Spaces:
Sleeping
Sleeping
File size: 38,587 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 |
# -*- coding: utf-8 -*-
r"""
Wigner, Clebsch-Gordan, Racah, and Gaunt coefficients
Collection of functions for calculating Wigner 3j, 6j, 9j,
Clebsch-Gordan, Racah as well as Gaunt coefficients exactly, all
evaluating to a rational number times the square root of a rational
number [Rasch03]_.
Please see the description of the individual functions for further
details and examples.
References
==========
.. [Regge58] 'Symmetry Properties of Clebsch-Gordan Coefficients',
T. Regge, Nuovo Cimento, Volume 10, pp. 544 (1958)
.. [Regge59] 'Symmetry Properties of Racah Coefficients',
T. Regge, Nuovo Cimento, Volume 11, pp. 116 (1959)
.. [Edmonds74] A. R. Edmonds. Angular momentum in quantum mechanics.
Investigations in physics, 4.; Investigations in physics, no. 4.
Princeton, N.J., Princeton University Press, 1957.
.. [Rasch03] J. Rasch and A. C. H. Yu, 'Efficient Storage Scheme for
Pre-calculated Wigner 3j, 6j and Gaunt Coefficients', SIAM
J. Sci. Comput. Volume 25, Issue 4, pp. 1416-1428 (2003)
.. [Liberatodebrito82] 'FORTRAN program for the integral of three
spherical harmonics', A. Liberato de Brito,
Comput. Phys. Commun., Volume 25, pp. 81-85 (1982)
.. [Homeier96] 'Some Properties of the Coupling Coefficients of Real
Spherical Harmonics and Their Relation to Gaunt Coefficients',
H. H. H. Homeier and E. O. Steinborn J. Mol. Struct., Volume 368,
pp. 31-37 (1996)
Credits and Copyright
=====================
This code was taken from Sage with the permission of all authors:
https://groups.google.com/forum/#!topic/sage-devel/M4NZdu-7O38
Authors
=======
- Jens Rasch (2009-03-24): initial version for Sage
- Jens Rasch (2009-05-31): updated to sage-4.0
- Oscar Gerardo Lazo Arjona (2017-06-18): added Wigner D matrices
- Phil Adam LeMaitre (2022-09-19): added real Gaunt coefficient
Copyright (C) 2008 Jens Rasch <[email protected]>
"""
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.numbers import int_valued
from sympy.core.function import Function
from sympy.core.numbers import (Float, I, Integer, pi, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import (binomial, factorial)
from sympy.functions.elementary.complexes import re
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.functions.special.spherical_harmonics import Ynm
from sympy.matrices.dense import zeros
from sympy.matrices.immutable import ImmutableMatrix
from sympy.utilities.misc import as_int
# This list of precomputed factorials is needed to massively
# accelerate future calculations of the various coefficients
_Factlist = [1]
def _calc_factlist(nn):
r"""
Function calculates a list of precomputed factorials in order to
massively accelerate future calculations of the various
coefficients.
Parameters
==========
nn : integer
Highest factorial to be computed.
Returns
=======
list of integers :
The list of precomputed factorials.
Examples
========
Calculate list of factorials::
sage: from sage.functions.wigner import _calc_factlist
sage: _calc_factlist(10)
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
"""
if nn >= len(_Factlist):
for ii in range(len(_Factlist), int(nn + 1)):
_Factlist.append(_Factlist[ii - 1] * ii)
return _Factlist[:int(nn) + 1]
def _int_or_halfint(value):
"""return Python int unless value is half-int (then return float)"""
if isinstance(value, int):
return value
elif type(value) is float:
if value.is_integer():
return int(value) # an int
if (2*value).is_integer():
return value # a float
elif isinstance(value, Rational):
if value.q == 2:
return value.p/value.q # a float
elif value.q == 1:
return value.p # an int
elif isinstance(value, Float):
return _int_or_halfint(float(value))
raise ValueError("expecting integer or half-integer, got %s" % value)
def wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3):
r"""
Calculate the Wigner 3j symbol `\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)`.
Parameters
==========
j_1, j_2, j_3, m_1, m_2, m_3 :
Integer or half integer.
Returns
=======
Rational number times the square root of a rational number.
Examples
========
>>> from sympy.physics.wigner import wigner_3j
>>> wigner_3j(2, 6, 4, 0, 0, 0)
sqrt(715)/143
>>> wigner_3j(2, 6, 4, 0, 0, 1)
0
It is an error to have arguments that are not integer or half
integer values::
sage: wigner_3j(2.1, 6, 4, 0, 0, 0)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer
sage: wigner_3j(2, 6, 4, 1, 0, -1.1)
Traceback (most recent call last):
...
