File size: 22,828 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
""" rewrite of lambdify - This stuff is not stable at all.

It is for internal use in the new plotting module.
It may (will! see the Q'n'A in the source) be rewritten.

It's completely self contained. Especially it does not use lambdarepr.

It does not aim to replace the current lambdify. Most importantly it will never
ever support anything else than SymPy expressions (no Matrices, dictionaries
and so on).
"""


import re
from sympy.core.numbers import (I, NumberSymbol, oo, zoo)
from sympy.core.symbol import Symbol
from sympy.utilities.iterables import numbered_symbols

#  We parse the expression string into a tree that identifies functions. Then
# we translate the names of the functions and we translate also some strings
# that are not names of functions (all this according to translation
# dictionaries).
#  If the translation goes to another module (like numpy) the
# module is imported and 'func' is translated to 'module.func'.
#  If a function can not be translated, the inner nodes of that part of the
# tree are not translated. So if we have Integral(sqrt(x)), sqrt is not
# translated to np.sqrt and the Integral does not crash.
#  A namespace for all this is generated by crawling the (func, args) tree of
# the expression. The creation of this namespace involves many ugly
# workarounds.
#  The namespace consists of all the names needed for the SymPy expression and
# all the name of modules used for translation. Those modules are imported only
# as a name (import numpy as np) in order to keep the namespace small and
# manageable.

#  Please, if there is a bug, do not try to fix it here! Rewrite this by using
# the method proposed in the last Q'n'A below. That way the new function will
# work just as well, be just as simple, but it wont need any new workarounds.
#  If you insist on fixing it here, look at the workarounds in the function
# sympy_expression_namespace and in lambdify.

# Q: Why are you not using Python abstract syntax tree?
# A: Because it is more complicated and not much more powerful in this case.

# Q: What if I have Symbol('sin') or g=Function('f')?
# A: You will break the algorithm. We should use srepr to defend against this?
#  The problem with Symbol('sin') is that it will be printed as 'sin'. The
# parser will distinguish it from the function 'sin' because functions are
# detected thanks to the opening parenthesis, but the lambda expression won't
# understand the difference if we have also the sin function.
# The solution (complicated) is to use srepr and maybe ast.
#  The problem with the g=Function('f') is that it will be printed as 'f' but in
# the global namespace we have only 'g'. But as the same printer is used in the
# constructor of the namespace there will be no problem.

# Q: What if some of the printers are not printing as expected?
# A: The algorithm wont work. You must use srepr for those cases. But even
# srepr may not print well. All problems with printers should be considered
# bugs.

# Q: What about _imp_ functions?
# A: Those are taken care for by evalf. A special case treatment will work
# faster but it's not worth the code complexity.

# Q: Will ast fix all possible problems?
# A: No. You will always have to use some printer. Even srepr may not work in
# some cases. But if the printer does not work, that should be considered a
# bug.

# Q: Is there same way to fix all possible problems?
# A: Probably by constructing our strings ourself by traversing the (func,
# args) tree and creating the namespace at the same time. That actually sounds
# good.

from sympy.external import import_module
import warnings

#TODO debugging output


class vectorized_lambdify:
    """ Return a sufficiently smart, vectorized and lambdified function.

    Returns only reals.

    Explanation
    ===========

    This function uses experimental_lambdify to created a lambdified
    expression ready to be used with numpy. Many of the functions in SymPy
    are not implemented in numpy so in some cases we resort to Python cmath or
    even to evalf.

    The following translations are tried:
      only numpy complex
      - on errors raised by SymPy trying to work with ndarray:
          only Python cmath and then vectorize complex128

    When using Python cmath there is no need for evalf or float/complex
    because Python cmath calls those.

