File size: 57,271 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
from sympy import (diff, expand, sin, cos, sympify, eye, zeros,
                                ImmutableMatrix as Matrix, MatrixBase)
from sympy.core.symbol import Symbol
from sympy.simplify.trigsimp import trigsimp
from sympy.physics.vector.vector import Vector, _check_vector
from sympy.utilities.misc import translate

from warnings import warn

__all__ = ['CoordinateSym', 'ReferenceFrame']


class CoordinateSym(Symbol):
    """
    A coordinate symbol/base scalar associated wrt a Reference Frame.

    Ideally, users should not instantiate this class. Instances of
    this class must only be accessed through the corresponding frame
    as 'frame[index]'.

    CoordinateSyms having the same frame and index parameters are equal
    (even though they may be instantiated separately).

    Parameters
    ==========

    name : string
        The display name of the CoordinateSym

    frame : ReferenceFrame
        The reference frame this base scalar belongs to

    index : 0, 1 or 2
        The index of the dimension denoted by this coordinate variable

    Examples
    ========

    >>> from sympy.physics.vector import ReferenceFrame, CoordinateSym
    >>> A = ReferenceFrame('A')
    >>> A[1]
    A_y
    >>> type(A[0])
    <class 'sympy.physics.vector.frame.CoordinateSym'>
    >>> a_y = CoordinateSym('a_y', A, 1)
    >>> a_y == A[1]
    True

    """

    def __new__(cls, name, frame, index):
        # We can't use the cached Symbol.__new__ because this class depends on
        # frame and index, which are not passed to Symbol.__xnew__.
        assumptions = {}
        super()._sanitize(assumptions, cls)
        obj = super().__xnew__(cls, name, **assumptions)
        _check_frame(frame)
        if index not in range(0, 3):
            raise ValueError("Invalid index specified")
        obj._id = (frame, index)
        return obj

    def __getnewargs_ex__(self):
        return (self.name, *self._id), {}

    @property
    def frame(self):
        return self._id[0]

    def __eq__(self, other):
        # Check if the other object is a CoordinateSym of the same frame and
        # same index
        if isinstance(other, CoordinateSym):
            if other._id == self._id:
                return True
        return False

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return (self._id[0].__hash__(), self._id[1]).__hash__()


class ReferenceFrame:
    """A reference frame in classical mechanics.

    ReferenceFrame is a class used to represent a reference frame in classical
    mechanics. It has a standard basis of three unit vectors in the frame's
    x, y, and z directions.

    It also can have a rotation relative to a parent frame; this rotation is
    defined by a direction cosine matrix relating this frame's basis vectors to
    the parent frame's basis vectors.  It can also have an angular velocity
    vector, defined in another frame.

    """
    _count = 0

    def __init__(self, name, indices=None, latexs=None, variables=None):
        """ReferenceFrame initialization method.

        A ReferenceFrame has a set of orthonormal basis vectors, along with
        orientations relative to other ReferenceFrames and angular velocities
        relative to other ReferenceFrames.

        Parameters
        ==========

        indices : tuple of str
            Enables the reference frame's basis unit vectors to be accessed by
            Python's square bracket indexing notation using the provided three
            indice strings and alters the printing of the unit vectors to
            reflect this choice.
        latexs : tuple of str
            Alters the LaTeX printing of the reference frame's basis unit
            vectors to the provided three valid LaTeX strings.

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, vlatex
        >>> N = ReferenceFrame('N')
        >>> N.x
        N.x
        >>> O = ReferenceFrame('O', indices=('1', '2', '3'))
        >>> O.x
        O['1']
        >>> O['1']
        O['1']
        >>> P = ReferenceFrame('P', latexs=('A1', 'A2', 'A3'))
        >>> vlatex(P.x)
        'A1'

        ``symbols()`` can be used to create multiple Reference Frames in one
        step, for example:

        >>> from sympy.physics.vector import ReferenceFrame
        >>> from sympy import symbols
        >>> A, B, C = symbols('A B C', cls=ReferenceFrame)
        >>> D, E = symbols('D E', cls=ReferenceFrame, indices=('1', '2', '3'))
        >>> A[0]
        A_x
        >>> D.x
        D['1']
        >>> E.y
        E['2']
        >>> type(A) == type(D)
        True

        Unit dyads for the ReferenceFrame can be accessed through the attributes ``xx``, ``xy``, etc. For example:

        >>> from sympy.physics.vector import ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> N.yz
        (N.y|N.z)
        >>> N.zx
        (N.z|N.x)
        >>> P = ReferenceFrame('P', indices=['1', '2', '3'])
        >>> P.xx
        (P['1']|P['1'])
        >>> P.zy
        (P['3']|P['2'])

        Unit dyadic is also accessible via the ``u`` attribute:

        >>> from sympy.physics.vector import ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> N.u
        (N.x|N.x) + (N.y|N.y) + (N.z|N.z)
        >>> P = ReferenceFrame('P', indices=['1', '2', '3'])
        >>> P.u
        (P['1']|P['1']) + (P['2']|P['2']) + (P['3']|P['3'])

        """