ValueError: m values must be integer or half integer
Notes
=====
The Wigner 3j symbol obeys the following symmetry rules:
- invariant under any permutation of the columns (with the
exception of a sign change where `J:=j_1+j_2+j_3`):
.. math::
\begin{aligned}
\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)
&=\operatorname{Wigner3j}(j_3,j_1,j_2,m_3,m_1,m_2) \\
&=\operatorname{Wigner3j}(j_2,j_3,j_1,m_2,m_3,m_1) \\
&=(-1)^J \operatorname{Wigner3j}(j_3,j_2,j_1,m_3,m_2,m_1) \\
&=(-1)^J \operatorname{Wigner3j}(j_1,j_3,j_2,m_1,m_3,m_2) \\
&=(-1)^J \operatorname{Wigner3j}(j_2,j_1,j_3,m_2,m_1,m_3)
\end{aligned}
- invariant under space inflection, i.e.
.. math::
\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)
=(-1)^J \operatorname{Wigner3j}(j_1,j_2,j_3,-m_1,-m_2,-m_3)
- symmetric with respect to the 72 additional symmetries based on
the work by [Regge58]_
- zero for `j_1`, `j_2`, `j_3` not fulfilling triangle relation
- zero for `m_1 + m_2 + m_3 \neq 0`
- zero for violating any one of the conditions
`m_1 \in \{-|j_1|, \ldots, |j_1|\}`,
`m_2 \in \{-|j_2|, \ldots, |j_2|\}`,
`m_3 \in \{-|j_3|, \ldots, |j_3|\}`
Algorithm
=========
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 3j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
Authors
=======
- Jens Rasch (2009-03-24): initial version
"""
j_1, j_2, j_3, m_1, m_2, m_3 = map(_int_or_halfint,
[j_1, j_2, j_3, m_1, m_2, m_3])
if m_1 + m_2 + m_3 != 0:
return S.Zero
a1 = j_1 + j_2 - j_3
if a1 < 0:
return S.Zero
a2 = j_1 - j_2 + j_3
if a2 < 0:
return S.Zero
a3 = -j_1 + j_2 + j_3
if a3 < 0:
return S.Zero
if (abs(m_1) > j_1) or (abs(m_2) > j_2) or (abs(m_3) > j_3):
return S.Zero
if not (int_valued(j_1 - m_1) and \
int_valued(j_2 - m_2) and \
int_valued(j_3 - m_3)):
return S.Zero
maxfact = max(j_1 + j_2 + j_3 + 1, j_1 + abs(m_1), j_2 + abs(m_2),
j_3 + abs(m_3))
_calc_factlist(int(maxfact))
argsqrt = Integer(_Factlist[int(j_1 + j_2 - j_3)] *
_Factlist[int(j_1 - j_2 + j_3)] *
_Factlist[int(-j_1 + j_2 + j_3)] *
_Factlist[int(j_1 - m_1)] *
_Factlist[int(j_1 + m_1)] *
_Factlist[int(j_2 - m_2)] *
_Factlist[int(j_2 + m_2)] *
_Factlist[int(j_3 - m_3)] *
_Factlist[int(j_3 + m_3)]) / \
_Factlist[int(j_1 + j_2 + j_3 + 1)]
ressqrt = sqrt(argsqrt)
if ressqrt.is_complex or ressqrt.is_infinite:
ressqrt = ressqrt.as_real_imag()[0]
imin = max(-j_3 + j_1 + m_2, -j_3 + j_2 - m_1, 0)
imax = min(j_2 + m_2, j_1 - m_1, j_1 + j_2 - j_3)
sumres = 0
for ii in range(int(imin), int(imax) + 1):
den = _Factlist[ii] * \
_Factlist[int(ii + j_3 - j_1 - m_2)] * \
_Factlist[int(j_2 + m_2 - ii)] * \
_Factlist[int(j_1 - ii - m_1)] * \
_Factlist[int(ii + j_3 - j_2 + m_1)] * \
_Factlist[int(j_1 + j_2 - j_3 - ii)]
sumres = sumres + Integer((-1) ** ii) / den
prefid = Integer((-1) ** int(j_1 - j_2 - m_3))
res = ressqrt * sumres * prefid
return res
def clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3):
r"""
Calculates the Clebsch-Gordan coefficient.
`\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle`.
The reference for this function is [Edmonds74]_.
Parameters
==========
j_1, j_2, j_3, m_1, m_2, m_3 :
Integer or half integer.
Returns
=======
Rational number times the square root of a rational number.
Examples
========
>>> from sympy import S
>>> from sympy.physics.wigner import clebsch_gordan
>>> clebsch_gordan(S(3)/2, S(1)/2, 2, S(3)/2, S(1)/2, 2)
1
>>> clebsch_gordan(S(3)/2, S(1)/2, 1, S(3)/2, -S(1)/2, 1)
sqrt(3)/2
>>> clebsch_gordan(S(3)/2, S(1)/2, 1, -S(1)/2, S(1)/2, 0)
-sqrt(2)/2
Notes
=====
The Clebsch-Gordan coefficient will be evaluated via its relation
to Wigner 3j symbols:
.. math::
\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle
=(-1)^{j_1-j_2+m_3} \sqrt{2j_3+1}
\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,-m_3)
See also the documentation on Wigner 3j symbols which exhibit much
higher symmetry relations than the Clebsch-Gordan coefficient.