    This function never tries to mix numpy directly with evalf because numpy
    does not understand SymPy Float. If this is needed one can use the
    float_wrap_evalf/complex_wrap_evalf options of experimental_lambdify or
    better one can be explicit about the dtypes that numpy works with.
    Check numpy bug http://projects.scipy.org/numpy/ticket/1013 to know what
    types of errors to expect.
    """
    def __init__(self, args, expr):
        self.args = args
        self.expr = expr
        self.np = import_module('numpy')

        self.lambda_func_1 = experimental_lambdify(
            args, expr, use_np=True)
        self.vector_func_1 = self.lambda_func_1

        self.lambda_func_2 = experimental_lambdify(
            args, expr, use_python_cmath=True)
        self.vector_func_2 = self.np.vectorize(
            self.lambda_func_2, otypes=[complex])

        self.vector_func = self.vector_func_1
        self.failure = False

    def __call__(self, *args):
        np = self.np

        try:
            temp_args = (np.array(a, dtype=complex) for a in args)
            results = self.vector_func(*temp_args)
            results = np.ma.masked_where(
                np.abs(results.imag) > 1e-7 * np.abs(results),
                results.real, copy=False)
            return results
        except ValueError:
            if self.failure:
                raise

            self.failure = True
            self.vector_func = self.vector_func_2
            warnings.warn(
                'The evaluation of the expression is problematic. '
                'We are trying a failback method that may still work. '
                'Please report this as a bug.')
            return self.__call__(*args)


class lambdify:
    """Returns the lambdified function.

    Explanation
    ===========

    This function uses experimental_lambdify to create a lambdified
    expression. It uses cmath to lambdify the expression. If the function
    is not implemented in Python cmath, Python cmath calls evalf on those
    functions.
    """

    def __init__(self, args, expr):
        self.args = args
        self.expr = expr
        self.lambda_func_1 = experimental_lambdify(
            args, expr, use_python_cmath=True, use_evalf=True)
        self.lambda_func_2 = experimental_lambdify(
            args, expr, use_python_math=True, use_evalf=True)
        self.lambda_func_3 = experimental_lambdify(
            args, expr, use_evalf=True, complex_wrap_evalf=True)
        self.lambda_func = self.lambda_func_1
        self.failure = False

    def __call__(self, args):
        try:
            #The result can be sympy.Float. Hence wrap it with complex type.
            result = complex(self.lambda_func(args))
            if abs(result.imag) > 1e-7 * abs(result):
                return None
            return result.real
        except (ZeroDivisionError, OverflowError):
            return None
        except TypeError as e:
            if self.failure:
                raise e

            if self.lambda_func == self.lambda_func_1:
                self.lambda_func = self.lambda_func_2
                return self.__call__(args)

            self.failure = True
            self.lambda_func = self.lambda_func_3
            warnings.warn(
                'The evaluation of the expression is problematic. '
                'We are trying a failback method that may still work. '
                'Please report this as a bug.', stacklevel=2)
            return self.__call__(args)


def experimental_lambdify(*args, **kwargs):
    l = Lambdifier(*args, **kwargs)
    return l


class Lambdifier:
    def __init__(self, args, expr, print_lambda=False, use_evalf=False,
                 float_wrap_evalf=False, complex_wrap_evalf=False,
                 use_np=False, use_python_math=False, use_python_cmath=False,
                 use_interval=False):

        self.print_lambda = print_lambda
        self.use_evalf = use_evalf
        self.float_wrap_evalf = float_wrap_evalf
        self.complex_wrap_evalf = complex_wrap_evalf
        self.use_np = use_np
        self.use_python_math = use_python_math
        self.use_python_cmath = use_python_cmath
        self.use_interval = use_interval

        # Constructing the argument string
        # - check
        if not all(isinstance(a, Symbol) for a in args):
            raise ValueError('The arguments must be Symbols.')
        # - use numbered symbols
        syms = numbered_symbols(exclude=expr.free_symbols)
        newargs = [next(syms) for _ in args]
        expr = expr.xreplace(dict(zip(args, newargs)))
        argstr = ', '.join([str(a) for a in newargs])
        del syms, newargs, args

        # Constructing the translation dictionaries and making the translation
        self.dict_str = self.get_dict_str()
        self.dict_fun = self.get_dict_fun()
        exprstr = str(expr)
        newexpr = self.tree2str_translate(self.str2tree(exprstr))

