File size: 20,565 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
from .vector import Vector, _check_vector
from .frame import _check_frame
from warnings import warn
from sympy.utilities.misc import filldedent

__all__ = ['Point']


class Point:
    """This object represents a point in a dynamic system.

    It stores the: position, velocity, and acceleration of a point.
    The position is a vector defined as the vector distance from a parent
    point to this point.

    Parameters
    ==========

    name : string
        The display name of the Point

    Examples
    ========

    >>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
    >>> from sympy.physics.vector import init_vprinting
    >>> init_vprinting(pretty_print=False)
    >>> N = ReferenceFrame('N')
    >>> O = Point('O')
    >>> P = Point('P')
    >>> u1, u2, u3 = dynamicsymbols('u1 u2 u3')
    >>> O.set_vel(N, u1 * N.x + u2 * N.y + u3 * N.z)
    >>> O.acc(N)
    u1'*N.x + u2'*N.y + u3'*N.z

    ``symbols()`` can be used to create multiple Points in a single step, for
    example:

    >>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
    >>> from sympy.physics.vector import init_vprinting
    >>> init_vprinting(pretty_print=False)
    >>> from sympy import symbols
    >>> N = ReferenceFrame('N')
    >>> u1, u2 = dynamicsymbols('u1 u2')
    >>> A, B = symbols('A B', cls=Point)
    >>> type(A)
    <class 'sympy.physics.vector.point.Point'>
    >>> A.set_vel(N, u1 * N.x + u2 * N.y)
    >>> B.set_vel(N, u2 * N.x + u1 * N.y)
    >>> A.acc(N) - B.acc(N)
    (u1' - u2')*N.x + (-u1' + u2')*N.y

    """

    def __init__(self, name):
        """Initialization of a Point object. """
        self.name = name
        self._pos_dict = {}
        self._vel_dict = {}
        self._acc_dict = {}
        self._pdlist = [self._pos_dict, self._vel_dict, self._acc_dict]

    def __str__(self):
        return self.name

    __repr__ = __str__

    def _check_point(self, other):
        if not isinstance(other, Point):
            raise TypeError('A Point must be supplied')

    def _pdict_list(self, other, num):
        """Returns a list of points that gives the shortest path with respect
        to position, velocity, or acceleration from this point to the provided
        point.

        Parameters
        ==========
        other : Point
            A point that may be related to this point by position, velocity, or
            acceleration.
        num : integer
            0 for searching the position tree, 1 for searching the velocity
            tree, and 2 for searching the acceleration tree.

        Returns
        =======
        list of Points
            A sequence of points from self to other.

        Notes
        =====

        It is not clear if num = 1 or num = 2 actually works because the keys
        to ``_vel_dict`` and ``_acc_dict`` are :class:`ReferenceFrame` objects
        which do not have the ``_pdlist`` attribute.

        """
        outlist = [[self]]
        oldlist = [[]]
        while outlist != oldlist:
            oldlist = outlist[:]
            for v in outlist:
                templist = v[-1]._pdlist[num].keys()
                for v2 in templist:
                    if not v.__contains__(v2):
                        littletemplist = v + [v2]
                        if not outlist.__contains__(littletemplist):
                            outlist.append(littletemplist)
        for v in oldlist:
            if v[-1] != other:
                outlist.remove(v)
        outlist.sort(key=len)
        if len(outlist) != 0:
            return outlist[0]
        raise ValueError('No Connecting Path found between ' + other.name +
                         ' and ' + self.name)

    def a1pt_theory(self, otherpoint, outframe, interframe):
        """Sets the acceleration of this point with the 1-point theory.

        The 1-point theory for point acceleration looks like this:

        ^N a^P = ^B a^P + ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B
        x r^OP) + 2 ^N omega^B x ^B v^P

        where O is a point fixed in B, P is a point moving in B, and B is
        rotating in frame N.