Authors
=======
- Jens Rasch (2009-03-24): initial version
"""
res = (-1) ** sympify(j_1 - j_2 + m_3) * sqrt(2 * j_3 + 1) * \
wigner_3j(j_1, j_2, j_3, m_1, m_2, -m_3)
return res
def _big_delta_coeff(aa, bb, cc, prec=None):
r"""
Calculates the Delta coefficient of the 3 angular momenta for
Racah symbols. Also checks that the differences are of integer
value.
Parameters
==========
aa :
First angular momentum, integer or half integer.
bb :
Second angular momentum, integer or half integer.
cc :
Third angular momentum, integer or half integer.
prec :
Precision of the ``sqrt()`` calculation.
Returns
=======
double : Value of the Delta coefficient.
Examples
========
sage: from sage.functions.wigner import _big_delta_coeff
sage: _big_delta_coeff(1,1,1)
1/2*sqrt(1/6)
"""
# the triangle test will only pass if a) all 3 values are ints or
# b) 1 is an int and the other two are half-ints
if not int_valued(aa + bb - cc):
raise ValueError("j values must be integer or half integer and fulfill the triangle relation")
if not int_valued(aa + cc - bb):
raise ValueError("j values must be integer or half integer and fulfill the triangle relation")
if not int_valued(bb + cc - aa):
raise ValueError("j values must be integer or half integer and fulfill the triangle relation")
if (aa + bb - cc) < 0:
return S.Zero
if (aa + cc - bb) < 0:
return S.Zero
if (bb + cc - aa) < 0:
return S.Zero
maxfact = max(aa + bb - cc, aa + cc - bb, bb + cc - aa, aa + bb + cc + 1)
_calc_factlist(maxfact)
argsqrt = Integer(_Factlist[int(aa + bb - cc)] *
_Factlist[int(aa + cc - bb)] *
_Factlist[int(bb + cc - aa)]) / \
Integer(_Factlist[int(aa + bb + cc + 1)])
ressqrt = sqrt(argsqrt)
if prec:
ressqrt = ressqrt.evalf(prec).as_real_imag()[0]
return ressqrt
def racah(aa, bb, cc, dd, ee, ff, prec=None):
r"""
Calculate the Racah symbol `W(a,b,c,d;e,f)`.
Parameters
==========
a, ..., f :
Integer or half integer.
prec :
Precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
Returns
=======
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
Examples
========
>>> from sympy.physics.wigner import racah
>>> racah(3,3,3,3,3,3)
-1/14
Notes
=====
The Racah symbol is related to the Wigner 6j symbol:
.. math::
\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)
=(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4,j_3,j_6)
Please see the 6j symbol for its much richer symmetries and for
additional properties.
Algorithm
=========
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 6j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
Authors
=======
- Jens Rasch (2009-03-24): initial version
"""
prefac = _big_delta_coeff(aa, bb, ee, prec) * \
_big_delta_coeff(cc, dd, ee, prec) * \
_big_delta_coeff(aa, cc, ff, prec) * \
_big_delta_coeff(bb, dd, ff, prec)
if prefac == 0:
return S.Zero
imin = max(aa + bb + ee, cc + dd + ee, aa + cc + ff, bb + dd + ff)
imax = min(aa + bb + cc + dd, aa + dd + ee + ff, bb + cc + ee + ff)
maxfact = max(imax + 1, aa + bb + cc + dd, aa + dd + ee + ff,
bb + cc + ee + ff)
_calc_factlist(maxfact)
sumres = 0
for kk in range(int(imin), int(imax) + 1):
den = _Factlist[int(kk - aa - bb - ee)] * \
_Factlist[int(kk - cc - dd - ee)] * \
_Factlist[int(kk - aa - cc - ff)] * \
_Factlist[int(kk - bb - dd - ff)] * \
_Factlist[int(aa + bb + cc + dd - kk)] * \
_Factlist[int(aa + dd + ee + ff - kk)] * \
_Factlist[int(bb + cc + ee + ff - kk)]
sumres = sumres + Integer((-1) ** kk * _Factlist[kk + 1]) / den
res = prefac * sumres * (-1) ** int(aa + bb + cc + dd)
return res
def wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None):
r"""
Calculate the Wigner 6j symbol `\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)`.
Parameters
==========
j_1, ..., j_6 :
Integer or half integer.
prec :
Precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
Returns
=======
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
Examples
========
>>> from sympy.physics.wigner import wigner_6j
>>> wigner_6j(3,3,3,3,3,3)
-1/14
>>> wigner_6j(5,5,5,5,5,5)
1/52
It is an error to have arguments that are not integer or half
integer values or do not fulfill the triangle relation::
sage: wigner_6j(2.5,2.5,2.5,2.5,2.5,2.5)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
sage: wigner_6j(0.5,0.5,1.1,0.5,0.5,1.1)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
Notes
=====
The Wigner 6j symbol is related to the Racah symbol but exhibits
more symmetries as detailed below.
