Spaces:
Sleeping
Sleeping
File size: 24,810 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
from functools import reduce
from sympy import (sympify, diff, sin, cos, Matrix, symbols,
Function, S, Symbol, linear_eq_to_matrix)
from sympy.integrals.integrals import integrate
from sympy.simplify.trigsimp import trigsimp
from .vector import Vector, _check_vector
from .frame import CoordinateSym, _check_frame
from .dyadic import Dyadic
from .printing import vprint, vsprint, vpprint, vlatex, init_vprinting
from sympy.utilities.iterables import iterable
from sympy.utilities.misc import translate
__all__ = ['cross', 'dot', 'express', 'time_derivative', 'outer',
'kinematic_equations', 'get_motion_params', 'partial_velocity',
'dynamicsymbols', 'vprint', 'vsprint', 'vpprint', 'vlatex',
'init_vprinting']
def cross(vec1, vec2):
"""Cross product convenience wrapper for Vector.cross(): \n"""
if not isinstance(vec1, (Vector, Dyadic)):
raise TypeError('Cross product is between two vectors')
return vec1 ^ vec2
cross.__doc__ += Vector.cross.__doc__ # type: ignore
def dot(vec1, vec2):
"""Dot product convenience wrapper for Vector.dot(): \n"""
if not isinstance(vec1, (Vector, Dyadic)):
raise TypeError('Dot product is between two vectors')
return vec1 & vec2
dot.__doc__ += Vector.dot.__doc__ # type: ignore
def express(expr, frame, frame2=None, variables=False):
"""
Global function for 'express' functionality.
Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame.
Refer to the local methods of Vector and Dyadic for details.
If 'variables' is True, then the coordinate variables (CoordinateSym
instances) of other frames present in the vector/scalar field or
dyadic expression are also substituted in terms of the base scalars of
this frame.
Parameters
==========
expr : Vector/Dyadic/scalar(sympyfiable)
The expression to re-express in ReferenceFrame 'frame'
frame: ReferenceFrame
The reference frame to express expr in
frame2 : ReferenceFrame
The other frame required for re-expression(only for Dyadic expr)
variables : boolean
Specifies whether to substitute the coordinate variables present
in expr, in terms of those of frame
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> N = ReferenceFrame('N')
>>> q = dynamicsymbols('q')
>>> B = N.orientnew('B', 'Axis', [q, N.z])
>>> d = outer(N.x, N.x)
>>> from sympy.physics.vector import express
>>> express(d, B, N)
cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x)
>>> express(B.x, N)
cos(q)*N.x + sin(q)*N.y
>>> express(N[0], B, variables=True)
B_x*cos(q) - B_y*sin(q)
"""
_check_frame(frame)
if expr == 0:
return expr
if isinstance(expr, Vector):
# Given expr is a Vector
if variables:
# If variables attribute is True, substitute the coordinate
# variables in the Vector
frame_list = [x[-1] for x in expr.args]
subs_dict = {}
for f in frame_list:
subs_dict.update(f.variable_map(frame))
expr = expr.subs(subs_dict)
# Re-express in this frame
outvec = Vector([])
for v in expr.args:
if v[1] != frame:
temp = frame.dcm(v[1]) * v[0]
if Vector.simp:
temp = temp.applyfunc(lambda x:
trigsimp(x, method='fu'))
outvec += Vector([(temp, frame)])
else:
outvec += Vector([v])
return outvec
if isinstance(expr, Dyadic):
if frame2 is None:
frame2 = frame
_check_frame(frame2)
ol = Dyadic(0)
for v in expr.args:
ol += express(v[0], frame, variables=variables) * \
(express(v[1], frame, variables=variables) |
express(v[2], frame2, variables=variables))
return ol
else:
if variables:
# Given expr is a scalar field
frame_set = set()
expr = sympify(expr)
# Substitute all the coordinate variables
for x in expr.free_symbols:
if isinstance(x, CoordinateSym) and x.frame != frame:
frame_set.add(x.frame)
subs_dict = {}
for f in frame_set:
subs_dict.update(f.variable_map(frame))
return expr.subs(subs_dict)
return expr
def time_derivative(expr, frame, order=1):
"""
Calculate the time derivative of a vector/scalar field function
or dyadic expression in given frame.
