-1] is not None:
            kw["rendering_kw"] = args[-1]
        series.append(series_type(*args[:-1], **kw))
    return series


def _set_labels(series, labels, rendering_kw):
    """Apply the `label` and `rendering_kw` keyword arguments to the series.
    """
    if not isinstance(labels, (list, tuple)):
        labels = [labels]
    if len(labels) > 0:
        if len(labels) == 1 and len(series) > 1:
            # if one label is provided and multiple series are being plotted,
            # set the same label to all data series. It maintains
            # back-compatibility
            labels *= len(series)
        if len(series) != len(labels):
            raise ValueError("The number of labels must be equal to the "
                "number of expressions being plotted.\nReceived "
                f"{len(series)} expressions and {len(labels)} labels")

        for s, l in zip(series, labels):
            s.label = l

    if rendering_kw:
        if isinstance(rendering_kw, dict):
            rendering_kw = [rendering_kw]
        if len(rendering_kw) == 1:
            rendering_kw *= len(series)
        elif len(series) != len(rendering_kw):
            raise ValueError("The number of rendering dictionaries must be "
                "equal to the number of expressions being plotted.\nReceived "
                f"{len(series)} expressions and {len(labels)} labels")
        for s, r in zip(series, rendering_kw):
            s.rendering_kw = r


def plot_factory(*args, **kwargs):
    backend = kwargs.pop("backend", "default")
    if isinstance(backend, str):
        if backend == "default":
            matplotlib = import_module('matplotlib',
                min_module_version='1.1.0', catch=(RuntimeError,))
            if matplotlib:
                return MatplotlibBackend(*args, **kwargs)
            return TextBackend(*args, **kwargs)
        return plot_backends[backend](*args, **kwargs)
    elif (type(backend) == type) and issubclass(backend, Plot):
        return backend(*args, **kwargs)
    else:
        raise TypeError("backend must be either a string or a subclass of ``Plot``.")


plot_backends = {
    'matplotlib': MatplotlibBackend,
    'text': TextBackend,
}


####New API for plotting module ####

# TODO: Add color arrays for plots.
# TODO: Add more plotting options for 3d plots.
# TODO: Adaptive sampling for 3D plots.

def plot(*args, show=True, **kwargs):
    """Plots a function of a single variable as a curve.

    Parameters
    ==========

    args :
        The first argument is the expression representing the function
        of single variable to be plotted.

        The last argument is a 3-tuple denoting the range of the free
        variable. e.g. ``(x, 0, 5)``

        Typical usage examples are in the following:

        - Plotting a single expression with a single range.
            ``plot(expr, range, **kwargs)``
        - Plotting a single expression with the default range (-10, 10).
            ``plot(expr, **kwargs)``
        - Plotting multiple expressions with a single range.
            ``plot(expr1, expr2, ..., range, **kwargs)``
        - Plotting multiple expressions with multiple ranges.
            ``plot((expr1, range1), (expr2, range2), ..., **kwargs)``

        It is best practice to specify range explicitly because default
        range may change in the future if a more advanced default range
        detection algorithm is implemented.

    show : bool, optional
        The default value is set to ``True``. Set show to ``False`` and
        the function will not display the plot. The returned instance of
        the ``Plot`` class can then be used to save or display the plot
        by calling the ``save()`` and ``show()`` methods respectively.

    line_color : string, or float, or function, optional
        Specifies the color for the plot.
        See ``Plot`` to see how to set color for the plots.
        Note that by setting ``line_color``, it would be applied simultaneously
        to all the series.

    title : str, optional
        Title of the plot. It is set to the latex representation of
        the expression, if the plot has only one expression.

    label : str, optional
        The label of the expression in the plot. It will be used when
        called with ``legend``. Default is the name of the expression.
        e.g. ``sin(x)``

    xlabel : str or expression, optional
        Label for the x-axis.

    ylabel : str or expression, optional
        Label for the y-axis.

    xscale : 'linear' or 'log', optional
        Sets the scaling of the x-axis.

    yscale : 'linear' or 'log', optional
        Sets the scaling of the y-axis.