.. math::
\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)
=(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4,j_3,j_6)
The Wigner 6j symbol obeys the following symmetry rules:
- Wigner 6j symbols are left invariant under any permutation of
the columns:
.. math::
\begin{aligned}
\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)
&=\operatorname{Wigner6j}(j_3,j_1,j_2,j_6,j_4,j_5) \\
&=\operatorname{Wigner6j}(j_2,j_3,j_1,j_5,j_6,j_4) \\
&=\operatorname{Wigner6j}(j_3,j_2,j_1,j_6,j_5,j_4) \\
&=\operatorname{Wigner6j}(j_1,j_3,j_2,j_4,j_6,j_5) \\
&=\operatorname{Wigner6j}(j_2,j_1,j_3,j_5,j_4,j_6)
\end{aligned}
- They are invariant under the exchange of the upper and lower
arguments in each of any two columns, i.e.
.. math::
\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)
=\operatorname{Wigner6j}(j_1,j_5,j_6,j_4,j_2,j_3)
=\operatorname{Wigner6j}(j_4,j_2,j_6,j_1,j_5,j_3)
=\operatorname{Wigner6j}(j_4,j_5,j_3,j_1,j_2,j_6)
- additional 6 symmetries [Regge59]_ giving rise to 144 symmetries
in total
- only non-zero if any triple of `j`'s fulfill a triangle relation
Algorithm
=========
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 6j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
"""
res = (-1) ** int(j_1 + j_2 + j_4 + j_5) * \
racah(j_1, j_2, j_5, j_4, j_3, j_6, prec)
return res
def wigner_9j(j_1, j_2, j_3, j_4, j_5, j_6, j_7, j_8, j_9, prec=None):
r"""
Calculate the Wigner 9j symbol
`\operatorname{Wigner9j}(j_1,j_2,j_3,j_4,j_5,j_6,j_7,j_8,j_9)`.
Parameters
==========
j_1, ..., j_9 :
Integer or half integer.
prec : precision, default
``None``. Providing a precision can
drastically speed up the calculation.
Returns
=======
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
Examples
========
>>> from sympy.physics.wigner import wigner_9j
>>> wigner_9j(1,1,1, 1,1,1, 1,1,0, prec=64)
0.05555555555555555555555555555555555555555555555555555555555555555
>>> wigner_9j(1/2,1/2,0, 1/2,3/2,1, 0,1,1, prec=64)
0.1666666666666666666666666666666666666666666666666666666666666667
It is an error to have arguments that are not integer or half
integer values or do not fulfill the triangle relation::
sage: wigner_9j(0.5,0.5,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5,prec=64)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
sage: wigner_9j(1,1,1, 0.5,1,1.5, 0.5,1,2.5,prec=64)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
Algorithm
=========
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 3j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
"""
imax = int(min(j_1 + j_9, j_2 + j_6, j_4 + j_8) * 2)
imin = imax % 2
sumres = 0
for kk in range(imin, int(imax) + 1, 2):
sumres = sumres + (kk + 1) * \
racah(j_1, j_2, j_9, j_6, j_3, kk / 2, prec) * \
racah(j_4, j_6, j_8, j_2, j_5, kk / 2, prec) * \
racah(j_1, j_4, j_9, j_8, j_7, kk / 2, prec)
return sumres
def gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None):
r"""
Calculate the Gaunt coefficient.
Explanation
===========
The Gaunt coefficient is defined as the integral over three
spherical harmonics:
.. math::
\begin{aligned}
\operatorname{Gaunt}(l_1,l_2,l_3,m_1,m_2,m_3)
&=\int Y_{l_1,m_1}(\Omega)
Y_{l_2,m_2}(\Omega) Y_{l_3,m_3}(\Omega) \,d\Omega \\
&=\sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}}
\operatorname{Wigner3j}(l_1,l_2,l_3,0,0,0)
\operatorname{Wigner3j}(l_1,l_2,l_3,m_1,m_2,m_3)
\end{aligned}
Parameters
==========
l_1, l_2, l_3, m_1, m_2, m_3 :
Integer.
prec - precision, default: ``None``.
Providing a precision can
drastically speed up the calculation.
Returns
=======
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
Examples
========
>>> from sympy.physics.wigner import gaunt
>>> gaunt(1,0,1,1,0,-1)
-1/(2*sqrt(pi))
>>> gaunt(1000,1000,1200,9,3,-12).n(64)
0.006895004219221134484332976156744208248842039317638217822322799675
It is an error to use non-integer values for `l` and `m`::
sage: gaunt(1.2,0,1.2,0,0,0)
Traceback (most recent call last):
...
ValueError: l values must be integer
sage: gaunt(1,0,1,1.1,0,-1.1)
Traceback (most recent call last):
...