        if not isinstance(name, str):
            raise TypeError('Need to supply a valid name')
        # The if statements below are for custom printing of basis-vectors for
        # each frame.
        # First case, when custom indices are supplied
        if indices is not None:
            if not isinstance(indices, (tuple, list)):
                raise TypeError('Supply the indices as a list')
            if len(indices) != 3:
                raise ValueError('Supply 3 indices')
            for i in indices:
                if not isinstance(i, str):
                    raise TypeError('Indices must be strings')
            self.str_vecs = [(name + '[\'' + indices[0] + '\']'),
                             (name + '[\'' + indices[1] + '\']'),
                             (name + '[\'' + indices[2] + '\']')]
            self.pretty_vecs = [(name.lower() + "_" + indices[0]),
                                (name.lower() + "_" + indices[1]),
                                (name.lower() + "_" + indices[2])]
            self.latex_vecs = [(r"\mathbf{\hat{%s}_{%s}}" % (name.lower(),
                                                             indices[0])),
                               (r"\mathbf{\hat{%s}_{%s}}" % (name.lower(),
                                                             indices[1])),
                               (r"\mathbf{\hat{%s}_{%s}}" % (name.lower(),
                                                             indices[2]))]
            self.indices = indices
        # Second case, when no custom indices are supplied
        else:
            self.str_vecs = [(name + '.x'), (name + '.y'), (name + '.z')]
            self.pretty_vecs = [name.lower() + "_x",
                                name.lower() + "_y",
                                name.lower() + "_z"]
            self.latex_vecs = [(r"\mathbf{\hat{%s}_x}" % name.lower()),
                               (r"\mathbf{\hat{%s}_y}" % name.lower()),
                               (r"\mathbf{\hat{%s}_z}" % name.lower())]
            self.indices = ['x', 'y', 'z']
        # Different step, for custom latex basis vectors
        if latexs is not None:
            if not isinstance(latexs, (tuple, list)):
                raise TypeError('Supply the indices as a list')
            if len(latexs) != 3:
                raise ValueError('Supply 3 indices')
            for i in latexs:
                if not isinstance(i, str):
                    raise TypeError('Latex entries must be strings')
            self.latex_vecs = latexs
        self.name = name
        self._var_dict = {}
        # The _dcm_dict dictionary will only store the dcms of adjacent
        # parent-child relationships. The _dcm_cache dictionary will store
        # calculated dcm along with all content of _dcm_dict for faster
        # retrieval of dcms.
        self._dcm_dict = {}
        self._dcm_cache = {}
        self._ang_vel_dict = {}
        self._ang_acc_dict = {}
        self._dlist = [self._dcm_dict, self._ang_vel_dict, self._ang_acc_dict]
        self._cur = 0
        self._x = Vector([(Matrix([1, 0, 0]), self)])
        self._y = Vector([(Matrix([0, 1, 0]), self)])
        self._z = Vector([(Matrix([0, 0, 1]), self)])
        # Associate coordinate symbols wrt this frame
        if variables is not None:
            if not isinstance(variables, (tuple, list)):
                raise TypeError('Supply the variable names as a list/tuple')
            if len(variables) != 3:
                raise ValueError('Supply 3 variable names')
            for i in variables:
                if not isinstance(i, str):
                    raise TypeError('Variable names must be strings')
        else:
            variables = [name + '_x', name + '_y', name + '_z']
        self.varlist = (CoordinateSym(variables[0], self, 0),
                        CoordinateSym(variables[1], self, 1),
                        CoordinateSym(variables[2], self, 2))
        ReferenceFrame._count += 1
        self.index = ReferenceFrame._count

    def __getitem__(self, ind):
        """
        Returns basis vector for the provided index, if the index is a string.

        If the index is a number, returns the coordinate variable correspon-
        -ding to that index.
        """
        if not isinstance(ind, str):
            if ind < 3:
                return self.varlist[ind]
            else:
                raise ValueError("Invalid index provided")
        if self.indices[0] == ind:
            return self.x
        if self.indices[1] == ind:
            return self.y
        if self.indices[2] == ind:
            return self.z
        else:
            raise ValueError('Not a defined index')

    def __iter__(self):
        return iter([self.x, self.y, self.z])

    def __str__(self):
        """Returns the name of the frame. """
        return self.name

    __repr__ = __str__

    def _dict_list(self, other, num):
        """Returns an inclusive list of reference frames that connect this
        reference frame to the provided reference frame.

        Parameters
        ==========
        other : ReferenceFrame
            The other reference frame to look for a connecting relationship to.
        num : integer
            ``0``, ``1``, and ``2`` will look for orientation, angular
            velocity, and angular acceleration relationships between the two
            frames, respectively.

        Returns
        =======
        list
            Inclusive list of reference frames that connect this reference
            frame to the other reference frame.

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame
        >>> A = ReferenceFrame('A')
        >>> B = ReferenceFrame('B')
        >>> C = ReferenceFrame('C')
        >>> D = ReferenceFrame('D')
        >>> B.orient_axis(A, A.x, 1.0)
        >>> C.orient_axis(B, B.x, 1.0)
        >>> D.orient_axis(C, C.x, 1.0)
        >>> D._dict_list(A, 0)
        [D, C, B, A]

        Raises
        ======

        ValueError
            When no path is found between the two reference frames or ``num``
            is an incorrect value.

        """

        connect_type = {0: 'orientation',
                        1: 'angular velocity',
                        2: 'angular acceleration'}

        if num not in connect_type.keys():
            raise ValueError('Valid values for num are 0, 1, or 2.')

        possible_connecting_paths = [[self]]
        oldlist = [[]]
        while possible_connecting_paths != oldlist:
            oldlist = possible_connecting_paths[:]  # make a copy
            for frame_list in possible_connecting_paths:
                frames_adjacent_to_last = frame_list[-1]._dlist[num].keys()
                for adjacent_frame in frames_adjacent_to_last:
                    if adjacent_frame not in frame_list:
                        connecting_path = frame_list + [adjacent_frame]
                        if connecting_path not in possible_connecting_paths:
                            possible_connecting_paths.append(connecting_path)

        for connecting_path in oldlist:
            if connecting_path[-1] != other:
                possible_connecting_paths.remove(connecting_path)
        possible_connecting_paths.sort(key=len)

        if len(possible_connecting_paths) != 0:
            return possible_connecting_paths[0]  # selects the shortest path

        msg = 'No connecting {} path found between {} and {}.'
        raise ValueError(msg.format(connect_type[num], self.name, other.name))

    def _w_diff_dcm(self, otherframe):
        """Angular velocity from time differentiating the DCM. """
        from sympy.physics.vector.functions import dynamicsymbols
        dcm2diff = otherframe.dcm(self)
        diffed = dcm2diff.diff(dynamicsymbols._t)
        angvelmat = diffed * dcm2diff.T
        w1 = trigsimp(expand(angvelmat[7]), recursive=True)
        w2 = trigsimp(expand(angvelmat[2]), recursive=True)
        w3 = trigsimp(expand(angvelmat[3]), recursive=True)
        return Vector([(Matrix([w1, w2, w3]), otherframe)])

    def variable_map(self, otherframe):
        """
        Returns a dictionary which expresses the coordinate variables
        of this frame in terms of the variables of otherframe.

        If Vector.simp is True, returns a simplified version of the mapped
        values. Else, returns them without simplification.

        Simplification of the expressions may take time.