        Parameters
        ==========

        otherpoint : Point
            The first point of the 1-point theory (O)
        outframe : ReferenceFrame
            The frame we want this point's acceleration defined in (N)
        fixedframe : ReferenceFrame
            The intermediate frame in this calculation (B)

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame
        >>> from sympy.physics.vector import dynamicsymbols
        >>> from sympy.physics.vector import init_vprinting
        >>> init_vprinting(pretty_print=False)
        >>> q = dynamicsymbols('q')
        >>> q2 = dynamicsymbols('q2')
        >>> qd = dynamicsymbols('q', 1)
        >>> q2d = dynamicsymbols('q2', 1)
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')
        >>> B.set_ang_vel(N, 5 * B.y)
        >>> O = Point('O')
        >>> P = O.locatenew('P', q * B.x + q2 * B.y)
        >>> P.set_vel(B, qd * B.x + q2d * B.y)
        >>> O.set_vel(N, 0)
        >>> P.a1pt_theory(O, N, B)
        (-25*q + q'')*B.x + q2''*B.y - 10*q'*B.z

        """

        _check_frame(outframe)
        _check_frame(interframe)
        self._check_point(otherpoint)
        dist = self.pos_from(otherpoint)
        v = self.vel(interframe)
        a1 = otherpoint.acc(outframe)
        a2 = self.acc(interframe)
        omega = interframe.ang_vel_in(outframe)
        alpha = interframe.ang_acc_in(outframe)
        self.set_acc(outframe, a2 + 2 * (omega.cross(v)) + a1 +
                     (alpha.cross(dist)) + (omega.cross(omega.cross(dist))))
        return self.acc(outframe)

    def a2pt_theory(self, otherpoint, outframe, fixedframe):
        """Sets the acceleration of this point with the 2-point theory.

        The 2-point theory for point acceleration looks like this:

        ^N a^P = ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP)

        where O and P are both points fixed in frame B, which is rotating in
        frame N.

        Parameters
        ==========

        otherpoint : Point
            The first point of the 2-point theory (O)
        outframe : ReferenceFrame
            The frame we want this point's acceleration defined in (N)
        fixedframe : ReferenceFrame
            The frame in which both points are fixed (B)

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
        >>> from sympy.physics.vector import init_vprinting
        >>> init_vprinting(pretty_print=False)
        >>> q = dynamicsymbols('q')
        >>> qd = dynamicsymbols('q', 1)
        >>> N = ReferenceFrame('N')
        >>> B = N.orientnew('B', 'Axis', [q, N.z])
        >>> O = Point('O')
        >>> P = O.locatenew('P', 10 * B.x)
        >>> O.set_vel(N, 5 * N.x)
        >>> P.a2pt_theory(O, N, B)
        - 10*q'**2*B.x + 10*q''*B.y

        """

        _check_frame(outframe)
        _check_frame(fixedframe)
        self._check_point(otherpoint)
        dist = self.pos_from(otherpoint)
        a = otherpoint.acc(outframe)
        omega = fixedframe.ang_vel_in(outframe)
        alpha = fixedframe.ang_acc_in(outframe)
        self.set_acc(outframe, a + (alpha.cross(dist)) +
                     (omega.cross(omega.cross(dist))))
        return self.acc(outframe)

    def acc(self, frame):
        """The acceleration Vector of this Point in a ReferenceFrame.

        Parameters
        ==========

        frame : ReferenceFrame
            The frame in which the returned acceleration vector will be defined
            in.

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_acc(N, 10 * N.x)
        >>> p1.acc(N)
        10*N.x

        """

        _check_frame(frame)
        if not (frame in self._acc_dict):
            if self.vel(frame) != 0:
                return (self._vel_dict[frame]).dt(frame)
            else:
                return Vector(0)
        return self._acc_dict[frame]

    def locatenew(self, name, value):
        """Creates a new point with a position defined from this point.

        Parameters
        ==========

        name : str
            The name for the new point
        value : Vector
            The position of the new point relative to this point

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, Point
        >>> N = ReferenceFrame('N')
        >>> P1 = Point('P1')
        >>> P2 = P1.locatenew('P2', 10 * N.x)

        """

        if not isinstance(name, str):
            raise TypeError('Must supply a valid name')
        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        p = Point(name)
        p.set_pos(self, value)
        self.set_pos(p, -value)
        return p

    def pos_from(self, otherpoint):
        """Returns a Vector distance between this Point and the other Point.

        Parameters
        ==========

        otherpoint : Point
            The otherpoint we are locating this one relative to

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p2 = Point('p2')
        >>> p1.set_pos(p2, 10 * N.x)
        >>> p1.pos_from(p2)
        10*N.x

        """

        outvec = Vector(0)
        plist = self._pdict_list(otherpoint, 0)
        for i in range(len(plist) - 1):
            outvec += plist[i]._pos_dict[plist[i + 1]]
        return outvec

    def set_acc(self, frame, value):
        """Used to set the acceleration of this Point in a ReferenceFrame.