ValueError: m values must be integer
Notes
=====
The Gaunt coefficient obeys the following symmetry rules:
- invariant under any permutation of the columns
.. math::
\begin{aligned}
Y(l_1,l_2,l_3,m_1,m_2,m_3)
&=Y(l_3,l_1,l_2,m_3,m_1,m_2) \\
&=Y(l_2,l_3,l_1,m_2,m_3,m_1) \\
&=Y(l_3,l_2,l_1,m_3,m_2,m_1) \\
&=Y(l_1,l_3,l_2,m_1,m_3,m_2) \\
&=Y(l_2,l_1,l_3,m_2,m_1,m_3)
\end{aligned}
- invariant under space inflection, i.e.
.. math::
Y(l_1,l_2,l_3,m_1,m_2,m_3)
=Y(l_1,l_2,l_3,-m_1,-m_2,-m_3)
- symmetric with respect to the 72 Regge symmetries as inherited
for the `3j` symbols [Regge58]_
- zero for `l_1`, `l_2`, `l_3` not fulfilling triangle relation
- zero for violating any one of the conditions: `l_1 \ge |m_1|`,
`l_2 \ge |m_2|`, `l_3 \ge |m_3|`
- non-zero only for an even sum of the `l_i`, i.e.
`L = l_1 + l_2 + l_3 = 2n` for `n` in `\mathbb{N}`
Algorithms
==========
This function uses the algorithm of [Liberatodebrito82]_ to
calculate the value of the Gaunt coefficient exactly. Note that
the formula contains alternating sums over large factorials and is
therefore unsuitable for finite precision arithmetic and only
useful for a computer algebra system [Rasch03]_.
Authors
=======
Jens Rasch (2009-03-24): initial version for Sage.
"""
l_1, l_2, l_3, m_1, m_2, m_3 = [
as_int(i) for i in (l_1, l_2, l_3, m_1, m_2, m_3)]
if l_1 + l_2 - l_3 < 0:
return S.Zero
if l_1 - l_2 + l_3 < 0:
return S.Zero
if -l_1 + l_2 + l_3 < 0:
return S.Zero
if (m_1 + m_2 + m_3) != 0:
return S.Zero
if (abs(m_1) > l_1) or (abs(m_2) > l_2) or (abs(m_3) > l_3):
return S.Zero
bigL, remL = divmod(l_1 + l_2 + l_3, 2)
if remL % 2:
return S.Zero
imin = max(-l_3 + l_1 + m_2, -l_3 + l_2 - m_1, 0)
imax = min(l_2 + m_2, l_1 - m_1, l_1 + l_2 - l_3)
_calc_factlist(max(l_1 + l_2 + l_3 + 1, imax + 1))
ressqrt = sqrt((2 * l_1 + 1) * (2 * l_2 + 1) * (2 * l_3 + 1) * \
_Factlist[l_1 - m_1] * _Factlist[l_1 + m_1] * _Factlist[l_2 - m_2] * \
_Factlist[l_2 + m_2] * _Factlist[l_3 - m_3] * _Factlist[l_3 + m_3] / \
(4*pi))
prefac = Integer(_Factlist[bigL] * _Factlist[l_2 - l_1 + l_3] *
_Factlist[l_1 - l_2 + l_3] * _Factlist[l_1 + l_2 - l_3])/ \
_Factlist[2 * bigL + 1]/ \
(_Factlist[bigL - l_1] *
_Factlist[bigL - l_2] * _Factlist[bigL - l_3])
sumres = 0
for ii in range(int(imin), int(imax) + 1):
den = _Factlist[ii] * _Factlist[ii + l_3 - l_1 - m_2] * \
_Factlist[l_2 + m_2 - ii] * _Factlist[l_1 - ii - m_1] * \
_Factlist[ii + l_3 - l_2 + m_1] * _Factlist[l_1 + l_2 - l_3 - ii]
sumres = sumres + Integer((-1) ** ii) / den
res = ressqrt * prefac * sumres * Integer((-1) ** (bigL + l_3 + m_1 - m_2))
if prec is not None:
res = res.n(prec)
return res
def real_gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None):
r"""
Calculate the real Gaunt coefficient.
Explanation
===========
The real Gaunt coefficient is defined as the integral over three
real spherical harmonics:
.. math::
\begin{aligned}
\operatorname{RealGaunt}(l_1,l_2,l_3,m_1,m_2,m_3)
&=\int Z^{m_1}_{l_1}(\Omega)
Z^{m_2}_{l_2}(\Omega) Z^{m_3}_{l_3}(\Omega) \,d\Omega \\
\end{aligned}
Alternatively, it can be defined in terms of the standard Gaunt
coefficient by relating the real spherical harmonics to the standard
spherical harmonics via a unitary transformation `U`, i.e.
`Z^{m}_{l}(\Omega)=\sum_{m'}U^{m}_{m'}Y^{m'}_{l}(\Omega)` [Homeier96]_.