        Parameters
        ==========

        otherframe : ReferenceFrame
            The other frame to map the variables to

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols
        >>> A = ReferenceFrame('A')
        >>> q = dynamicsymbols('q')
        >>> B = A.orientnew('B', 'Axis', [q, A.z])
        >>> A.variable_map(B)
        {A_x: B_x*cos(q(t)) - B_y*sin(q(t)), A_y: B_x*sin(q(t)) + B_y*cos(q(t)), A_z: B_z}

        """

        _check_frame(otherframe)
        if (otherframe, Vector.simp) in self._var_dict:
            return self._var_dict[(otherframe, Vector.simp)]
        else:
            vars_matrix = self.dcm(otherframe) * Matrix(otherframe.varlist)
            mapping = {}
            for i, x in enumerate(self):
                if Vector.simp:
                    mapping[self.varlist[i]] = trigsimp(vars_matrix[i],
                                                        method='fu')
                else:
                    mapping[self.varlist[i]] = vars_matrix[i]
            self._var_dict[(otherframe, Vector.simp)] = mapping
            return mapping

    def ang_acc_in(self, otherframe):
        """Returns the angular acceleration Vector of the ReferenceFrame.

        Effectively returns the Vector:

        ``N_alpha_B``

        which represent the angular acceleration of B in N, where B is self,
        and N is otherframe.

        Parameters
        ==========

        otherframe : ReferenceFrame
            The ReferenceFrame which the angular acceleration is returned in.

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> A = ReferenceFrame('A')
        >>> V = 10 * N.x
        >>> A.set_ang_acc(N, V)
        >>> A.ang_acc_in(N)
        10*N.x

        """

        _check_frame(otherframe)
        if otherframe in self._ang_acc_dict:
            return self._ang_acc_dict[otherframe]
        else:
            return self.ang_vel_in(otherframe).dt(otherframe)

    def ang_vel_in(self, otherframe):
        """Returns the angular velocity Vector of the ReferenceFrame.

        Effectively returns the Vector:

        ^N omega ^B

        which represent the angular velocity of B in N, where B is self, and
        N is otherframe.

        Parameters
        ==========

        otherframe : ReferenceFrame
            The ReferenceFrame which the angular velocity is returned in.

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> A = ReferenceFrame('A')
        >>> V = 10 * N.x
        >>> A.set_ang_vel(N, V)
        >>> A.ang_vel_in(N)
        10*N.x

        """

        _check_frame(otherframe)
        flist = self._dict_list(otherframe, 1)
        outvec = Vector(0)
        for i in range(len(flist) - 1):
            outvec += flist[i]._ang_vel_dict[flist[i + 1]]
        return outvec

    def dcm(self, otherframe):
        r"""Returns the direction cosine matrix of this reference frame
        relative to the provided reference frame.

        The returned matrix can be used to express the orthogonal unit vectors
        of this frame in terms of the orthogonal unit vectors of
        ``otherframe``.

        Parameters
        ==========

        otherframe : ReferenceFrame
            The reference frame which the direction cosine matrix of this frame
            is formed relative to.

        Examples
        ========

        The following example rotates the reference frame A relative to N by a
        simple rotation and then calculates the direction cosine matrix of N
        relative to A.

        >>> from sympy import symbols, sin, cos
        >>> from sympy.physics.vector import ReferenceFrame
        >>> q1 = symbols('q1')
        >>> N = ReferenceFrame('N')
        >>> A = ReferenceFrame('A')
        >>> A.orient_axis(N, q1, N.x)
        >>> N.dcm(A)
        Matrix([
        [1,       0,        0],
        [0, cos(q1), -sin(q1)],
        [0, sin(q1),  cos(q1)]])

        The second row of the above direction cosine matrix represents the
        ``N.y`` unit vector in N expressed in A. Like so:

        >>> Ny = 0*A.x + cos(q1)*A.y - sin(q1)*A.z

        Thus, expressing ``N.y`` in A should return the same result:

        >>> N.y.express(A)
        cos(q1)*A.y - sin(q1)*A.z

        Notes
        =====

        It is important to know what form of the direction cosine matrix is
        returned. If ``B.dcm(A)`` is called, it means the "direction cosine
        matrix of B rotated relative to A". This is the matrix
        :math:`{}^B\mathbf{C}^A` shown in the following relationship:

        .. math::

           \begin{bmatrix}
             \hat{\mathbf{b}}_1 \\
             \hat{\mathbf{b}}_2 \\
             \hat{\mathbf{b}}_3
           \end{bmatrix}
           =
           {}^B\mathbf{C}^A
           \begin{bmatrix}
             \hat{\mathbf{a}}_1 \\
             \hat{\mathbf{a}}_2 \\
             \hat{\mathbf{a}}_3
           \end{bmatrix}.

        :math:`{}^B\mathbf{C}^A` is the matrix that expresses the B unit
        vectors in terms of the A unit vectors.

        """

        _check_frame(otherframe)
        # Check if the dcm wrt that frame has already been calculated
        if otherframe in self._dcm_cache:
            return self._dcm_cache[otherframe]
        flist = self._dict_list(otherframe, 0)
        outdcm = eye(3)
        for i in range(len(flist) - 1):
            outdcm = outdcm * flist[i]._dcm_dict[flist[i + 1]]
        # After calculation, store the dcm in dcm cache for faster future
        # retrieval
        self._dcm_cache[otherframe] = outdcm
        otherframe._dcm_cache[self] = outdcm.T
        return outdcm

    def _dcm(self, parent, parent_orient):
        # If parent.oreint(self) is already defined,then
        # update the _dcm_dict of parent while over write
        # all content of self._dcm_dict and self._dcm_cache
        # with new dcm relation.
        # Else update _dcm_cache and _dcm_dict of both
        # self and parent.
        frames = self._dcm_cache.keys()
        dcm_dict_del = []
        dcm_cache_del = []
        if parent in frames:
            for frame in frames:
                if frame in self._dcm_dict:
                    dcm_dict_del += [frame]
                dcm_cache_del += [frame]
            # Reset the _dcm_cache of this frame, and remove it from the
            # _dcm_caches of the frames it is linked to. Also remove it from
            # the _dcm_dict of its parent
            for frame in dcm_dict_del:
                del frame._dcm_dict[self]
            for frame in dcm_cache_del:
                del frame._dcm_cache[self]
        # Reset the _dcm_dict
            self._dcm_dict = self._dlist[0] = {}
        # Reset the _dcm_cache
            self._dcm_cache = {}

        else:
            # Check for loops and raise warning accordingly.
            visited = []
            queue = list(frames)
            cont = True  # Flag to control queue loop.
            while queue and cont:
                node = queue.pop(0)
                if node not in visited:
                    visited.append(node)
                    neighbors = node._dcm_dict.keys()
                    for neighbor in neighbors:
                        if neighbor == parent:
                            warn('Loops are defined among the orientation of '
                                 'frames. This is likely not desired and may '
                                 'cause errors in your calculations.')
                            cont = False
                            break
                        queue.append(neighbor)

        # Add the dcm relationship to _dcm_dict
        self._dcm_dict.update({parent: parent_orient.T})
        parent._dcm_dict.update({self: parent_orient})
        # Update the dcm cache
        self._dcm_cache.update({parent: parent_orient.T})
        parent._dcm_cache.update({self: parent_orient})

    def orient_axis(self, parent, axis, angle):
        """Sets the orientation of this reference frame with respect to a
        parent reference frame by rotating through an angle about an axis fixed
        in the parent reference frame.