        # Constructing the namespaces
        namespace = {}
        namespace.update(self.sympy_atoms_namespace(expr))
        namespace.update(self.sympy_expression_namespace(expr))
        # XXX Workaround
        # Ugly workaround because Pow(a,Half) prints as sqrt(a)
        # and sympy_expression_namespace can not catch it.
        from sympy.functions.elementary.miscellaneous import sqrt
        namespace.update({'sqrt': sqrt})
        namespace.update({'Eq': lambda x, y: x == y})
        namespace.update({'Ne': lambda x, y: x != y})
        # End workaround.
        if use_python_math:
            namespace.update({'math': __import__('math')})
        if use_python_cmath:
            namespace.update({'cmath': __import__('cmath')})
        if use_np:
            try:
                namespace.update({'np': __import__('numpy')})
            except ImportError:
                raise ImportError(
                    'experimental_lambdify failed to import numpy.')
        if use_interval:
            namespace.update({'imath': __import__(
                'sympy.plotting.intervalmath', fromlist=['intervalmath'])})
            namespace.update({'math': __import__('math')})

        # Construct the lambda
        if self.print_lambda:
            print(newexpr)
        eval_str = 'lambda %s : ( %s )' % (argstr, newexpr)
        self.eval_str = eval_str
        exec("MYNEWLAMBDA = %s" % eval_str, namespace)
        self.lambda_func = namespace['MYNEWLAMBDA']

    def __call__(self, *args, **kwargs):
        return self.lambda_func(*args, **kwargs)


    ##############################################################################
    # Dicts for translating from SymPy to other modules
    ##############################################################################
    ###
    # builtins
    ###
    # Functions with different names in builtins
    builtin_functions_different = {
        'Min': 'min',
        'Max': 'max',
        'Abs': 'abs',
    }

    # Strings that should be translated
    builtin_not_functions = {
        'I': '1j',
#        'oo': '1e400',
    }

    ###
    # numpy
    ###

    # Functions that are the same in numpy
    numpy_functions_same = [
        'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'exp', 'log',
        'sqrt', 'floor', 'conjugate', 'sign',
    ]

    # Functions with different names in numpy
    numpy_functions_different = {
        "acos": "arccos",
        "acosh": "arccosh",
        "arg": "angle",
        "asin": "arcsin",
        "asinh": "arcsinh",
        "atan": "arctan",
        "atan2": "arctan2",
        "atanh": "arctanh",
        "ceiling": "ceil",
        "im": "imag",
        "ln": "log",
        "Max": "amax",
        "Min": "amin",
        "re": "real",
        "Abs": "abs",
    }

    # Strings that should be translated
    numpy_not_functions = {
        'pi': 'np.pi',
        'oo': 'np.inf',
        'E': 'np.e',
    }

    ###
    # Python math
    ###

    # Functions that are the same in math
    math_functions_same = [
        'sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'atan2',
        'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
        'exp', 'log', 'erf', 'sqrt', 'floor', 'factorial', 'gamma',
    ]

    # Functions with different names in math
    math_functions_different = {
        'ceiling': 'ceil',
        'ln': 'log',
        'loggamma': 'lgamma'
    }

    # Strings that should be translated
    math_not_functions = {
        'pi': 'math.pi',
        'E': 'math.e',
    }

    ###
    # Python cmath
    ###

    # Functions that are the same in cmath
    cmath_functions_same = [
        'sin', 'cos', 'tan', 'asin', 'acos', 'atan',
        'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
        'exp', 'log', 'sqrt',
    ]

    # Functions with different names in cmath
    cmath_functions_different = {
        'ln': 'log',
        'arg': 'phase',
    }

    # Strings that should be translated
    cmath_not_functions = {
        'pi': 'cmath.pi',
        'E': 'cmath.e',
    }

    ###
    # intervalmath
    ###

    interval_not_functions = {
        'pi': 'math.pi',
        'E': 'math.e'
    }

    interval_functions_same = [
        'sin', 'cos', 'exp', 'tan', 'atan', 'log',
        'sqrt', 'cosh', 'sinh', 'tanh', 'floor',
        'acos', 'asin', 'acosh', 'asinh', 'atanh',
        'Abs', 'And', 'Or'
    ]

    interval_functions_different = {
        'Min': 'imin',
        'Max': 'imax',
        'ceiling': 'ceil',