The real Gaunt coefficient is then defined as
.. math::
\begin{aligned}
\operatorname{RealGaunt}(l_1,l_2,l_3,m_1,m_2,m_3)
&=\int Z^{m_1}_{l_1}(\Omega)
Z^{m_2}_{l_2}(\Omega) Z^{m_3}_{l_3}(\Omega) \,d\Omega \\
&=\sum_{m'_1 m'_2 m'_3} U^{m_1}_{m'_1}U^{m_2}_{m'_2}U^{m_3}_{m'_3}
\operatorname{Gaunt}(l_1,l_2,l_3,m'_1,m'_2,m'_3)
\end{aligned}
The unitary matrix `U` has components
.. math::
\begin{aligned}
U^m_{m'} = \delta_{|m||m'|}*(\delta_{m'0}\delta_{m0} + \frac{1}{\sqrt{2}}\big[\Theta(m)
\big(\delta_{m'm}+(-1)^{m'}\delta_{m'-m}\big)+i\Theta(-m)\big((-1)^{-m}
\delta_{m'-m}-\delta_{m'm}*(-1)^{m'-m}\big)\big])
\end{aligned}
where `\delta_{ij}` is the Kronecker delta symbol and `\Theta` is a step
function defined as
.. math::
\begin{aligned}
\Theta(x) = \begin{cases} 1 \,\text{for}\, x > 0 \\ 0 \,\text{for}\, x \leq 0 \end{cases}
\end{aligned}
Parameters
==========
l_1, l_2, l_3, m_1, m_2, m_3 :
Integer.
prec - precision, default: ``None``.
Providing a precision can
drastically speed up the calculation.
Returns
=======
Rational number times the square root of a rational number.
Examples
========
>>> from sympy.physics.wigner import real_gaunt
>>> real_gaunt(2,2,4,-1,-1,0)
-2/(7*sqrt(pi))
>>> real_gaunt(10,10,20,-9,-9,0).n(64)
-0.00002480019791932209313156167176797577821140084216297395518482071448
It is an error to use non-integer values for `l` and `m`::
real_gaunt(2.8,0.5,1.3,0,0,0)
Traceback (most recent call last):
...
ValueError: l values must be integer
real_gaunt(2,2,4,0.7,1,-3.4)
Traceback (most recent call last):
...
ValueError: m values must be integer
Notes
=====
The real Gaunt coefficient inherits from the standard Gaunt coefficient,
the invariance under any permutation of the pairs `(l_i, m_i)` and the
requirement that the sum of the `l_i` be even to yield a non-zero value.
It also obeys the following symmetry rules:
- zero for `l_1`, `l_2`, `l_3` not fulfiling the condition
`l_1 \in \{l_{\text{max}}, l_{\text{max}}-2, \ldots, l_{\text{min}}\}`,
where `l_{\text{max}} = l_2+l_3`,
.. math::
\begin{aligned}
l_{\text{min}} = \begin{cases} \kappa(l_2, l_3, m_2, m_3) & \text{if}\,
\kappa(l_2, l_3, m_2, m_3) + l_{\text{max}}\, \text{is even} \\
\kappa(l_2, l_3, m_2, m_3)+1 & \text{if}\, \kappa(l_2, l_3, m_2, m_3) +
l_{\text{max}}\, \text{is odd}\end{cases}
\end{aligned}
and `\kappa(l_2, l_3, m_2, m_3) = \max{\big(|l_2-l_3|, \min{\big(|m_2+m_3|,
|m_2-m_3|\big)}\big)}`
- zero for an odd number of negative `m_i`
Algorithms
==========
This function uses the algorithms of [Homeier96]_ and [Rasch03]_ to
calculate the value of the real Gaunt coefficient exactly. Note that
the formula used in [Rasch03]_ contains alternating sums over large
factorials and is therefore unsuitable for finite precision arithmetic
and only useful for a computer algebra system [Rasch03]_. However, this
function can in principle use any algorithm that computes the Gaunt
coefficient, so it is suitable for finite precision arithmetic in so far
as the algorithm which computes the Gaunt coefficient is.