        Parameters
        ==========

        parent : ReferenceFrame
            Reference frame that this reference frame will be rotated relative
            to.
        axis : Vector
            Vector fixed in the parent frame about about which this frame is
            rotated. It need not be a unit vector and the rotation follows the
            right hand rule.
        angle : sympifiable
            Angle in radians by which it the frame is to be rotated.

        Warns
        ======

        UserWarning
            If the orientation creates a kinematic loop.

        Examples
        ========

        Setup variables for the examples:

        >>> from sympy import symbols
        >>> from sympy.physics.vector import ReferenceFrame
        >>> q1 = symbols('q1')
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')
        >>> B.orient_axis(N, N.x, q1)

        The ``orient_axis()`` method generates a direction cosine matrix and
        its transpose which defines the orientation of B relative to N and vice
        versa. Once orient is called, ``dcm()`` outputs the appropriate
        direction cosine matrix:

        >>> B.dcm(N)
        Matrix([
        [1,       0,      0],
        [0,  cos(q1), sin(q1)],
        [0, -sin(q1), cos(q1)]])
        >>> N.dcm(B)
        Matrix([
        [1,       0,        0],
        [0, cos(q1), -sin(q1)],
        [0, sin(q1),  cos(q1)]])

        The following two lines show that the sense of the rotation can be
        defined by negating the vector direction or the angle. Both lines
        produce the same result.

        >>> B.orient_axis(N, -N.x, q1)
        >>> B.orient_axis(N, N.x, -q1)

        """

        from sympy.physics.vector.functions import dynamicsymbols
        _check_frame(parent)

        if not isinstance(axis, Vector) and isinstance(angle, Vector):
            axis, angle = angle, axis

        axis = _check_vector(axis)
        theta = sympify(angle)

        if not axis.dt(parent) == 0:
            raise ValueError('Axis cannot be time-varying.')
        unit_axis = axis.express(parent).normalize()
        unit_col = unit_axis.args[0][0]
        parent_orient_axis = (
            (eye(3) - unit_col * unit_col.T) * cos(theta) +
            Matrix([[0, -unit_col[2], unit_col[1]],
                    [unit_col[2], 0, -unit_col[0]],
                    [-unit_col[1], unit_col[0], 0]]) *
            sin(theta) + unit_col * unit_col.T)

        self._dcm(parent, parent_orient_axis)

        thetad = (theta).diff(dynamicsymbols._t)
        wvec = thetad*axis.express(parent).normalize()
        self._ang_vel_dict.update({parent: wvec})
        parent._ang_vel_dict.update({self: -wvec})
        self._var_dict = {}

    def orient_explicit(self, parent, dcm):
        """Sets the orientation of this reference frame relative to another (parent) reference frame
        using a direction cosine matrix that describes the rotation from the parent to the child.

        Parameters
        ==========

        parent : ReferenceFrame
            Reference frame that this reference frame will be rotated relative
            to.
        dcm : Matrix, shape(3, 3)
            Direction cosine matrix that specifies the relative rotation
            between the two reference frames.

        Warns
        ======

        UserWarning
            If the orientation creates a kinematic loop.

        Examples
        ========

        Setup variables for the examples:

        >>> from sympy import symbols, Matrix, sin, cos
        >>> from sympy.physics.vector import ReferenceFrame
        >>> q1 = symbols('q1')
        >>> A = ReferenceFrame('A')
        >>> B = ReferenceFrame('B')
        >>> N = ReferenceFrame('N')

        A simple rotation of ``A`` relative to ``N`` about ``N.x`` is defined
        by the following direction cosine matrix:

        >>> dcm = Matrix([[1, 0, 0],
        ...               [0, cos(q1), -sin(q1)],
        ...               [0, sin(q1), cos(q1)]])
        >>> A.orient_explicit(N, dcm)
        >>> A.dcm(N)
        Matrix([
        [1,       0,      0],
        [0,  cos(q1), sin(q1)],
        [0, -sin(q1), cos(q1)]])

        This is equivalent to using ``orient_axis()``:

        >>> B.orient_axis(N, N.x, q1)
        >>> B.dcm(N)
        Matrix([
        [1,       0,      0],
        [0,  cos(q1), sin(q1)],
        [0, -sin(q1), cos(q1)]])

        **Note carefully that** ``N.dcm(B)`` **(the transpose) would be passed
        into** ``orient_explicit()`` **for** ``A.dcm(N)`` **to match**
        ``B.dcm(N)``:

        >>> A.orient_explicit(N, N.dcm(B))
        >>> A.dcm(N)
        Matrix([
        [1,       0,      0],
        [0,  cos(q1), sin(q1)],
        [0, -sin(q1), cos(q1)]])

        """
        _check_frame(parent)
        # amounts must be a Matrix type object
        # (e.g. sympy.matrices.dense.MutableDenseMatrix).
        if not isinstance(dcm, MatrixBase):
            raise TypeError("Amounts must be a SymPy Matrix type object.")

        self.orient_dcm(parent, dcm.T)

    def orient_dcm(self, parent, dcm):
        """Sets the orientation of this reference frame relative to another (parent) reference frame
        using a direction cosine matrix that describes the rotation from the child to the parent.

        Parameters
        ==========

        parent : ReferenceFrame
            Reference frame that this reference frame will be rotated relative
            to.
        dcm : Matrix, shape(3, 3)
            Direction cosine matrix that specifies the relative rotation
            between the two reference frames.

        Warns
        ======

        UserWarning
            If the orientation creates a kinematic loop.

