Spaces:
Sleeping
Sleeping
File size: 15,570 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
"""
Interval Arithmetic for plotting.
This module does not implement interval arithmetic accurately and
hence cannot be used for purposes other than plotting. If you want
to use interval arithmetic, use mpmath's interval arithmetic.
The module implements interval arithmetic using numpy and
python floating points. The rounding up and down is not handled
and hence this is not an accurate implementation of interval
arithmetic.
The module uses numpy for speed which cannot be achieved with mpmath.
"""
# Q: Why use numpy? Why not simply use mpmath's interval arithmetic?
# A: mpmath's interval arithmetic simulates a floating point unit
# and hence is slow, while numpy evaluations are orders of magnitude
# faster.
# Q: Why create a separate class for intervals? Why not use SymPy's
# Interval Sets?
# A: The functionalities that will be required for plotting is quite
# different from what Interval Sets implement.
# Q: Why is rounding up and down according to IEEE754 not handled?
# A: It is not possible to do it in both numpy and python. An external
# library has to used, which defeats the whole purpose i.e., speed. Also
# rounding is handled for very few functions in those libraries.
# Q Will my plots be affected?
# A It will not affect most of the plots. The interval arithmetic
# module based suffers the same problems as that of floating point
# arithmetic.
from sympy.core.numbers import int_valued
from sympy.core.logic import fuzzy_and
from sympy.simplify.simplify import nsimplify
from .interval_membership import intervalMembership
class interval:
""" Represents an interval containing floating points as start and
end of the interval
The is_valid variable tracks whether the interval obtained as the
result of the function is in the domain and is continuous.
- True: Represents the interval result of a function is continuous and
in the domain of the function.
- False: The interval argument of the function was not in the domain of
the function, hence the is_valid of the result interval is False
- None: The function was not continuous over the interval or
the function's argument interval is partly in the domain of the
function
A comparison between an interval and a real number, or a
comparison between two intervals may return ``intervalMembership``
of two 3-valued logic values.
"""
def __init__(self, *args, is_valid=True, **kwargs):
self.is_valid = is_valid
if len(args) == 1:
if isinstance(args[0], interval):
self.start, self.end = args[0].start, args[0].end
else:
self.start = float(args[0])
self.end = float(args[0])
elif len(args) == 2:
if args[0] < args[1]:
self.start = float(args[0])
self.end = float(args[1])
else:
self.start = float(args[1])
self.end = float(args[0])
else:
raise ValueError("interval takes a maximum of two float values "
"as arguments")
@property
def mid(self):
return (self.start + self.end) / 2.0
@property
def width(self):
return self.end - self.start
def __repr__(self):
return "interval(%f, %f)" % (self.start, self.end)
def __str__(self):
return "[%f, %f]" % (self.start, self.end)
def __lt__(self, other):
if isinstance(other, (int, float)):
if self.end < other:
return intervalMembership(True, self.is_valid)
elif self.start > other:
return intervalMembership(False, self.is_valid)
else:
return intervalMembership(None, self.is_valid)
elif isinstance(other, interval):
valid = fuzzy_and([self.is_valid, other.is_valid])
if self.end < other. start:
return intervalMembership(True, valid)
if self.start > other.end:
return intervalMembership(False, valid)
return intervalMembership(None, valid)
else:
return NotImplemented
def __gt__(self, other):
if isinstance(other, (int, float)):
if self.start > other:
return intervalMembership(True, self.is_valid)
elif self.end < other:
return intervalMembership(False, self.is_valid)
else:
return intervalMembership(None, self.is_valid)
elif isinstance(other, interval):
return other.__lt__(self)
else:
return NotImplemented
def __eq__(self, other):
if isinstance(other, (int, float)):
if self.start == other and self.end == other:
return intervalMembership(True, self.is_valid)
if other in self:
return intervalMembership(None, self.is_valid)
else:
return intervalMembership(False, self.is_valid)
if isinstance(other, interval):
valid = fuzzy_and([self.is_valid, other.is_valid])
if self.start == other.start and self.end == other.end:
return intervalMembership(True, valid)
elif self.__lt__(other)[0] is not None:
return intervalMembership(False, valid)
else:
return intervalMembership(None, valid)
else:
return NotImplemented
def __ne__(self, other):
if isinstance(other, (int, float)):
if self.start == other and self.end == other:
return intervalMembership(False, self.is_valid)
if other in self:
return intervalMembership(None, self.is_valid)
else:
return intervalMembership(True, self.is_valid)
if isinstance(other, interval):
valid = fuzzy_and([self.is_valid, other.is_valid])
if self.start == other.start and self.end == other.end:
return intervalMembership(False, valid)
if not self.__lt__(other)[0] is None:
return intervalMembership(True, valid)
return intervalMembership(None, valid)
else:
return NotImplemented
def __le__(self, other):
if isinstance(other, (int, float)):
if self.end <= other:
return intervalMembership(True, self.is_valid)
if self.start > other:
return intervalMembership(False, self.is_valid)
else:
return intervalMembership(None, self.is_valid)
if isinstance(other, interval):
valid = fuzzy_and([self.is_valid, other.is_valid])
if self.end <= other.start:
return intervalMembership(True, valid)
if self.start > other.end:
return intervalMembership(False, valid)
return intervalMembership(None, valid)
else:
return NotImplemented
def __ge__(self, other):
if isinstance(other, (int, float)):
if self.start >= other:
return intervalMembership(True, self.is_valid)
elif self.end < other:
return intervalMembership(False, self.is_valid)
else:
return intervalMembership(None, self.is_valid)
elif isinstance(other, interval):
return other.__le__(self)
def __add__(self, other):
if isinstance(other, (int, float)):
if self.is_valid:
return interval(self.start + other, self.end + other)
else:
start = self.start + other
end = self.end + other
return interval(start, end, is_valid=self.is_valid)
elif isinstance(other, interval):
start = self.start + other.start
end = self.end + other.end
valid = fuzzy_and([self.is_valid, other.is_valid])
return interval(start, end, is_valid=valid)
else:
return NotImplemented
__radd__ = __add__
def __sub__(self, other):
if isinstance(other, (int, float)):
start = self.start - other
end = self.end - other
return interval(start, end, is_valid=self.is_valid)
elif isinstance(other, interval):
start = self.start - other.end
end = self.end - other.start
valid = fuzzy_and([self.is_valid, other.is_valid])
return interval(start, end, is_valid=valid)
else:
return NotImplemented
def __rsub__(self, other):
if isinstance(other, (int, float)):
start = other - self.end
end = other - self.start
return interval(start, end, is_valid=self.is_valid)
elif isinstance(other, interval):
return other.__sub__(self)
else:
return NotImplemented
def __neg__(self):
if self.is_valid:
return interval(-self.end, -self.start)
else:
return interval(-self.end, -self.start, is_valid=self.is_valid)
def __mul__(self, other):
if isinstance(other, interval):
if self.is_valid is False or other.is_valid is False:
return interval(-float('inf'), float('inf'), is_valid=False)
elif self.is_valid is None or other.is_valid is None:
return interval(-float('inf'), float('inf'), is_valid=None)
else:
inters = []
inters.append(self.start * other.start)
inters.append(self.end * other.start)
inters.append(self.start * other.end)
inters.append(self.end * other.end)
start = min(inters)
end = max(inters)
return interval(start, end)
elif isinstance(other, (int, float)):
return interval(self.start*other, self.end*other, is_valid=self.is_valid)
else:
return NotImplemented
__rmul__ = __mul__
def __contains__(self, other):
if isinstance(other, (int, float)):
return self.start <= other and self.end >= other
else:
return self.start <= other.start and other.end <= self.end
def __rtruediv__(self, other):
if isinstance(other, (int, float)):
other = interval(other)
return other.__truediv__(self)
elif isinstance(other, interval):
return other.__truediv__(self)
else:
return NotImplemented
def __truediv__(self, other):
# Both None and False are handled
if not self.is_valid:
# Don't divide as the value is not valid
return interval(-float('inf'), float('inf'), is_valid=self.is_valid)
if isinstance(other, (int, float)):
if other == 0:
# Divide by zero encountered. valid nowhere
return interval(-float('inf'), float('inf'), is_valid=False)
else:
return interval(self.start / other, self.end / other)
elif isinstance(other, interval):
if other.is_valid is False or self.is_valid is False:
return interval(-float('inf'), float('inf'), is_valid=False)
elif other.is_valid is None or self.is_valid is None:
return interval(-float('inf'), float('inf'), is_valid=None)
else:
# denominator contains both signs, i.e. being divided by zero
# return the whole real line with is_valid = None
if 0 in other:
return interval(-float('inf'), float('inf'), is_valid=None)
# denominator negative
this = self
if other.end < 0:
this = -this
other = -other
# denominator positive
inters = []
inters.append(this.start / other.start)
inters.append(this.end / other.start)
inters.append(this.start / other.end)
inters.append(this.end / other.end)
start = max(inters)
end = min(inters)
return interval(start, end)
else:
return NotImplemented
def __pow__(self, other):
# Implements only power to an integer.
from .lib_interval import exp, log
if not self.is_valid:
return self
if isinstance(other, interval):
return exp(other * log(self))
elif isinstance(other, (float, int)):
if other < 0:
return 1 / self.__pow__(abs(other))
else:
if int_valued(other):
return _pow_int(self, other)
else:
return _pow_float(self, other)
else:
return NotImplemented
def __rpow__(self, other):
if isinstance(other, (float, int)):
if not self.is_valid:
#Don't do anything
return self
elif other < 0:
if self.width > 0:
return interval(-float('inf'), float('inf'), is_valid=False)
else:
power_rational = nsimplify(self.start)
num, denom = power_rational.as_numer_denom()
if denom % 2 == 0:
return interval(-float('inf'), float('inf'),
is_valid=False)
else:
start = -abs(other)**self.start
end = start
return interval(start, end)
else:
return interval(other**self.start, other**self.end)
elif isinstance(other, interval):
return other.__pow__(self)
else:
return NotImplemented
def __hash__(self):
return hash((self.is_valid, self.start, self.end))
def _pow_float(inter, power):
"""Evaluates an interval raised to a floating point."""
power_rational = nsimplify(power)
num, denom = power_rational.as_numer_denom()
if num % 2 == 0:
start = abs(inter.start)**power
end = abs(inter.end)**power
if start < 0:
ret = interval(0, max(start, end))
else:
ret = interval(start, end)
return ret
elif denom % 2 == 0:
if inter.end < 0:
return interval(-float('inf'), float('inf'), is_valid=False)
elif inter.start < 0:
return interval(0, inter.end**power, is_valid=None)
else:
return interval(inter.start**power, inter.end**power)
else:
if inter.start < 0:
start = -abs(inter.start)**power
else:
start = inter.start**power
if inter.end < 0:
end = -abs(inter.end)**power
else:
end = inter.end**power
return interval(start, end, is_valid=inter.is_valid)
def _pow_int(inter, power):
"""Evaluates an interval raised to an integer power"""
power = int(power)
if power & 1:
return interval(inter.start**power, inter.end**power)
else:
if inter.start < 0 and inter.end > 0:
start = 0
end = max(inter.start**power, inter.end**power)
return interval(start, end)
else:
return interval(inter.start**power, inter.end**power)
|