"""
l_1, l_2, l_3, m_1, m_2, m_3 = [
as_int(i) for i in (l_1, l_2, l_3, m_1, m_2, m_3)]
# check for quick exits
if sum(1 for i in (m_1, m_2, m_3) if i < 0) % 2:
return S.Zero # odd number of negative m
if (l_1 + l_2 + l_3) % 2:
return S.Zero # sum of l is odd
lmax = l_2 + l_3
lmin = max(abs(l_2 - l_3), min(abs(m_2 + m_3), abs(m_2 - m_3)))
if (lmin + lmax) % 2:
lmin += 1
if lmin not in range(lmax, lmin - 2, -2):
return S.Zero
kron_del = lambda i, j: 1 if i == j else 0
s = lambda e: -1 if e % 2 else 1 # (-1)**e to give +/-1, avoiding float when e<0
A = lambda a, b: (-kron_del(a, b)*s(a-b) + kron_del(a, -b)*
s(b)) if b < 0 else 0
B = lambda a, b: (kron_del(a, b) + kron_del(a, -b)*s(a)) if b > 0 else 0
C = lambda a, b: kron_del(abs(a), abs(b))*(kron_del(a, 0)*kron_del(b, 0) +
(B(a, b) + I*A(a, b))/sqrt(2))
ugnt = 0
for i in range(-l_1, l_1+1):
U1 = C(i, m_1)
for j in range(-l_2, l_2+1):
U2 = C(j, m_2)
U3 = C(-i-j, m_3)
ugnt = ugnt + re(U1*U2*U3)*gaunt(l_1, l_2, l_3, i, j, -i-j)
if prec is not None:
ugnt = ugnt.n(prec)
return ugnt
class Wigner3j(Function):
def doit(self, **hints):
if all(obj.is_number for obj in self.args):
return wigner_3j(*self.args)
else:
return self
def dot_rot_grad_Ynm(j, p, l, m, theta, phi):
r"""
Returns dot product of rotational gradients of spherical harmonics.
Explanation
===========
This function returns the right hand side of the following expression:
.. math ::
\vec{R}Y{_j^{p}} \cdot \vec{R}Y{_l^{m}} = (-1)^{m+p}
\sum\limits_{k=|l-j|}^{l+j}Y{_k^{m+p}} * \alpha_{l,m,j,p,k} *
\frac{1}{2} (k^2-j^2-l^2+k-j-l)
Arguments
=========
j, p, l, m .... indices in spherical harmonics (expressions or integers)
theta, phi .... angle arguments in spherical harmonics
Example
=======
>>> from sympy import symbols
>>> from sympy.physics.wigner import dot_rot_grad_Ynm
>>> theta, phi = symbols("theta phi")
>>> dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit()
3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi))
"""
j = sympify(j)
p = sympify(p)
l = sympify(l)
m = sympify(m)
theta = sympify(theta)
phi = sympify(phi)
k = Dummy("k")
def alpha(l,m,j,p,k):
return sqrt((2*l+1)*(2*j+1)*(2*k+1)/(4*pi)) * \
Wigner3j(j, l, k, S.Zero, S.Zero, S.Zero) * \
Wigner3j(j, l, k, p, m, -m-p)
return (S.NegativeOne)**(m+p) * Sum(Ynm(k, m+p, theta, phi) * alpha(l,m,j,p,k) / 2 \
*(k**2-j**2-l**2+k-j-l), (k, abs(l-j), l+j))
def wigner_d_small(J, beta):
"""Return the small Wigner d matrix for angular momentum J.
Explanation
===========
J : An integer, half-integer, or SymPy symbol for the total angular
momentum of the angular momentum space being rotated.
beta : A real number representing the Euler angle of rotation about
the so-called line of nodes. See [Edmonds74]_.
Returns
=======
A matrix representing the corresponding Euler angle rotation( in the basis
of eigenvectors of `J_z`).
.. math ::
\\mathcal{d}_{\\beta} = \\exp\\big( \\frac{i\\beta}{\\hbar} J_y\\big)
The components are calculated using the general form [Edmonds74]_,
equation 4.1.15.
Examples
========
>>> from sympy import Integer, symbols, pi, pprint
>>> from sympy.physics.wigner import wigner_d_small
>>> half = 1/Integer(2)
>>> beta = symbols("beta", real=True)
>>> pprint(wigner_d_small(half, beta), use_unicode=True)
β‘ βΞ²β βΞ²ββ€
β’cosβββ sinββββ₯
β’ β2β β2β β₯
β’ β₯
β’ βΞ²β βΞ²ββ₯
β’-sinβββ cosββββ₯
β£ β2β β2β β¦
>>> pprint(wigner_d_small(2*half, beta), use_unicode=True)