    }

    ###
    # mpmath, etc
    ###
    #TODO

    ###
    # Create the final ordered tuples of dictionaries
    ###

    # For strings
    def get_dict_str(self):
        dict_str = dict(self.builtin_not_functions)
        if self.use_np:
            dict_str.update(self.numpy_not_functions)
        if self.use_python_math:
            dict_str.update(self.math_not_functions)
        if self.use_python_cmath:
            dict_str.update(self.cmath_not_functions)
        if self.use_interval:
            dict_str.update(self.interval_not_functions)
        return dict_str

    # For functions
    def get_dict_fun(self):
        dict_fun = dict(self.builtin_functions_different)
        if self.use_np:
            for s in self.numpy_functions_same:
                dict_fun[s] = 'np.' + s
            for k, v in self.numpy_functions_different.items():
                dict_fun[k] = 'np.' + v
        if self.use_python_math:
            for s in self.math_functions_same:
                dict_fun[s] = 'math.' + s
            for k, v in self.math_functions_different.items():
                dict_fun[k] = 'math.' + v
        if self.use_python_cmath:
            for s in self.cmath_functions_same:
                dict_fun[s] = 'cmath.' + s
            for k, v in self.cmath_functions_different.items():
                dict_fun[k] = 'cmath.' + v
        if self.use_interval:
            for s in self.interval_functions_same:
                dict_fun[s] = 'imath.' + s
            for k, v in self.interval_functions_different.items():
                dict_fun[k] = 'imath.' + v
        return dict_fun

    ##############################################################################
    # The translator functions, tree parsers, etc.
    ##############################################################################

    def str2tree(self, exprstr):
        """Converts an expression string to a tree.

        Explanation
        ===========

        Functions are represented by ('func_name(', tree_of_arguments).
        Other expressions are (head_string, mid_tree, tail_str).
        Expressions that do not contain functions are directly returned.

        Examples
        ========

        >>> from sympy.abc import x, y, z
        >>> from sympy import Integral, sin
        >>> from sympy.plotting.experimental_lambdify import Lambdifier
        >>> str2tree = Lambdifier([x], x).str2tree

        >>> str2tree(str(Integral(x, (x, 1, y))))
        ('', ('Integral(', 'x, (x, 1, y)'), ')')
        >>> str2tree(str(x+y))
        'x + y'
        >>> str2tree(str(x+y*sin(z)+1))
        ('x + y*', ('sin(', 'z'), ') + 1')
        >>> str2tree('sin(y*(y + 1.1) + (sin(y)))')
        ('', ('sin(', ('y*(y + 1.1) + (', ('sin(', 'y'), '))')), ')')
        """
        #matches the first 'function_name('
        first_par = re.search(r'(\w+\()', exprstr)
        if first_par is None:
            return exprstr
        else:
            start = first_par.start()
            end = first_par.end()
            head = exprstr[:start]
            func = exprstr[start:end]
            tail = exprstr[end:]
            count = 0
            for i, c in enumerate(tail):
                if c == '(':
                    count += 1
                elif c == ')':
                    count -= 1
                if count == -1:
                    break
            func_tail = self.str2tree(tail[:i])
            tail = self.str2tree(tail[i:])
            return (head, (func, func_tail), tail)

    @classmethod
    def tree2str(cls, tree):
        """Converts a tree to string without translations.

        Examples
        ========

        >>> from sympy.abc import x, y, z
        >>> from sympy import sin
        >>> from sympy.plotting.experimental_lambdify import Lambdifier
        >>> str2tree = Lambdifier([x], x).str2tree
        >>> tree2str = Lambdifier([x], x).tree2str

        >>> tree2str(str2tree(str(x+y*sin(z)+1)))
        'x + y*sin(z) + 1'
        """
        if isinstance(tree, str):
            return tree
        else:
            return ''.join(map(cls.tree2str, tree))

    def tree2str_translate(self, tree):
        """Converts a tree to string with translations.