        Parameters
        ==========

        frame : ReferenceFrame
            The frame in which this point's acceleration is defined
        value : Vector
            The vector value of this point's acceleration in the frame

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_acc(N, 10 * N.x)
        >>> p1.acc(N)
        10*N.x

        """

        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        _check_frame(frame)
        self._acc_dict.update({frame: value})

    def set_pos(self, otherpoint, value):
        """Used to set the position of this point w.r.t. another point.

        Parameters
        ==========

        otherpoint : Point
            The other point which this point's location is defined relative to
        value : Vector
            The vector which defines the location of this point

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p2 = Point('p2')
        >>> p1.set_pos(p2, 10 * N.x)
        >>> p1.pos_from(p2)
        10*N.x

        """

        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        self._check_point(otherpoint)
        self._pos_dict.update({otherpoint: value})
        otherpoint._pos_dict.update({self: -value})

    def set_vel(self, frame, value):
        """Sets the velocity Vector of this Point in a ReferenceFrame.

        Parameters
        ==========

        frame : ReferenceFrame
            The frame in which this point's velocity is defined
        value : Vector
            The vector value of this point's velocity in the frame

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_vel(N, 10 * N.x)
        >>> p1.vel(N)
        10*N.x

        """

        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        _check_frame(frame)
        self._vel_dict.update({frame: value})

    def v1pt_theory(self, otherpoint, outframe, interframe):
        """Sets the velocity of this point with the 1-point theory.

        The 1-point theory for point velocity looks like this:

        ^N v^P = ^B v^P + ^N v^O + ^N omega^B x r^OP

        where O is a point fixed in B, P is a point moving in B, and B is
        rotating in frame N.

        Parameters
        ==========

        otherpoint : Point
            The first point of the 1-point theory (O)
        outframe : ReferenceFrame
            The frame we want this point's velocity defined in (N)
        interframe : ReferenceFrame
            The intermediate frame in this calculation (B)

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame
        >>> from sympy.physics.vector import dynamicsymbols
        >>> from sympy.physics.vector import init_vprinting
        >>> init_vprinting(pretty_print=False)
        >>> q = dynamicsymbols('q')
        >>> q2 = dynamicsymbols('q2')
        >>> qd = dynamicsymbols('q', 1)
        >>> q2d = dynamicsymbols('q2', 1)
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')
        >>> B.set_ang_vel(N, 5 * B.y)
        >>> O = Point('O')
        >>> P = O.locatenew('P', q * B.x + q2 * B.y)
        >>> P.set_vel(B, qd * B.x + q2d * B.y)
        >>> O.set_vel(N, 0)
        >>> P.v1pt_theory(O, N, B)
        q'*B.x + q2'*B.y - 5*q*B.z

        """

        _check_frame(outframe)
        _check_frame(interframe)
        self._check_point(otherpoint)
        dist = self.pos_from(otherpoint)
        v1 = self.vel(interframe)
        v2 = otherpoint.vel(outframe)
        omega = interframe.ang_vel_in(outframe)
        self.set_vel(outframe, v1 + v2 + (omega.cross(dist)))
        return self.vel(outframe)

    def v2pt_theory(self, otherpoint, outframe, fixedframe):
        """Sets the velocity of this point with the 2-point theory.

        The 2-point theory for point velocity looks like this:

        ^N v^P = ^N v^O + ^N omega^B x r^OP

        where O and P are both points fixed in frame B, which is rotating in
        frame N.

        Parameters
        ==========

        otherpoint : Point
            The first point of the 2-point theory (O)
        outframe : ReferenceFrame
            The frame we want this point's velocity defined in (N)
        fixedframe : ReferenceFrame
            The frame in which both points are fixed (B)

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
        >>> from sympy.physics.vector import init_vprinting
        >>> init_vprinting(pretty_print=False)
        >>> q = dynamicsymbols('q')
        >>> qd = dynamicsymbols('q', 1)
        >>> N = ReferenceFrame('N')
        >>> B = N.orientnew('B', 'Axis', [q, N.z])
        >>> O = Point('O')
        >>> P = O.locatenew('P', 10 * B.x)
        >>> O.set_vel(N, 5 * N.x)
        >>> P.v2pt_theory(O, N, B)
        5*N.x + 10*q'*B.y

        """

        _check_frame(outframe)
        _check_frame(fixedframe)
        self._check_point(otherpoint)
        dist = self.pos_from(otherpoint)
        v = otherpoint.vel(outframe)
        omega = fixedframe.ang_vel_in(outframe)
        self.set_vel(outframe, v + (omega.cross(dist)))
        return self.vel(outframe)

    def vel(self, frame):
        """The velocity Vector of this Point in the ReferenceFrame.