References
==========
https://en.wikipedia.org/wiki/Rotating_reference_frame#Time_derivatives_in_the_two_frames
Parameters
==========
expr : Vector/Dyadic/sympifyable
The expression whose time derivative is to be calculated
frame : ReferenceFrame
The reference frame to calculate the time derivative in
order : integer
The order of the derivative to be calculated
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> from sympy import Symbol
>>> q1 = Symbol('q1')
>>> u1 = dynamicsymbols('u1')
>>> N = ReferenceFrame('N')
>>> A = N.orientnew('A', 'Axis', [q1, N.x])
>>> v = u1 * N.x
>>> A.set_ang_vel(N, 10*A.x)
>>> from sympy.physics.vector import time_derivative
>>> time_derivative(v, N)
u1'*N.x
>>> time_derivative(u1*A[0], N)
N_x*u1'
>>> B = N.orientnew('B', 'Axis', [u1, N.z])
>>> from sympy.physics.vector import outer
>>> d = outer(N.x, N.x)
>>> time_derivative(d, B)
- u1'*(N.y|N.x) - u1'*(N.x|N.y)
"""
t = dynamicsymbols._t
_check_frame(frame)
if order == 0:
return expr
if order % 1 != 0 or order < 0:
raise ValueError("Unsupported value of order entered")
if isinstance(expr, Vector):
outlist = []
for v in expr.args:
if v[1] == frame:
outlist += [(express(v[0], frame, variables=True).diff(t),
frame)]
else:
outlist += (time_derivative(Vector([v]), v[1]) +
(v[1].ang_vel_in(frame) ^ Vector([v]))).args
outvec = Vector(outlist)
return time_derivative(outvec, frame, order - 1)
if isinstance(expr, Dyadic):
ol = Dyadic(0)
for v in expr.args:
ol += (v[0].diff(t) * (v[1] | v[2]))
ol += (v[0] * (time_derivative(v[1], frame) | v[2]))
ol += (v[0] * (v[1] | time_derivative(v[2], frame)))
return time_derivative(ol, frame, order - 1)
else:
return diff(express(expr, frame, variables=True), t, order)
def outer(vec1, vec2):
"""Outer product convenience wrapper for Vector.outer():\n"""
if not isinstance(vec1, Vector):
raise TypeError('Outer product is between two Vectors')
return vec1.outer(vec2)
outer.__doc__ += Vector.outer.__doc__ # type: ignore
def kinematic_equations(speeds, coords, rot_type, rot_order=''):
"""Gives equations relating the qdot's to u's for a rotation type.
Supply rotation type and order as in orient. Speeds are assumed to be
body-fixed; if we are defining the orientation of B in A using by rot_type,
the angular velocity of B in A is assumed to be in the form: speed[0]*B.x +
speed[1]*B.y + speed[2]*B.z
Parameters
==========
speeds : list of length 3
The body fixed angular velocity measure numbers.
coords : list of length 3 or 4
The coordinates used to define the orientation of the two frames.
rot_type : str
The type of rotation used to create the equations. Body, Space, or
Quaternion only
rot_order : str or int
If applicable, the order of a series of rotations.