    axis_center : (float, float), optional
        Tuple of two floats denoting the coordinates of the center or
        {'center', 'auto'}

    xlim : (float, float), optional
        Denotes the x-axis limits, ``(min, max)```.

    ylim : (float, float), optional
        Denotes the y-axis limits, ``(min, max)```.

    annotations : list, optional
        A list of dictionaries specifying the type of annotation
        required. The keys in the dictionary should be equivalent
        to the arguments of the :external:mod:`matplotlib`'s
        :external:meth:`~matplotlib.axes.Axes.annotate` method.

    markers : list, optional
        A list of dictionaries specifying the type the markers required.
        The keys in the dictionary should be equivalent to the arguments
        of the :external:mod:`matplotlib`'s :external:func:`~matplotlib.pyplot.plot()` function
        along with the marker related keyworded arguments.

    rectangles : list, optional
        A list of dictionaries specifying the dimensions of the
        rectangles to be plotted. The keys in the dictionary should be
        equivalent to the arguments of the :external:mod:`matplotlib`'s
        :external:class:`~matplotlib.patches.Rectangle` class.

    fill : dict, optional
        A dictionary specifying the type of color filling required in
        the plot. The keys in the dictionary should be equivalent to the
        arguments of the :external:mod:`matplotlib`'s
        :external:meth:`~matplotlib.axes.Axes.fill_between` method.

    adaptive : bool, optional
        The default value is set to ``True``. Set adaptive to ``False``
        and specify ``n`` if uniform sampling is required.

        The plotting uses an adaptive algorithm which samples
        recursively to accurately plot. The adaptive algorithm uses a
        random point near the midpoint of two points that has to be
        further sampled. Hence the same plots can appear slightly
        different.

    depth : int, optional
        Recursion depth of the adaptive algorithm. A depth of value
        `n` samples a maximum of `2^{n}` points.

        If the ``adaptive`` flag is set to ``False``, this will be
        ignored.

    n : int, optional
        Used when the ``adaptive`` is set to ``False``. The function
        is uniformly sampled at ``n`` number of points. If the ``adaptive``
        flag is set to ``True``, this will be ignored.
        This keyword argument replaces ``nb_of_points``, which should be
        considered deprecated.

    size : (float, float), optional
        A tuple in the form (width, height) in inches to specify the size of
        the overall figure. The default value is set to ``None``, meaning
        the size will be set by the default backend.

    Examples
    ========

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> from sympy import symbols
       >>> from sympy.plotting import plot
       >>> x = symbols('x')

    Single Plot

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot(x**2, (x, -5, 5))
       Plot object containing:
       [0]: cartesian line: x**2 for x over (-5.0, 5.0)

    Multiple plots with single range.

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot(x, x**2, x**3, (x, -5, 5))
       Plot object containing:
       [0]: cartesian line: x for x over (-5.0, 5.0)
       [1]: cartesian line: x**2 for x over (-5.0, 5.0)
       [2]: cartesian line: x**3 for x over (-5.0, 5.0)

    Multiple plots with different ranges.

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
       Plot object containing:
       [0]: cartesian line: x**2 for x over (-6.0, 6.0)
       [1]: cartesian line: x for x over (-5.0, 5.0)

    No adaptive sampling.

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot(x**2, adaptive=False, n=400)
       Plot object containing:
       [0]: cartesian line: x**2 for x over (-10.0, 10.0)

    See Also
    ========

    Plot, LineOver1DRangeSeries

    """
    args = _plot_sympify(args)
    plot_expr = _check_arguments(args, 1, 1, **kwargs)
    params = kwargs.get("params", None)
    free = set()
    for p in plot_expr:
        if not isinstance(p[1][0], str):
            free |= {p[1][0]}
        else:
            free |= {Symbol(p[1][0])}
    if params:
        free = free.difference(params.keys())
    x = free.pop() if free else Symbol("x")
    kwargs.setdefault('xlabel', x)
    kwargs.setdefault('ylabel', Function('f')(x))

    labels = kwargs.pop("label", [])
    rendering_kw = kwargs.pop("rendering_kw", None)
    series = _build_line_series(*plot_expr, **kwargs)
    _set_labels(series, labels, rendering_kw)

    plots = plot_factory(*series, **kwargs)
    if show:
        plots.show()
    return plots


def plot_parametric(*args, show=True, **kwargs):
    """
    Plots a 2D parametric curve.