        Parameters
        ==========

        frame : ReferenceFrame
            The frame in which the returned velocity vector will be defined in

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_vel(N, 10 * N.x)
        >>> p1.vel(N)
        10*N.x

        Velocities will be automatically calculated if possible, otherwise a
        ``ValueError`` will be returned. If it is possible to calculate
        multiple different velocities from the relative points, the points
        defined most directly relative to this point will be used. In the case
        of inconsistent relative positions of points, incorrect velocities may
        be returned. It is up to the user to define prior relative positions
        and velocities of points in a self-consistent way.

        >>> p = Point('p')
        >>> q = dynamicsymbols('q')
        >>> p.set_vel(N, 10 * N.x)
        >>> p2 = Point('p2')
        >>> p2.set_pos(p, q*N.x)
        >>> p2.vel(N)
        (Derivative(q(t), t) + 10)*N.x

        """

        _check_frame(frame)
        if not (frame in self._vel_dict):
            valid_neighbor_found = False
            is_cyclic = False
            visited = []
            queue = [self]
            candidate_neighbor = []
            while queue:  # BFS to find nearest point
                node = queue.pop(0)
                if node not in visited:
                    visited.append(node)
                    for neighbor, neighbor_pos in node._pos_dict.items():
                        if neighbor in visited:
                            continue
                        try:
                            # Checks if pos vector is valid
                            neighbor_pos.express(frame)
                        except ValueError:
                            continue
                        if neighbor in queue:
                            is_cyclic = True
                        try:
                            # Checks if point has its vel defined in req frame
                            neighbor_velocity = neighbor._vel_dict[frame]
                        except KeyError:
                            queue.append(neighbor)
                            continue
                        candidate_neighbor.append(neighbor)
                        if not valid_neighbor_found:
                            self.set_vel(frame, self.pos_from(neighbor).dt(frame) + neighbor_velocity)
                            valid_neighbor_found = True
            if is_cyclic:
                warn(filldedent("""
                Kinematic loops are defined among the positions of points. This
                is likely not desired and may cause errors in your calculations.
                """))
            if len(candidate_neighbor) > 1:
                warn(filldedent(f"""
                Velocity of {self.name} automatically calculated based on point
                {candidate_neighbor[0].name} but it is also possible from
                points(s): {str(candidate_neighbor[1:])}. Velocities from these
                points are not necessarily the same. This may cause errors in
                your calculations."""))
            if valid_neighbor_found:
                return self._vel_dict[frame]
            else:
                raise ValueError(filldedent(f"""
                Velocity of point {self.name} has not been defined in
                ReferenceFrame {frame.name}."""))

        return self._vel_dict[frame]

    def partial_velocity(self, frame, *gen_speeds):
        """Returns the partial velocities of the linear velocity vector of this
        point in the given frame with respect to one or more provided
        generalized speeds.

        Parameters
        ==========
        frame : ReferenceFrame
            The frame with which the velocity is defined in.
        gen_speeds : functions of time
            The generalized speeds.

        Returns
        =======
        partial_velocities : tuple of Vector
            The partial velocity vectors corresponding to the provided
            generalized speeds.

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, Point
        >>> from sympy.physics.vector import dynamicsymbols
        >>> N = ReferenceFrame('N')
        >>> A = ReferenceFrame('A')
        >>> p = Point('p')
        >>> u1, u2 = dynamicsymbols('u1, u2')
        >>> p.set_vel(N, u1 * N.x + u2 * A.y)
        >>> p.partial_velocity(N, u1)
        N.x
        >>> p.partial_velocity(N, u1, u2)
        (N.x, A.y)

        """

        from sympy.physics.vector.functions import partial_velocity

        vel = self.vel(frame)
        partials = partial_velocity([vel], gen_speeds, frame)[0]

        if len(partials) == 1:
            return partials[0]
        else:
            return tuple(partials)