Examples
========
>>> from sympy.physics.vector import dynamicsymbols
>>> from sympy.physics.vector import kinematic_equations, vprint
>>> u1, u2, u3 = dynamicsymbols('u1 u2 u3')
>>> q1, q2, q3 = dynamicsymbols('q1 q2 q3')
>>> vprint(kinematic_equations([u1,u2,u3], [q1,q2,q3], 'body', '313'),
... order=None)
[-(u1*sin(q3) + u2*cos(q3))/sin(q2) + q1', -u1*cos(q3) + u2*sin(q3) + q2', (u1*sin(q3) + u2*cos(q3))*cos(q2)/sin(q2) - u3 + q3']
"""
# Code below is checking and sanitizing input
approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131',
'212', '232', '313', '323', '1', '2', '3', '')
# make sure XYZ => 123 and rot_type is in lower case
rot_order = translate(str(rot_order), 'XYZxyz', '123123')
rot_type = rot_type.lower()
if not isinstance(speeds, (list, tuple)):
raise TypeError('Need to supply speeds in a list')
if len(speeds) != 3:
raise TypeError('Need to supply 3 body-fixed speeds')
if not isinstance(coords, (list, tuple)):
raise TypeError('Need to supply coordinates in a list')
if rot_type in ['body', 'space']:
if rot_order not in approved_orders:
raise ValueError('Not an acceptable rotation order')
if len(coords) != 3:
raise ValueError('Need 3 coordinates for body or space')
# Actual hard-coded kinematic differential equations
w1, w2, w3 = speeds
if w1 == w2 == w3 == 0:
return [S.Zero]*3
q1, q2, q3 = coords
q1d, q2d, q3d = [diff(i, dynamicsymbols._t) for i in coords]
s1, s2, s3 = [sin(q1), sin(q2), sin(q3)]
c1, c2, c3 = [cos(q1), cos(q2), cos(q3)]
if rot_type == 'body':
if rot_order == '123':
return [q1d - (w1 * c3 - w2 * s3) / c2, q2d - w1 * s3 - w2 *
c3, q3d - (-w1 * c3 + w2 * s3) * s2 / c2 - w3]
if rot_order == '231':
return [q1d - (w2 * c3 - w3 * s3) / c2, q2d - w2 * s3 - w3 *
c3, q3d - w1 - (- w2 * c3 + w3 * s3) * s2 / c2]
if rot_order == '312':
return [q1d - (-w1 * s3 + w3 * c3) / c2, q2d - w1 * c3 - w3 *
s3, q3d - (w1 * s3 - w3 * c3) * s2 / c2 - w2]
if rot_order == '132':
return [q1d - (w1 * c3 + w3 * s3) / c2, q2d + w1 * s3 - w3 *
c3, q3d - (w1 * c3 + w3 * s3) * s2 / c2 - w2]
if rot_order == '213':
return [q1d - (w1 * s3 + w2 * c3) / c2, q2d - w1 * c3 + w2 *
s3, q3d - (w1 * s3 + w2 * c3) * s2 / c2 - w3]
if rot_order == '321':
return [q1d - (w2 * s3 + w3 * c3) / c2, q2d - w2 * c3 + w3 *
s3, q3d - w1 - (w2 * s3 + w3 * c3) * s2 / c2]
if rot_order == '121':
return [q1d - (w2 * s3 + w3 * c3) / s2, q2d - w2 * c3 + w3 *
s3, q3d - w1 + (w2 * s3 + w3 * c3) * c2 / s2]
if rot_order == '131':
return [q1d - (-w2 * c3 + w3 * s3) / s2, q2d - w2 * s3 - w3 *
c3, q3d - w1 - (w2 * c3 - w3 * s3) * c2 / s2]
if rot_order == '212':
return [q1d - (w1 * s3 - w3 * c3) / s2, q2d - w1 * c3 - w3 *
s3, q3d - (-w1 * s3 + w3 * c3) * c2 / s2 - w2]
if rot_order == '232':
return [q1d - (w1 * c3 + w3 * s3) / s2, q2d + w1 * s3 - w3 *
c3, q3d + (w1 * c3 + w3 * s3) * c2 / s2 - w2]