        Examples
        ========

        Setup variables for the examples:

        >>> from sympy import symbols, Matrix, sin, cos
        >>> from sympy.physics.vector import ReferenceFrame
        >>> q1 = symbols('q1')
        >>> A = ReferenceFrame('A')
        >>> B = ReferenceFrame('B')
        >>> N = ReferenceFrame('N')

        A simple rotation of ``A`` relative to ``N`` about ``N.x`` is defined
        by the following direction cosine matrix:

        >>> dcm = Matrix([[1, 0, 0],
        ...               [0,  cos(q1), sin(q1)],
        ...               [0, -sin(q1), cos(q1)]])
        >>> A.orient_dcm(N, dcm)
        >>> A.dcm(N)
        Matrix([
        [1,       0,      0],
        [0,  cos(q1), sin(q1)],
        [0, -sin(q1), cos(q1)]])

        This is equivalent to using ``orient_axis()``:

        >>> B.orient_axis(N, N.x, q1)
        >>> B.dcm(N)
        Matrix([
        [1,       0,      0],
        [0,  cos(q1), sin(q1)],
        [0, -sin(q1), cos(q1)]])

        """

        _check_frame(parent)
        # amounts must be a Matrix type object
        # (e.g. sympy.matrices.dense.MutableDenseMatrix).
        if not isinstance(dcm, MatrixBase):
            raise TypeError("Amounts must be a SymPy Matrix type object.")

        self._dcm(parent, dcm.T)

        wvec = self._w_diff_dcm(parent)
        self._ang_vel_dict.update({parent: wvec})
        parent._ang_vel_dict.update({self: -wvec})
        self._var_dict = {}

    def _rot(self, axis, angle):
        """DCM for simple axis 1,2,or 3 rotations."""
        if axis == 1:
            return Matrix([[1, 0, 0],
                           [0, cos(angle), -sin(angle)],
                           [0, sin(angle), cos(angle)]])
        elif axis == 2:
            return Matrix([[cos(angle), 0, sin(angle)],
                           [0, 1, 0],
                           [-sin(angle), 0, cos(angle)]])
        elif axis == 3:
            return Matrix([[cos(angle), -sin(angle), 0],
                           [sin(angle), cos(angle), 0],
                           [0, 0, 1]])

    def _parse_consecutive_rotations(self, angles, rotation_order):
        """Helper for orient_body_fixed and orient_space_fixed.

        Parameters
        ==========
        angles : 3-tuple of sympifiable
            Three angles in radians used for the successive rotations.
        rotation_order : 3 character string or 3 digit integer
            Order of the rotations. The order can be specified by the strings
            ``'XZX'``, ``'131'``, or the integer ``131``. There are 12 unique
            valid rotation orders.

        Returns
        =======

        amounts : list
            List of sympifiables corresponding to the rotation angles.
        rot_order : list
            List of integers corresponding to the axis of rotation.
        rot_matrices : list
            List of DCM around the given axis with corresponding magnitude.

        """
        amounts = list(angles)
        for i, v in enumerate(amounts):
            if not isinstance(v, Vector):
                amounts[i] = sympify(v)

        approved_orders = ('123', '231', '312', '132', '213', '321', '121',
                           '131', '212', '232', '313', '323', '')
        # make sure XYZ => 123
        rot_order = translate(str(rotation_order), 'XYZxyz', '123123')
        if rot_order not in approved_orders:
            raise TypeError('The rotation order is not a valid order.')

        rot_order = [int(r) for r in rot_order]
        if not (len(amounts) == 3 & len(rot_order) == 3):
            raise TypeError('Body orientation takes 3 values & 3 orders')
        rot_matrices = [self._rot(order, amount)
                        for (order, amount) in zip(rot_order, amounts)]
        return amounts, rot_order, rot_matrices

    def orient_body_fixed(self, parent, angles, rotation_order):
        """Rotates this reference frame relative to the parent reference frame
        by right hand rotating through three successive body fixed simple axis
        rotations. Each subsequent axis of rotation is about the "body fixed"
        unit vectors of a new intermediate reference frame. This type of
        rotation is also referred to rotating through the `Euler and Tait-Bryan
        Angles`_.

        .. _Euler and Tait-Bryan Angles: https://en.wikipedia.org/wiki/Euler_angles

        The computed angular velocity in this method is by default expressed in
        the child's frame, so it is most preferable to use ``u1 * child.x + u2 *
        child.y + u3 * child.z`` as generalized speeds.

        Parameters
        ==========

        parent : ReferenceFrame
            Reference frame that this reference frame will be rotated relative
            to.
        angles : 3-tuple of sympifiable
            Three angles in radians used for the successive rotations.
        rotation_order : 3 character string or 3 digit integer
            Order of the rotations about each intermediate reference frames'
            unit vectors. The Euler rotation about the X, Z', X'' axes can be
            specified by the strings ``'XZX'``, ``'131'``, or the integer
            ``131``. There are 12 unique valid rotation orders (6 Euler and 6
            Tait-Bryan): zxz, xyx, yzy, zyz, xzx, yxy, xyz, yzx, zxy, xzy, zyx,
            and yxz.

        Warns
        ======

        UserWarning
            If the orientation creates a kinematic loop.

        Examples
        ========

        Setup variables for the examples:

        >>> from sympy import symbols
        >>> from sympy.physics.vector import ReferenceFrame
        >>> q1, q2, q3 = symbols('q1, q2, q3')
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')
        >>> B1 = ReferenceFrame('B1')
        >>> B2 = ReferenceFrame('B2')
        >>> B3 = ReferenceFrame('B3')

        For example, a classic Euler Angle rotation can be done by:

        >>> B.orient_body_fixed(N, (q1, q2, q3), 'XYX')
        >>> B.dcm(N)
        Matrix([
        [        cos(q2),                            sin(q1)*sin(q2),                           -sin(q2)*cos(q1)],
        [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3),  sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)],
        [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]])

        This rotates reference frame B relative to reference frame N through
        ``q1`` about ``N.x``, then rotates B again through ``q2`` about
        ``B.y``, and finally through ``q3`` about ``B.x``. It is equivalent to
        three successive ``orient_axis()`` calls:

        >>> B1.orient_axis(N, N.x, q1)
        >>> B2.orient_axis(B1, B1.y, q2)
        >>> B3.orient_axis(B2, B2.x, q3)
        >>> B3.dcm(N)
        Matrix([
        [        cos(q2),                            sin(q1)*sin(q2),                           -sin(q2)*cos(q1)],
        [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3),  sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)],
        [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]])

        Acceptable rotation orders are of length 3, expressed in as a string
        ``'XYZ'`` or ``'123'`` or integer ``123``. Rotations about an axis
        twice in a row are prohibited.