    Parameters
    ==========

    args
        Common specifications are:

        - Plotting a single parametric curve with a range
            ``plot_parametric((expr_x, expr_y), range)``
        - Plotting multiple parametric curves with the same range
            ``plot_parametric((expr_x, expr_y), ..., range)``
        - Plotting multiple parametric curves with different ranges
            ``plot_parametric((expr_x, expr_y, range), ...)``

        ``expr_x`` is the expression representing $x$ component of the
        parametric function.

        ``expr_y`` is the expression representing $y$ component of the
        parametric function.

        ``range`` is a 3-tuple denoting the parameter symbol, start and
        stop. For example, ``(u, 0, 5)``.

        If the range is not specified, then a default range of (-10, 10)
        is used.

        However, if the arguments are specified as
        ``(expr_x, expr_y, range), ...``, you must specify the ranges
        for each expressions manually.

        Default range may change in the future if a more advanced
        algorithm is implemented.

    adaptive : bool, optional
        Specifies whether to use the adaptive sampling or not.

        The default value is set to ``True``. Set adaptive to ``False``
        and specify ``n`` if uniform sampling is required.

    depth :  int, optional
        The recursion depth of the adaptive algorithm. A depth of
        value $n$ samples a maximum of $2^n$ points.

    n : int, optional
        Used when the ``adaptive`` flag is set to ``False``. Specifies the
        number of the points used for the uniform sampling.
        This keyword argument replaces ``nb_of_points``, which should be
        considered deprecated.

    line_color : string, or float, or function, optional
        Specifies the color for the plot.
        See ``Plot`` to see how to set color for the plots.
        Note that by setting ``line_color``, it would be applied simultaneously
        to all the series.

    label : str, optional
        The label of the expression in the plot. It will be used when
        called with ``legend``. Default is the name of the expression.
        e.g. ``sin(x)``

    xlabel : str, optional
        Label for the x-axis.

    ylabel : str, optional
        Label for the y-axis.

    xscale : 'linear' or 'log', optional
        Sets the scaling of the x-axis.

    yscale : 'linear' or 'log', optional
        Sets the scaling of the y-axis.

    axis_center : (float, float), optional
        Tuple of two floats denoting the coordinates of the center or
        {'center', 'auto'}

    xlim : (float, float), optional
        Denotes the x-axis limits, ``(min, max)```.

    ylim : (float, float), optional
        Denotes the y-axis limits, ``(min, max)```.

    size : (float, float), optional
        A tuple in the form (width, height) in inches to specify the size of
        the overall figure. The default value is set to ``None``, meaning
        the size will be set by the default backend.

    Examples
    ========

    .. plot::
       :context: reset
       :format: doctest
       :include-source: True

       >>> from sympy import plot_parametric, symbols, cos, sin
       >>> u = symbols('u')

    A parametric plot with a single expression:

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot_parametric((cos(u), sin(u)), (u, -5, 5))
       Plot object containing:
       [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)

    A parametric plot with multiple expressions with the same range:

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot_parametric((cos(u), sin(u)), (u, cos(u)), (u, -10, 10))
       Plot object containing:
       [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
       [1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)

    A parametric plot with multiple expressions with different ranges
    for each curve:

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot_parametric((cos(u), sin(u), (u, -5, 5)),
       ...     (cos(u), u, (u, -5, 5)))
       Plot object containing:
       [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
       [1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)

    Notes
    =====

    The plotting uses an adaptive algorithm which samples recursively to
    accurately plot the curve. The adaptive algorithm uses a random point
    near the midpoint of two points that has to be further sampled.
    Hence, repeating the same plot command can give slightly different
    results because of the random sampling.

    If there are multiple plots, then the same optional arguments are
    applied to all the plots drawn in the same canvas. If you want to
    set these options separately, you can index the returned ``Plot``
    object and set it.

    For example, when you specify ``line_color`` once, it would be
    applied simultaneously to both series.