if rot_order == '313':
return [q1d - (w1 * s3 + w2 * c3) / s2, q2d - w1 * c3 + w2 *
s3, q3d + (w1 * s3 + w2 * c3) * c2 / s2 - w3]
if rot_order == '323':
return [q1d - (-w1 * c3 + w2 * s3) / s2, q2d - w1 * s3 - w2 *
c3, q3d - (w1 * c3 - w2 * s3) * c2 / s2 - w3]
if rot_type == 'space':
if rot_order == '123':
return [q1d - w1 - (w2 * s1 + w3 * c1) * s2 / c2, q2d - w2 *
c1 + w3 * s1, q3d - (w2 * s1 + w3 * c1) / c2]
if rot_order == '231':
return [q1d - (w1 * c1 + w3 * s1) * s2 / c2 - w2, q2d + w1 *
s1 - w3 * c1, q3d - (w1 * c1 + w3 * s1) / c2]
if rot_order == '312':
return [q1d - (w1 * s1 + w2 * c1) * s2 / c2 - w3, q2d - w1 *
c1 + w2 * s1, q3d - (w1 * s1 + w2 * c1) / c2]
if rot_order == '132':
return [q1d - w1 - (-w2 * c1 + w3 * s1) * s2 / c2, q2d - w2 *
s1 - w3 * c1, q3d - (w2 * c1 - w3 * s1) / c2]
if rot_order == '213':
return [q1d - (w1 * s1 - w3 * c1) * s2 / c2 - w2, q2d - w1 *
c1 - w3 * s1, q3d - (-w1 * s1 + w3 * c1) / c2]
if rot_order == '321':
return [q1d - (-w1 * c1 + w2 * s1) * s2 / c2 - w3, q2d - w1 *
s1 - w2 * c1, q3d - (w1 * c1 - w2 * s1) / c2]
if rot_order == '121':
return [q1d - w1 + (w2 * s1 + w3 * c1) * c2 / s2, q2d - w2 *
c1 + w3 * s1, q3d - (w2 * s1 + w3 * c1) / s2]
if rot_order == '131':
return [q1d - w1 - (w2 * c1 - w3 * s1) * c2 / s2, q2d - w2 *
s1 - w3 * c1, q3d - (-w2 * c1 + w3 * s1) / s2]
if rot_order == '212':
return [q1d - (-w1 * s1 + w3 * c1) * c2 / s2 - w2, q2d - w1 *
c1 - w3 * s1, q3d - (w1 * s1 - w3 * c1) / s2]
if rot_order == '232':
return [q1d + (w1 * c1 + w3 * s1) * c2 / s2 - w2, q2d + w1 *
s1 - w3 * c1, q3d - (w1 * c1 + w3 * s1) / s2]
if rot_order == '313':
return [q1d + (w1 * s1 + w2 * c1) * c2 / s2 - w3, q2d - w1 *
c1 + w2 * s1, q3d - (w1 * s1 + w2 * c1) / s2]
if rot_order == '323':
return [q1d - (w1 * c1 - w2 * s1) * c2 / s2 - w3, q2d - w1 *
s1 - w2 * c1, q3d - (-w1 * c1 + w2 * s1) / s2]
elif rot_type == 'quaternion':
if rot_order != '':
raise ValueError('Cannot have rotation order for quaternion')
if len(coords) != 4:
raise ValueError('Need 4 coordinates for quaternion')
# Actual hard-coded kinematic differential equations
e0, e1, e2, e3 = coords
w = Matrix(speeds + [0])
E = Matrix([[e0, -e3, e2, e1],
[e3, e0, -e1, e2],
[-e2, e1, e0, e3],
[-e1, -e2, -e3, e0]])
edots = Matrix([diff(i, dynamicsymbols._t) for i in [e1, e2, e3, e0]])
return list(edots.T - 0.5 * w.T * E.T)
else:
raise ValueError('Not an approved rotation type for this function')
def get_motion_params(frame, **kwargs):
"""
Returns the three motion parameters - (acceleration, velocity, and
position) as vectorial functions of time in the given frame.
If a higher order differential function is provided, the lower order
functions are used as boundary conditions. For example, given the
acceleration, the velocity and position parameters are taken as
boundary conditions.