        Explanation
        ===========

        Function names are translated by translate_func.
        Other strings are translated by translate_str.
        """
        if isinstance(tree, str):
            return self.translate_str(tree)
        elif isinstance(tree, tuple) and len(tree) == 2:
            return self.translate_func(tree[0][:-1], tree[1])
        else:
            return ''.join([self.tree2str_translate(t) for t in tree])

    def translate_str(self, estr):
        """Translate substrings of estr using in order the dictionaries in
        dict_tuple_str."""
        for pattern, repl in self.dict_str.items():
                estr = re.sub(pattern, repl, estr)
        return estr

    def translate_func(self, func_name, argtree):
        """Translate function names and the tree of arguments.

        Explanation
        ===========

        If the function name is not in the dictionaries of dict_tuple_fun then the
        function is surrounded by a float((...).evalf()).

        The use of float is necessary as np.<function>(sympy.Float(..)) raises an
        error."""
        if func_name in self.dict_fun:
            new_name = self.dict_fun[func_name]
            argstr = self.tree2str_translate(argtree)
            return new_name + '(' + argstr
        elif func_name in ['Eq', 'Ne']:
            op = {'Eq': '==', 'Ne': '!='}
            return "(lambda x, y: x {} y)({}".format(op[func_name], self.tree2str_translate(argtree))
        else:
            template = '(%s(%s)).evalf(' if self.use_evalf else '%s(%s'
            if self.float_wrap_evalf:
                template = 'float(%s)' % template
            elif self.complex_wrap_evalf:
                template = 'complex(%s)' % template

            # Wrapping should only happen on the outermost expression, which
            # is the only thing we know will be a number.
            float_wrap_evalf = self.float_wrap_evalf
            complex_wrap_evalf = self.complex_wrap_evalf
            self.float_wrap_evalf = False
            self.complex_wrap_evalf = False
            ret =  template % (func_name, self.tree2str_translate(argtree))
            self.float_wrap_evalf = float_wrap_evalf
            self.complex_wrap_evalf = complex_wrap_evalf
            return ret

    ##############################################################################
    # The namespace constructors
    ##############################################################################

    @classmethod
    def sympy_expression_namespace(cls, expr):
        """Traverses the (func, args) tree of an expression and creates a SymPy
        namespace. All other modules are imported only as a module name. That way
        the namespace is not polluted and rests quite small. It probably causes much
        more variable lookups and so it takes more time, but there are no tests on
        that for the moment."""
        if expr is None:
            return {}
        else:
            funcname = str(expr.func)
            # XXX Workaround
            # Here we add an ugly workaround because str(func(x))
            # is not always the same as str(func). Eg
            # >>> str(Integral(x))
            # "Integral(x)"
            # >>> str(Integral)
            # "<class 'sympy.integrals.integrals.Integral'>"
            # >>> str(sqrt(x))
            # "sqrt(x)"
            # >>> str(sqrt)
            # "<function sqrt at 0x3d92de8>"
            # >>> str(sin(x))
            # "sin(x)"
            # >>> str(sin)
            # "sin"
            # Either one of those can be used but not all at the same time.
            # The code considers the sin example as the right one.
            regexlist = [
                r'<class \'sympy[\w.]*?.([\w]*)\'>$',
                # the example Integral
                r'<function ([\w]*) at 0x[\w]*>$',    # the example sqrt
            ]
            for r in regexlist:
                m = re.match(r, funcname)
                if m is not None:
                    funcname = m.groups()[0]
            # End of the workaround
            # XXX debug: print funcname
            args_dict = {}
            for a in expr.args:
                if (isinstance(a, (Symbol, NumberSymbol)) or a in [I, zoo, oo]):
                    continue
                else:
                    args_dict.update(cls.sympy_expression_namespace(a))
            args_dict.update({funcname: expr.func})
            return args_dict

    @staticmethod
    def sympy_atoms_namespace(expr):
        """For no real reason this function is separated from
        sympy_expression_namespace. It can be moved to it."""
        atoms = expr.atoms(Symbol, NumberSymbol, I, zoo, oo)
        d = {}
        for a in atoms:
            # XXX debug: print 'atom:' + str(a)
            d[str(a)] = a
        return d