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

        >>> from sympy import pi
        >>> expr1 = (u, cos(2*pi*u)/2 + 1/2)
        >>> expr2 = (u, sin(2*pi*u)/2 + 1/2)
        >>> p = plot_parametric(expr1, expr2, (u, 0, 1), line_color='blue')

    If you want to specify the line color for the specific series, you
    should index each item and apply the property manually.

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

        >>> p[0].line_color = 'red'
        >>> p.show()

    See Also
    ========

    Plot, Parametric2DLineSeries
    """
    args = _plot_sympify(args)
    plot_expr = _check_arguments(args, 2, 1, **kwargs)

    labels = kwargs.pop("label", [])
    rendering_kw = kwargs.pop("rendering_kw", None)
    series = _create_series(Parametric2DLineSeries, plot_expr, **kwargs)
    _set_labels(series, labels, rendering_kw)

    plots = plot_factory(*series, **kwargs)
    if show:
        plots.show()
    return plots


def plot3d_parametric_line(*args, show=True, **kwargs):
    """
    Plots a 3D parametric line plot.

    Usage
    =====

    Single plot:

    ``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)``

    If the range is not specified, then a default range of (-10, 10) is used.

    Multiple plots.

    ``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)``

    Ranges have to be specified for every expression.

    Default range may change in the future if a more advanced default range
    detection algorithm is implemented.

    Arguments
    =========

    expr_x : Expression representing the function along x.

    expr_y : Expression representing the function along y.

    expr_z : Expression representing the function along z.

    range : (:class:`~.Symbol`, float, float)
        A 3-tuple denoting the range of the parameter variable, e.g., (u, 0, 5).

    Keyword Arguments
    =================

    Arguments for ``Parametric3DLineSeries`` class.

    n : int
        The range is uniformly sampled at ``n`` number of points.
        This keyword argument replaces ``nb_of_points``, which should be
        considered deprecated.

    Aesthetics:

    line_color : string, or float, or function, optional
        Specifies the color for the plot.
        See ``Plot`` to see how to set color for the plots.
        Note that by setting ``line_color``, it would be applied simultaneously
        to all the series.

    label : str
        The label to the plot. It will be used when called with ``legend=True``
        to denote the function with the given label in the plot.

    If there are multiple plots, then the same series arguments are applied to
    all the plots. If you want to set these options separately, you can index
    the returned ``Plot`` object and set it.

    Arguments for ``Plot`` class.

    title : str
        Title of the plot.

    size : (float, float), optional
        A tuple in the form (width, height) in inches to specify the size of
        the overall figure. The default value is set to ``None``, meaning
        the size will be set by the default backend.

    Examples
    ========

    .. plot::
       :context: reset
       :format: doctest
       :include-source: True

       >>> from sympy import symbols, cos, sin
       >>> from sympy.plotting import plot3d_parametric_line
       >>> u = symbols('u')

    Single plot.

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
       Plot object containing:
       [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)


    Multiple plots.

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
       ...     (sin(u), u**2, u, (u, -5, 5)))
       Plot object containing:
       [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
       [1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)


    See Also
    ========

    Plot, Parametric3DLineSeries

    """
    args = _plot_sympify(args)
    plot_expr = _check_arguments(args, 3, 1, **kwargs)
    kwargs.setdefault("xlabel", "x")
    kwargs.setdefault("ylabel", "y")
    kwargs.setdefault("zlabel", "z")

    labels = kwargs.pop("label", [])
    rendering_kw = kwargs.pop("rendering_kw", None)
    series = _create_series(Parametric3DLineSeries, plot_expr, **kwargs)
    _set_labels(series, labels, rendering_kw)

    plots = plot_factory(*series, **kwargs)
    if show:
        plots.show()
    return plots


def _plot3d_plot_contour_helper(Series, *args, **kwargs):
    """plot3d and plot_contour are structurally identical. Let's reduce
    code repetition.
    """
    # NOTE: if this import would be at the top-module level, it would trigger
    # SymPy's optional-dependencies tests to fail.
    from sympy.vector import BaseScalar