        >>> B.orient_body_fixed(N, (q1, q2, 0), 'ZXZ')
        >>> B.orient_body_fixed(N, (q1, q2, 0), '121')
        >>> B.orient_body_fixed(N, (q1, q2, q3), 123)

        """
        from sympy.physics.vector.functions import dynamicsymbols

        _check_frame(parent)

        amounts, rot_order, rot_matrices = self._parse_consecutive_rotations(
            angles, rotation_order)
        self._dcm(parent, rot_matrices[0] * rot_matrices[1] * rot_matrices[2])

        rot_vecs = [zeros(3, 1) for _ in range(3)]
        for i, order in enumerate(rot_order):
            rot_vecs[i][order - 1] = amounts[i].diff(dynamicsymbols._t)
        u1, u2, u3 = rot_vecs[2] + rot_matrices[2].T * (
            rot_vecs[1] + rot_matrices[1].T * rot_vecs[0])
        wvec = u1 * self.x + u2 * self.y + u3 * self.z  # There is a double -
        self._ang_vel_dict.update({parent: wvec})
        parent._ang_vel_dict.update({self: -wvec})
        self._var_dict = {}

    def orient_space_fixed(self, parent, angles, rotation_order):
        """Rotates this reference frame relative to the parent reference frame
        by right hand rotating through three successive space fixed simple axis
        rotations. Each subsequent axis of rotation is about the "space fixed"
        unit vectors of the parent reference frame.

        The computed angular velocity in this method is by default expressed in
        the child's frame, so it is most preferable to use ``u1 * child.x + u2 *
        child.y + u3 * child.z`` as generalized speeds.

        Parameters
        ==========
        parent : ReferenceFrame
            Reference frame that this reference frame will be rotated relative
            to.
        angles : 3-tuple of sympifiable
            Three angles in radians used for the successive rotations.
        rotation_order : 3 character string or 3 digit integer
            Order of the rotations about the parent reference frame's unit
            vectors. The order can be specified by the strings ``'XZX'``,
            ``'131'``, or the integer ``131``. There are 12 unique valid
            rotation orders.

        Warns
        ======

        UserWarning
            If the orientation creates a kinematic loop.

        Examples
        ========

        Setup variables for the examples:

        >>> from sympy import symbols
        >>> from sympy.physics.vector import ReferenceFrame
        >>> q1, q2, q3 = symbols('q1, q2, q3')
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')
        >>> B1 = ReferenceFrame('B1')
        >>> B2 = ReferenceFrame('B2')
        >>> B3 = ReferenceFrame('B3')

        >>> B.orient_space_fixed(N, (q1, q2, q3), '312')
        >>> B.dcm(N)
        Matrix([
        [ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)],
        [-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)],
        [                           sin(q3)*cos(q2),        -sin(q2),                           cos(q2)*cos(q3)]])

        is equivalent to:

        >>> B1.orient_axis(N, N.z, q1)
        >>> B2.orient_axis(B1, N.x, q2)
        >>> B3.orient_axis(B2, N.y, q3)
        >>> B3.dcm(N).simplify()
        Matrix([
        [ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)],
        [-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)],
        [                           sin(q3)*cos(q2),        -sin(q2),                           cos(q2)*cos(q3)]])

        It is worth noting that space-fixed and body-fixed rotations are
        related by the order of the rotations, i.e. the reverse order of body
        fixed will give space fixed and vice versa.

        >>> B.orient_space_fixed(N, (q1, q2, q3), '231')
        >>> B.dcm(N)
        Matrix([
        [cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],
        [       -sin(q2),                           cos(q2)*cos(q3),                            sin(q3)*cos(q2)],
        [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1),  sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]])

        >>> B.orient_body_fixed(N, (q3, q2, q1), '132')
        >>> B.dcm(N)
        Matrix([
        [cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],
        [       -sin(q2),                           cos(q2)*cos(q3),                            sin(q3)*cos(q2)],
        [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1),  sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]])

        """
        from sympy.physics.vector.functions import dynamicsymbols

        _check_frame(parent)

        amounts, rot_order, rot_matrices = self._parse_consecutive_rotations(
            angles, rotation_order)
        self._dcm(parent, rot_matrices[2] * rot_matrices[1] * rot_matrices[0])

        rot_vecs = [zeros(3, 1) for _ in range(3)]
        for i, order in enumerate(rot_order):
            rot_vecs[i][order - 1] = amounts[i].diff(dynamicsymbols._t)
        u1, u2, u3 = rot_vecs[0] + rot_matrices[0].T * (
            rot_vecs[1] + rot_matrices[1].T * rot_vecs[2])
        wvec = u1 * self.x + u2 * self.y + u3 * self.z  # There is a double -
        self._ang_vel_dict.update({parent: wvec})
        parent._ang_vel_dict.update({self: -wvec})
        self._var_dict = {}

    def orient_quaternion(self, parent, numbers):
        """Sets the orientation of this reference frame relative to a parent
        reference frame via an orientation quaternion. An orientation
        quaternion is defined as a finite rotation a unit vector, ``(lambda_x,
        lambda_y, lambda_z)``, by an angle ``theta``. The orientation
        quaternion is described by four parameters:

        - ``q0 = cos(theta/2)``
        - ``q1 = lambda_x*sin(theta/2)``
        - ``q2 = lambda_y*sin(theta/2)``
        - ``q3 = lambda_z*sin(theta/2)``

        See `Quaternions and Spatial Rotation
        <https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation>`_ on
        Wikipedia for more information.

        Parameters
        ==========
        parent : ReferenceFrame
            Reference frame that this reference frame will be rotated relative
            to.
        numbers : 4-tuple of sympifiable
            The four quaternion scalar numbers as defined above: ``q0``,
            ``q1``, ``q2``, ``q3``.

        Warns
        ======

        UserWarning
            If the orientation creates a kinematic loop.