The values of time at which the boundary conditions are specified
are taken from timevalue1(for position boundary condition) and
timevalue2(for velocity boundary condition).
If any of the boundary conditions are not provided, they are taken
to be zero by default (zero vectors, in case of vectorial inputs). If
the boundary conditions are also functions of time, they are converted
to constants by substituting the time values in the dynamicsymbols._t
time Symbol.
This function can also be used for calculating rotational motion
parameters. Have a look at the Parameters and Examples for more clarity.
Parameters
==========
frame : ReferenceFrame
The frame to express the motion parameters in
acceleration : Vector
Acceleration of the object/frame as a function of time
velocity : Vector
Velocity as function of time or as boundary condition
of velocity at time = timevalue1
position : Vector
Velocity as function of time or as boundary condition
of velocity at time = timevalue1
timevalue1 : sympyfiable
Value of time for position boundary condition
timevalue2 : sympyfiable
Value of time for velocity boundary condition
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, get_motion_params, dynamicsymbols
>>> from sympy.physics.vector import init_vprinting
>>> init_vprinting(pretty_print=False)
>>> from sympy import symbols
>>> R = ReferenceFrame('R')
>>> v1, v2, v3 = dynamicsymbols('v1 v2 v3')
>>> v = v1*R.x + v2*R.y + v3*R.z
>>> get_motion_params(R, position = v)
(v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z)
>>> a, b, c = symbols('a b c')
>>> v = a*R.x + b*R.y + c*R.z
>>> get_motion_params(R, velocity = v)
(0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z)
>>> parameters = get_motion_params(R, acceleration = v)
>>> parameters[1]
a*t*R.x + b*t*R.y + c*t*R.z
>>> parameters[2]
a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z
"""
def _process_vector_differential(vectdiff, condition, variable, ordinate,
frame):
"""
Helper function for get_motion methods. Finds derivative of vectdiff
wrt variable, and its integral using the specified boundary condition
at value of variable = ordinate.
Returns a tuple of - (derivative, function and integral) wrt vectdiff
"""
# Make sure boundary condition is independent of 'variable'
if condition != 0:
condition = express(condition, frame, variables=True)
# Special case of vectdiff == 0
if vectdiff == Vector(0):
return (0, 0, condition)
# Express vectdiff completely in condition's frame to give vectdiff1
vectdiff1 = express(vectdiff, frame)
# Find derivative of vectdiff
vectdiff2 = time_derivative(vectdiff, frame)
# Integrate and use boundary condition
vectdiff0 = Vector(0)
lims = (variable, ordinate, variable)
for dim in frame:
function1 = vectdiff1.dot(dim)
abscissa = dim.dot(condition).subs({variable: ordinate})
# Indefinite integral of 'function1' wrt 'variable', using
# the given initial condition (ordinate, abscissa).
vectdiff0 += (integrate(function1, lims) + abscissa) * dim
# Return tuple
return (vectdiff2, vectdiff, vectdiff0)
_check_frame(frame)
# Decide mode of operation based on user's input
if 'acceleration' in kwargs:
mode = 2
elif 'velocity' in kwargs:
mode = 1
else:
mode = 0
# All the possible parameters in kwargs
# Not all are required for every case
# If not specified, set to default values(may or may not be used in
# calculations)
conditions = ['acceleration', 'velocity', 'position',
'timevalue', 'timevalue1', 'timevalue2']
for i, x in enumerate(conditions):
if x not in kwargs:
if i < 3:
kwargs[x] = Vector(0)
else:
kwargs[x] = S.Zero
elif i < 3:
_check_vector(kwargs[x])
else:
kwargs[x] = sympify(kwargs[x])
if mode == 2:
vel = _process_vector_differential(kwargs['acceleration'],
kwargs['velocity'],
dynamicsymbols._t,
kwargs['timevalue2'], frame)[2]
pos = _process_vector_differential(vel, kwargs['position'],
dynamicsymbols._t,
kwargs['timevalue1'], frame)[2]
return (kwargs['acceleration'], vel, pos)
elif mode == 1:
return _process_vector_differential(kwargs['velocity'],
kwargs['position'],
dynamicsymbols._t,
kwargs['timevalue1'], frame)
else:
vel = time_derivative(kwargs['position'], frame)
acc = time_derivative(vel, frame)
return (acc, vel, kwargs['position'])
def partial_velocity(vel_vecs, gen_speeds, frame):
"""Returns a list of partial velocities with respect to the provided
generalized speeds in the given reference frame for each of the supplied
velocity vectors.