    args = _plot_sympify(args)
    plot_expr = _check_arguments(args, 1, 2, **kwargs)

    free_x = set()
    free_y = set()
    _types = (Symbol, BaseScalar, Indexed, AppliedUndef)
    for p in plot_expr:
        free_x |= {p[1][0]} if isinstance(p[1][0], _types) else {Symbol(p[1][0])}
        free_y |= {p[2][0]} if isinstance(p[2][0], _types) else {Symbol(p[2][0])}
    x = free_x.pop() if free_x else Symbol("x")
    y = free_y.pop() if free_y else Symbol("y")
    kwargs.setdefault("xlabel", x)
    kwargs.setdefault("ylabel", y)
    kwargs.setdefault("zlabel", Function('f')(x, y))

    # if a polar discretization is requested and automatic labelling has ben
    # applied, hide the labels on the x-y axis.
    if kwargs.get("is_polar", False):
        if callable(kwargs["xlabel"]):
            kwargs["xlabel"] = ""
        if callable(kwargs["ylabel"]):
            kwargs["ylabel"] = ""

    labels = kwargs.pop("label", [])
    rendering_kw = kwargs.pop("rendering_kw", None)
    series = _create_series(Series, plot_expr, **kwargs)
    _set_labels(series, labels, rendering_kw)
    plots = plot_factory(*series, **kwargs)
    if kwargs.get("show", True):
        plots.show()
    return plots


def plot3d(*args, show=True, **kwargs):
    """
    Plots a 3D surface plot.

    Usage
    =====

    Single plot

    ``plot3d(expr, range_x, range_y, **kwargs)``

    If the ranges are not specified, then a default range of (-10, 10) is used.

    Multiple plot with the same range.

    ``plot3d(expr1, expr2, range_x, range_y, **kwargs)``

    If the ranges are not specified, then a default range of (-10, 10) is used.

    Multiple plots with different ranges.

    ``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``

    Ranges have to be specified for every expression.

    Default range may change in the future if a more advanced default range
    detection algorithm is implemented.

    Arguments
    =========

    expr : Expression representing the function along x.

    range_x : (:class:`~.Symbol`, float, float)
        A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).

    range_y : (:class:`~.Symbol`, float, float)
        A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).

    Keyword Arguments
    =================

    Arguments for ``SurfaceOver2DRangeSeries`` class:

    n1 : int
        The x range is sampled uniformly at ``n1`` of points.
        This keyword argument replaces ``nb_of_points_x``, which should be
        considered deprecated.

    n2 : int
        The y range is sampled uniformly at ``n2`` of points.
        This keyword argument replaces ``nb_of_points_y``, which should be
        considered deprecated.

    Aesthetics:

    surface_color : Function which returns a float
        Specifies the color for the surface of the plot.
        See :class:`~.Plot` for more details.

    If there are multiple plots, then the same series arguments are applied to
    all the plots. If you want to set these options separately, you can index
    the returned ``Plot`` object and set it.

    Arguments for ``Plot`` class:

    title : str
        Title of the plot.

    size : (float, float), optional
        A tuple in the form (width, height) in inches to specify the size of the
        overall figure. The default value is set to ``None``, meaning the size will
        be set by the default backend.

    Examples
    ========

    .. plot::
       :context: reset
       :format: doctest
       :include-source: True

       >>> from sympy import symbols
       >>> from sympy.plotting import plot3d
       >>> x, y = symbols('x y')

    Single plot

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
       Plot object containing:
       [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)


    Multiple plots with same range

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
       Plot object containing:
       [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
       [1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)


    Multiple plots with different ranges.

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
       ...     (x*y, (x, -3, 3), (y, -3, 3)))
       Plot object containing:
       [0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
       [1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)


    See Also
    ========

    Plot, SurfaceOver2DRangeSeries

    """
    kwargs.setdefault("show", show)
    return _plot3d_plot_contour_helper(
        SurfaceOver2DRangeSeries, *args, **kwargs)


def plot3d_parametric_surface(*args, show=True, **kwargs):
    """
    Plots a 3D parametric surface plot.

    Explanation
    ===========

    Single plot.