        Examples
        ========

        Setup variables for the examples:

        >>> from sympy import symbols
        >>> from sympy.physics.vector import ReferenceFrame
        >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')

        Set the orientation:

        >>> B.orient_quaternion(N, (q0, q1, q2, q3))
        >>> B.dcm(N)
        Matrix([
        [q0**2 + q1**2 - q2**2 - q3**2,             2*q0*q3 + 2*q1*q2,            -2*q0*q2 + 2*q1*q3],
        [           -2*q0*q3 + 2*q1*q2, q0**2 - q1**2 + q2**2 - q3**2,             2*q0*q1 + 2*q2*q3],
        [            2*q0*q2 + 2*q1*q3,            -2*q0*q1 + 2*q2*q3, q0**2 - q1**2 - q2**2 + q3**2]])

        """

        from sympy.physics.vector.functions import dynamicsymbols
        _check_frame(parent)

        numbers = list(numbers)
        for i, v in enumerate(numbers):
            if not isinstance(v, Vector):
                numbers[i] = sympify(v)

        if not (isinstance(numbers, (list, tuple)) & (len(numbers) == 4)):
            raise TypeError('Amounts are a list or tuple of length 4')
        q0, q1, q2, q3 = numbers
        parent_orient_quaternion = (
            Matrix([[q0**2 + q1**2 - q2**2 - q3**2,
                     2 * (q1 * q2 - q0 * q3),
                     2 * (q0 * q2 + q1 * q3)],
                    [2 * (q1 * q2 + q0 * q3),
                     q0**2 - q1**2 + q2**2 - q3**2,
                     2 * (q2 * q3 - q0 * q1)],
                    [2 * (q1 * q3 - q0 * q2),
                     2 * (q0 * q1 + q2 * q3),
                     q0**2 - q1**2 - q2**2 + q3**2]]))

        self._dcm(parent, parent_orient_quaternion)

        t = dynamicsymbols._t
        q0, q1, q2, q3 = numbers
        q0d = diff(q0, t)
        q1d = diff(q1, t)
        q2d = diff(q2, t)
        q3d = diff(q3, t)
        w1 = 2 * (q1d * q0 + q2d * q3 - q3d * q2 - q0d * q1)
        w2 = 2 * (q2d * q0 + q3d * q1 - q1d * q3 - q0d * q2)
        w3 = 2 * (q3d * q0 + q1d * q2 - q2d * q1 - q0d * q3)
        wvec = Vector([(Matrix([w1, w2, w3]), self)])

        self._ang_vel_dict.update({parent: wvec})
        parent._ang_vel_dict.update({self: -wvec})
        self._var_dict = {}

    def orient(self, parent, rot_type, amounts, rot_order=''):
        """Sets the orientation of this reference frame relative to another
        (parent) reference frame.

        .. note:: It is now recommended to use the ``.orient_axis,
           .orient_body_fixed, .orient_space_fixed, .orient_quaternion``
           methods for the different rotation types.

        Parameters
        ==========

        parent : ReferenceFrame
            Reference frame that this reference frame will be rotated relative
            to.
        rot_type : str
            The method used to generate the direction cosine matrix. Supported
            methods are:

            - ``'Axis'``: simple rotations about a single common axis
            - ``'DCM'``: for setting the direction cosine matrix directly
            - ``'Body'``: three successive rotations about new intermediate
              axes, also called "Euler and Tait-Bryan angles"
            - ``'Space'``: three successive rotations about the parent
              frames' unit vectors
            - ``'Quaternion'``: rotations defined by four parameters which
              result in a singularity free direction cosine matrix

        amounts :
            Expressions defining the rotation angles or direction cosine
            matrix. These must match the ``rot_type``. See examples below for
            details. The input types are:

            - ``'Axis'``: 2-tuple (expr/sym/func, Vector)
            - ``'DCM'``: Matrix, shape(3,3)
            - ``'Body'``: 3-tuple of expressions, symbols, or functions
            - ``'Space'``: 3-tuple of expressions, symbols, or functions
            - ``'Quaternion'``: 4-tuple of expressions, symbols, or
              functions

        rot_order : str or int, optional
            If applicable, the order of the successive of rotations. The string
            ``'123'`` and integer ``123`` are equivalent, for example. Required
            for ``'Body'`` and ``'Space'``.

        Warns
        ======

        UserWarning
            If the orientation creates a kinematic loop.

        """

        _check_frame(parent)

        approved_orders = ('123', '231', '312', '132', '213', '321', '121',
                           '131', '212', '232', '313', '323', '')
        rot_order = translate(str(rot_order), 'XYZxyz', '123123')
        rot_type = rot_type.upper()

        if rot_order not in approved_orders:
            raise TypeError('The supplied order is not an approved type')

        if rot_type == 'AXIS':
            self.orient_axis(parent, amounts[1], amounts[0])

        elif rot_type == 'DCM':
            self.orient_explicit(parent, amounts)

        elif rot_type == 'BODY':
            self.orient_body_fixed(parent, amounts, rot_order)

        elif rot_type == 'SPACE':
            self.orient_space_fixed(parent, amounts, rot_order)

        elif rot_type == 'QUATERNION':
            self.orient_quaternion(parent, amounts)

        else:
            raise NotImplementedError('That is not an implemented rotation')

    def orientnew(self, newname, rot_type, amounts, rot_order='',
                  variables=None, indices=None, latexs=None):
        r"""Returns a new reference frame oriented with respect to this
        reference frame.

        See ``ReferenceFrame.orient()`` for detailed examples of how to orient
        reference frames.

        Parameters
        ==========

        newname : str
            Name for the new reference frame.
        rot_type : str
            The method used to generate the direction cosine matrix. Supported
            methods are:

            - ``'Axis'``: simple rotations about a single common axis
            - ``'DCM'``: for setting the direction cosine matrix directly
            - ``'Body'``: three successive rotations about new intermediate
              axes, also called "Euler and Tait-Bryan angles"
            - ``'Space'``: three successive rotations about the parent
              frames' unit vectors
            - ``'Quaternion'``: rotations defined by four parameters which
              result in a singularity free direction cosine matrix

        amounts :
            Expressions defining the rotation angles or direction cosine
            matrix. These must match the ``rot_type``. See examples below for
            details. The input types are:

            - ``'Axis'``: 2-tuple (expr/sym/func, Vector)
            - ``'DCM'``: Matrix, shape(3,3)
            - ``'Body'``: 3-tuple of expressions, symbols, or functions
            - ``'Space'``: 3-tuple of expressions, symbols, or functions
            - ``'Quaternion'``: 4-tuple of expressions, symbols, or
              functions

        rot_order : str or int, optional
            If applicable, the order of the successive of rotations. The string
            ``'123'`` and integer ``123`` are equivalent, for example. Required
            for ``'Body'`` and ``'Space'``.
        indices : tuple of str
            Enables the reference frame's basis unit vectors to be accessed by
            Python's square bracket indexing notation using the provided three
            indice strings and alters the printing of the unit vectors to
            reflect this choice.
        latexs : tuple of str
            Alters the LaTeX printing of the reference frame's basis unit
            vectors to the provided three valid LaTeX strings.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.vector import ReferenceFrame, vlatex
        >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
        >>> N = ReferenceFrame('N')

        Create a new reference frame A rotated relative to N through a simple
        rotation.