The output is a list of lists. The outer list has a number of elements
equal to the number of supplied velocity vectors. The inner lists are, for
each velocity vector, the partial derivatives of that velocity vector with
respect to the generalized speeds supplied.
Parameters
==========
vel_vecs : iterable
An iterable of velocity vectors (angular or linear).
gen_speeds : iterable
An iterable of generalized speeds.
frame : ReferenceFrame
The reference frame that the partial derivatives are going to be taken
in.
Examples
========
>>> from sympy.physics.vector import Point, ReferenceFrame
>>> from sympy.physics.vector import dynamicsymbols
>>> from sympy.physics.vector import partial_velocity
>>> u = dynamicsymbols('u')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, u * N.x)
>>> vel_vecs = [P.vel(N)]
>>> gen_speeds = [u]
>>> partial_velocity(vel_vecs, gen_speeds, N)
[[N.x]]
"""
if not iterable(vel_vecs):
raise TypeError('Velocity vectors must be contained in an iterable.')
if not iterable(gen_speeds):
raise TypeError('Generalized speeds must be contained in an iterable')
vec_partials = []
gen_speeds = list(gen_speeds)
for vel in vel_vecs:
partials = [Vector(0) for _ in gen_speeds]
for components, ref in vel.args:
mat, _ = linear_eq_to_matrix(components, gen_speeds)
for i in range(len(gen_speeds)):
for dim, direction in enumerate(ref):
if mat[dim, i] != 0:
partials[i] += direction * mat[dim, i]
vec_partials.append(partials)
return vec_partials
def dynamicsymbols(names, level=0, **assumptions):
"""Uses symbols and Function for functions of time.
Creates a SymPy UndefinedFunction, which is then initialized as a function
of a variable, the default being Symbol('t').
Parameters
==========
names : str
Names of the dynamic symbols you want to create; works the same way as
inputs to symbols
level : int
Level of differentiation of the returned function; d/dt once of t,
twice of t, etc.
assumptions :
- real(bool) : This is used to set the dynamicsymbol as real,
by default is False.
- positive(bool) : This is used to set the dynamicsymbol as positive,
by default is False.
- commutative(bool) : This is used to set the commutative property of
a dynamicsymbol, by default is True.
- integer(bool) : This is used to set the dynamicsymbol as integer,
by default is False.
Examples
========
>>> from sympy.physics.vector import dynamicsymbols
>>> from sympy import diff, Symbol
>>> q1 = dynamicsymbols('q1')
>>> q1
q1(t)
>>> q2 = dynamicsymbols('q2', real=True)
>>> q2.is_real
True
>>> q3 = dynamicsymbols('q3', positive=True)
>>> q3.is_positive
True
>>> q4, q5 = dynamicsymbols('q4,q5', commutative=False)
>>> bool(q4*q5 != q5*q4)
True
>>> q6 = dynamicsymbols('q6', integer=True)
>>> q6.is_integer
True
>>> diff(q1, Symbol('t'))
Derivative(q1(t), t)
"""
esses = symbols(names, cls=Function, **assumptions)
t = dynamicsymbols._t
if iterable(esses):
esses = [reduce(diff, [t] * level, e(t)) for e in esses]
return esses
else:
return reduce(diff, [t] * level, esses(t))
dynamicsymbols._t = Symbol('t') # type: ignore
dynamicsymbols._str = '\'' # type: ignore
|