β‘ 2βΞ²β βΞ²β βΞ²β 2βΞ²β β€
β’ cos βββ β2β
sinββββ
cosβββ sin βββ β₯
β’ β2β β2β β2β β2β β₯
β’ β₯
β’ βΞ²β βΞ²β 2βΞ²β 2βΞ²β βΞ²β βΞ²ββ₯
β’-β2β
sinββββ
cosβββ - sin βββ + cos βββ β2β
sinββββ
cosββββ₯
β’ β2β β2β β2β β2β β2β β2β β₯
β’ β₯
β’ 2βΞ²β βΞ²β βΞ²β 2βΞ²β β₯
β’ sin βββ -β2β
sinββββ
cosβββ cos βββ β₯
β£ β2β β2β β2β β2β β¦
From table 4 in [Edmonds74]_
>>> pprint(wigner_d_small(half, beta).subs({beta:pi/2}), use_unicode=True)
β‘ β2 β2β€
β’ ββ βββ₯
β’ 2 2 β₯
β’ β₯
β’-β2 β2β₯
β’ββββ βββ₯
β£ 2 2 β¦
>>> pprint(wigner_d_small(2*half, beta).subs({beta:pi/2}),
... use_unicode=True)
β‘ β2 β€
β’1/2 ββ 1/2β₯
β’ 2 β₯
β’ β₯
β’-β2 β2 β₯
β’ββββ 0 ββ β₯
β’ 2 2 β₯
β’ β₯
β’ -β2 β₯
β’1/2 ββββ 1/2β₯
β£ 2 β¦
>>> pprint(wigner_d_small(3*half, beta).subs({beta:pi/2}),
... use_unicode=True)
β‘ β2 β6 β6 β2β€
β’ ββ ββ ββ βββ₯
β’ 4 4 4 4 β₯
β’ β₯
β’-β6 -β2 β2 β6β₯
β’ββββ ββββ ββ βββ₯
β’ 4 4 4 4 β₯
β’ β₯
β’ β6 -β2 -β2 β6β₯
β’ ββ ββββ ββββ βββ₯
β’ 4 4 4 4 β₯
β’ β₯
β’-β2 β6 -β6 β2β₯
β’ββββ ββ ββββ βββ₯
β£ 4 4 4 4 β¦
>>> pprint(wigner_d_small(4*half, beta).subs({beta:pi/2}),
... use_unicode=True)
β‘ β6 β€
β’1/4 1/2 ββ 1/2 1/4β₯
β’ 4 β₯
β’ β₯
β’-1/2 -1/2 0 1/2 1/2β₯
β’ β₯
β’ β6 β6 β₯
β’ ββ 0 -1/2 0 ββ β₯
β’ 4 4 β₯
β’ β₯
β’-1/2 1/2 0 -1/2 1/2β₯
β’ β₯
β’ β6 β₯
β’1/4 -1/2 ββ -1/2 1/4β₯
β£ 4 β¦
"""
M = [J-i for i in range(2*J+1)]
d = zeros(2*J+1)
for i, Mi in enumerate(M):
for j, Mj in enumerate(M):
# We get the maximum and minimum value of sigma.
sigmamax = min([J-Mi, J-Mj])
sigmamin = max([0, -Mi-Mj])
dij = sqrt(factorial(J+Mi)*factorial(J-Mi) /
factorial(J+Mj)/factorial(J-Mj))
terms = [(-1)**(J-Mi-s) *
binomial(J+Mj, J-Mi-s) *
binomial(J-Mj, s) *
cos(beta/2)**(2*s+Mi+Mj) *
sin(beta/2)**(2*J-2*s-Mj-Mi)
for s in range(sigmamin, sigmamax+1)]
d[i, j] = dij*Add(*terms)
return ImmutableMatrix(d)
def wigner_d(J, alpha, beta, gamma):
"""Return the Wigner D matrix for angular momentum J.
Explanation
===========
J :
An integer, half-integer, or SymPy symbol for the total angular
momentum of the angular momentum space being rotated.
alpha, beta, gamma - Real numbers representing the Euler.
Angles of rotation about the so-called vertical, line of nodes, and
figure axes. See [Edmonds74]_.
Returns
=======
A matrix representing the corresponding Euler angle rotation( in the basis
of eigenvectors of `J_z`).
.. math ::
\\mathcal{D}_{\\alpha \\beta \\gamma} =
\\exp\\big( \\frac{i\\alpha}{\\hbar} J_z\\big)
\\exp\\big( \\frac{i\\beta}{\\hbar} J_y\\big)
\\exp\\big( \\frac{i\\gamma}{\\hbar} J_z\\big)
The components are calculated using the general form [Edmonds74]_,
equation 4.1.12.
Examples
========
The simplest possible example:
>>> from sympy.physics.wigner import wigner_d
>>> from sympy import Integer, symbols, pprint
>>> half = 1/Integer(2)
>>> alpha, beta, gamma = symbols("alpha, beta, gamma", real=True)
>>> pprint(wigner_d(half, alpha, beta, gamma), use_unicode=True)
β‘ β
β
Ξ± β
β
Ξ³ β
β
Ξ± -β
β
Ξ³ β€
β’ βββ βββ βββ βββββ β₯
β’ 2 2 βΞ²β 2 2 βΞ²β β₯
β’ β― β
β― β
cosβββ β― β
β― β
sinβββ β₯
β’ β2β β2β β₯
β’ β₯
β’ -β
β
Ξ± β
β
Ξ³ -β
β
Ξ± -β
β
Ξ³ β₯
β’ βββββ βββ βββββ βββββ β₯
β’ 2 2 βΞ²β 2 2 βΞ²ββ₯
β’-β― β
β― β
sinβββ β― β
β― β
cosββββ₯
β£ β2β β2β β¦
"""
d = wigner_d_small(J, beta)
M = [J-i for i in range(2*J+1)]
D = [[exp(I*Mi*alpha)*d[i, j]*exp(I*Mj*gamma)
for j, Mj in enumerate(M)] for i, Mi in enumerate(M)]
return ImmutableMatrix(D)
|