    ``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)``

    If the ranges is not specified, then a default range of (-10, 10) is used.

    Multiple plots.

    ``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)``

    Ranges have to be specified for every expression.

    Default range may change in the future if a more advanced default range
    detection algorithm is implemented.

    Arguments
    =========

    expr_x : Expression representing the function along ``x``.

    expr_y : Expression representing the function along ``y``.

    expr_z : Expression representing the function along ``z``.

    range_u : (:class:`~.Symbol`, float, float)
        A 3-tuple denoting the range of the u variable, e.g. (u, 0, 5).

    range_v : (:class:`~.Symbol`, float, float)
        A 3-tuple denoting the range of the v variable, e.g. (v, 0, 5).

    Keyword Arguments
    =================

    Arguments for ``ParametricSurfaceSeries`` class:

    n1 : int
        The ``u`` range is sampled uniformly at ``n1`` of points.
        This keyword argument replaces ``nb_of_points_u``, which should be
        considered deprecated.

    n2 : int
        The ``v`` range is sampled uniformly at ``n2`` of points.
        This keyword argument replaces ``nb_of_points_v``, which should be
        considered deprecated.

    Aesthetics:

    surface_color : Function which returns a float
        Specifies the color for the surface of the plot. See
        :class:`~Plot` for more details.

    If there are multiple plots, then the same series arguments are applied for
    all the plots. If you want to set these options separately, you can index
    the returned ``Plot`` object and set it.


    Arguments for ``Plot`` class:

    title : str
        Title of the plot.

    size : (float, float), optional
        A tuple in the form (width, height) in inches to specify the size of the
        overall figure. The default value is set to ``None``, meaning the size will
        be set by the default backend.

    Examples
    ========

    .. plot::
       :context: reset
       :format: doctest
       :include-source: True

       >>> from sympy import symbols, cos, sin
       >>> from sympy.plotting import plot3d_parametric_surface
       >>> u, v = symbols('u v')

    Single plot.

    .. plot::
       :context: close-figs
       :format: doctest
       :include-source: True

       >>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
       ...     (u, -5, 5), (v, -5, 5))
       Plot object containing:
       [0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)


    See Also
    ========

    Plot, ParametricSurfaceSeries

    """

    args = _plot_sympify(args)
    plot_expr = _check_arguments(args, 3, 2, **kwargs)
    kwargs.setdefault("xlabel", "x")
    kwargs.setdefault("ylabel", "y")
    kwargs.setdefault("zlabel", "z")

    labels = kwargs.pop("label", [])
    rendering_kw = kwargs.pop("rendering_kw", None)
    series = _create_series(ParametricSurfaceSeries, plot_expr, **kwargs)
    _set_labels(series, labels, rendering_kw)

    plots = plot_factory(*series, **kwargs)
    if show:
        plots.show()
    return plots

def plot_contour(*args, show=True, **kwargs):
    """
    Draws contour plot of a function

    Usage
    =====

    Single plot

    ``plot_contour(expr, range_x, range_y, **kwargs)``

    If the ranges are not specified, then a default range of (-10, 10) is used.

    Multiple plot with the same range.

    ``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``

    If the ranges are not specified, then a default range of (-10, 10) is used.

    Multiple plots with different ranges.

    ``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``

    Ranges have to be specified for every expression.

    Default range may change in the future if a more advanced default range
    detection algorithm is implemented.

    Arguments
    =========

    expr : Expression representing the function along x.

    range_x : (:class:`Symbol`, float, float)
        A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).

    range_y : (:class:`Symbol`, float, float)
        A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).

    Keyword Arguments
    =================

    Arguments for ``ContourSeries`` class:

    n1 : int
        The x range is sampled uniformly at ``n1`` of points.
        This keyword argument replaces ``nb_of_points_x``, which should be
        considered deprecated.

    n2 : int
        The y range is sampled uniformly at ``n2`` of points.
        This keyword argument replaces ``nb_of_points_y``, which should be
        considered deprecated.

    Aesthetics:

    surface_color : Function which returns a float
        Specifies the color for the surface of the plot. See
        :class:`sympy.plotting.Plot` for more details.