        >>> A = N.orientnew('A', 'Axis', (q0, N.x))

        Create a new reference frame B rotated relative to N through body-fixed
        rotations.

        >>> B = N.orientnew('B', 'Body', (q1, q2, q3), '123')

        Create a new reference frame C rotated relative to N through a simple
        rotation with unique indices and LaTeX printing.

        >>> C = N.orientnew('C', 'Axis', (q0, N.x), indices=('1', '2', '3'),
        ... latexs=(r'\hat{\mathbf{c}}_1',r'\hat{\mathbf{c}}_2',
        ... r'\hat{\mathbf{c}}_3'))
        >>> C['1']
        C['1']
        >>> print(vlatex(C['1']))
        \hat{\mathbf{c}}_1

        """

        newframe = self.__class__(newname, variables=variables,
                                  indices=indices, latexs=latexs)

        approved_orders = ('123', '231', '312', '132', '213', '321', '121',
                           '131', '212', '232', '313', '323', '')
        rot_order = translate(str(rot_order), 'XYZxyz', '123123')
        rot_type = rot_type.upper()

        if rot_order not in approved_orders:
            raise TypeError('The supplied order is not an approved type')

        if rot_type == 'AXIS':
            newframe.orient_axis(self, amounts[1], amounts[0])

        elif rot_type == 'DCM':
            newframe.orient_explicit(self, amounts)

        elif rot_type == 'BODY':
            newframe.orient_body_fixed(self, amounts, rot_order)

        elif rot_type == 'SPACE':
            newframe.orient_space_fixed(self, amounts, rot_order)

        elif rot_type == 'QUATERNION':
            newframe.orient_quaternion(self, amounts)

        else:
            raise NotImplementedError('That is not an implemented rotation')
        return newframe

    def set_ang_acc(self, otherframe, value):
        """Define the angular acceleration Vector in a ReferenceFrame.

        Defines the angular acceleration of this ReferenceFrame, in another.
        Angular acceleration can be defined with respect to multiple different
        ReferenceFrames. Care must be taken to not create loops which are
        inconsistent.

        Parameters
        ==========

        otherframe : ReferenceFrame
            A ReferenceFrame to define the angular acceleration in
        value : Vector
            The Vector representing angular acceleration

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> A = ReferenceFrame('A')
        >>> V = 10 * N.x
        >>> A.set_ang_acc(N, V)
        >>> A.ang_acc_in(N)
        10*N.x

        """

        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        _check_frame(otherframe)
        self._ang_acc_dict.update({otherframe: value})
        otherframe._ang_acc_dict.update({self: -value})

    def set_ang_vel(self, otherframe, value):
        """Define the angular velocity vector in a ReferenceFrame.

        Defines the angular velocity of this ReferenceFrame, in another.
        Angular velocity can be defined with respect to multiple different
        ReferenceFrames. Care must be taken to not create loops which are
        inconsistent.

        Parameters
        ==========

        otherframe : ReferenceFrame
            A ReferenceFrame to define the angular velocity in
        value : Vector
            The Vector representing angular velocity

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> A = ReferenceFrame('A')
        >>> V = 10 * N.x
        >>> A.set_ang_vel(N, V)
        >>> A.ang_vel_in(N)
        10*N.x

        """

        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        _check_frame(otherframe)
        self._ang_vel_dict.update({otherframe: value})
        otherframe._ang_vel_dict.update({self: -value})

    @property
    def x(self):
        """The basis Vector for the ReferenceFrame, in the x direction. """
        return self._x

    @property
    def y(self):
        """The basis Vector for the ReferenceFrame, in the y direction. """
        return self._y

    @property
    def z(self):
        """The basis Vector for the ReferenceFrame, in the z direction. """
        return self._z

    @property
    def xx(self):
        """Unit dyad of basis Vectors x and x for the ReferenceFrame."""
        return Vector.outer(self.x, self.x)

    @property
    def xy(self):
        """Unit dyad of basis Vectors x and y for the ReferenceFrame."""
        return Vector.outer(self.x, self.y)

    @property
    def xz(self):
        """Unit dyad of basis Vectors x and z for the ReferenceFrame."""
        return Vector.outer(self.x, self.z)

    @property
    def yx(self):
        """Unit dyad of basis Vectors y and x for the ReferenceFrame."""
        return Vector.outer(self.y, self.x)

    @property
    def yy(self):
        """Unit dyad of basis Vectors y and y for the ReferenceFrame."""
        return Vector.outer(self.y, self.y)

    @property
    def yz(self):
        """Unit dyad of basis Vectors y and z for the ReferenceFrame."""
        return Vector.outer(self.y, self.z)

    @property
    def zx(self):
        """Unit dyad of basis Vectors z and x for the ReferenceFrame."""
        return Vector.outer(self.z, self.x)

    @property
    def zy(self):
        """Unit dyad of basis Vectors z and y for the ReferenceFrame."""
        return Vector.outer(self.z, self.y)

    @property
    def zz(self):
        """Unit dyad of basis Vectors z and z for the ReferenceFrame."""
        return Vector.outer(self.z, self.z)

    @property
    def u(self):
        """Unit dyadic for the ReferenceFrame."""
        return self.xx + self.yy + self.zz

    def partial_velocity(self, frame, *gen_speeds):
        """Returns the partial angular velocities of this frame in the given
        frame with respect to one or more provided generalized speeds.

        Parameters
        ==========
        frame : ReferenceFrame
            The frame with which the angular velocity is defined in.
        gen_speeds : functions of time
            The generalized speeds.

        Returns
        =======
        partial_velocities : tuple of Vector
            The partial angular velocity vectors corresponding to the provided
            generalized speeds.

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols
        >>> N = ReferenceFrame('N')
        >>> A = ReferenceFrame('A')
        >>> u1, u2 = dynamicsymbols('u1, u2')
        >>> A.set_ang_vel(N, u1 * A.x + u2 * N.y)
        >>> A.partial_velocity(N, u1)
        A.x
        >>> A.partial_velocity(N, u1, u2)
        (A.x, N.y)

        """

        from sympy.physics.vector.functions import partial_velocity

        vel = self.ang_vel_in(frame)
        partials = partial_velocity([vel], gen_speeds, frame)[0]

        if len(partials) == 1:
            return partials[0]
        else:
            return tuple(partials)


def _check_frame(other):
    from .vector import VectorTypeError
    if not isinstance(other, ReferenceFrame):
        raise VectorTypeError(other, ReferenceFrame('A'))