    If there are multiple plots, then the same series arguments are applied to
    all the plots. If you want to set these options separately, you can index
    the returned ``Plot`` object and set it.

    Arguments for ``Plot`` class:

    title : str
        Title of the plot.

    size : (float, float), optional
        A tuple in the form (width, height) in inches to specify the size of
        the overall figure. The default value is set to ``None``, meaning
        the size will be set by the default backend.

    See Also
    ========

    Plot, ContourSeries

    """
    kwargs.setdefault("show", show)
    return _plot3d_plot_contour_helper(ContourSeries, *args, **kwargs)


def check_arguments(args, expr_len, nb_of_free_symbols):
    """
    Checks the arguments and converts into tuples of the
    form (exprs, ranges).

    Examples
    ========

    .. plot::
       :context: reset
       :format: doctest
       :include-source: True

       >>> from sympy import cos, sin, symbols
       >>> from sympy.plotting.plot import check_arguments
       >>> x = symbols('x')
       >>> check_arguments([cos(x), sin(x)], 2, 1)
           [(cos(x), sin(x), (x, -10, 10))]

       >>> check_arguments([x, x**2], 1, 1)
           [(x, (x, -10, 10)), (x**2, (x, -10, 10))]
    """
    if not args:
        return []
    if expr_len > 1 and isinstance(args[0], Expr):
        # Multiple expressions same range.
        # The arguments are tuples when the expression length is
        # greater than 1.
        if len(args) < expr_len:
            raise ValueError("len(args) should not be less than expr_len")
        for i in range(len(args)):
            if isinstance(args[i], Tuple):
                break
        else:
            i = len(args) + 1

        exprs = Tuple(*args[:i])
        free_symbols = list(set().union(*[e.free_symbols for e in exprs]))
        if len(args) == expr_len + nb_of_free_symbols:
            #Ranges given
            plots = [exprs + Tuple(*args[expr_len:])]
        else:
            default_range = Tuple(-10, 10)
            ranges = []
            for symbol in free_symbols:
                ranges.append(Tuple(symbol) + default_range)

            for i in range(len(free_symbols) - nb_of_free_symbols):
                ranges.append(Tuple(Dummy()) + default_range)
            plots = [exprs + Tuple(*ranges)]
        return plots

    if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and
                                     len(args[0]) == expr_len and
                                     expr_len != 3):
        # Cannot handle expressions with number of expression = 3. It is
        # not possible to differentiate between expressions and ranges.
        #Series of plots with same range
        for i in range(len(args)):
            if isinstance(args[i], Tuple) and len(args[i]) != expr_len:
                break
            if not isinstance(args[i], Tuple):
                args[i] = Tuple(args[i])
        else:
            i = len(args) + 1

        exprs = args[:i]
        assert all(isinstance(e, Expr) for expr in exprs for e in expr)
        free_symbols = list(set().union(*[e.free_symbols for expr in exprs
                                        for e in expr]))

        if len(free_symbols) > nb_of_free_symbols:
            raise ValueError("The number of free_symbols in the expression "
                             "is greater than %d" % nb_of_free_symbols)
        if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple):
            ranges = Tuple(*list(args[
                           i:i + nb_of_free_symbols]))
            plots = [expr + ranges for expr in exprs]
            return plots
        else:
            # Use default ranges.
            default_range = Tuple(-10, 10)
            ranges = []
            for symbol in free_symbols:
                ranges.append(Tuple(symbol) + default_range)

            for i in range(nb_of_free_symbols - len(free_symbols)):
                ranges.append(Tuple(Dummy()) + default_range)
            ranges = Tuple(*ranges)
            plots = [expr + ranges for expr in exprs]
            return plots

    elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols:
        # Multiple plots with different ranges.
        for arg in args:
            for i in range(expr_len):
                if not isinstance(arg[i], Expr):
                    raise ValueError("Expected an expression, given %s" %
                                     str(arg[i]))
            for i in range(nb_of_free_symbols):
                if not len(arg[i + expr_len]) == 3:
                    raise ValueError("The ranges should be a tuple of "
                                     "length 3, got %s" % str(arg[i + expr_len]))
        return args