Spaces:
Sleeping
Sleeping
File size: 8,593 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
from sympy.core.function import diff
from sympy.core.singleton import S
from sympy.integrals.integrals import integrate
from sympy.physics.vector import Vector, express
from sympy.physics.vector.frame import _check_frame
from sympy.physics.vector.vector import _check_vector
__all__ = ['curl', 'divergence', 'gradient', 'is_conservative',
'is_solenoidal', 'scalar_potential',
'scalar_potential_difference']
def curl(vect, frame):
"""
Returns the curl of a vector field computed wrt the coordinate
symbols of the given frame.
Parameters
==========
vect : Vector
The vector operand
frame : ReferenceFrame
The reference frame to calculate the curl in
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import curl
>>> R = ReferenceFrame('R')
>>> v1 = R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z
>>> curl(v1, R)
0
>>> v2 = R[0]*R[1]*R[2]*R.x
>>> curl(v2, R)
R_x*R_y*R.y - R_x*R_z*R.z
"""
_check_vector(vect)
if vect == 0:
return Vector(0)
vect = express(vect, frame, variables=True)
# A mechanical approach to avoid looping overheads
vectx = vect.dot(frame.x)
vecty = vect.dot(frame.y)
vectz = vect.dot(frame.z)
outvec = Vector(0)
outvec += (diff(vectz, frame[1]) - diff(vecty, frame[2])) * frame.x
outvec += (diff(vectx, frame[2]) - diff(vectz, frame[0])) * frame.y
outvec += (diff(vecty, frame[0]) - diff(vectx, frame[1])) * frame.z
return outvec
def divergence(vect, frame):
"""
Returns the divergence of a vector field computed wrt the coordinate
symbols of the given frame.
Parameters
==========
vect : Vector
The vector operand
frame : ReferenceFrame
The reference frame to calculate the divergence in
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import divergence
>>> R = ReferenceFrame('R')
>>> v1 = R[0]*R[1]*R[2] * (R.x+R.y+R.z)
>>> divergence(v1, R)
R_x*R_y + R_x*R_z + R_y*R_z
>>> v2 = 2*R[1]*R[2]*R.y
>>> divergence(v2, R)
2*R_z
"""
_check_vector(vect)
if vect == 0:
return S.Zero
vect = express(vect, frame, variables=True)
vectx = vect.dot(frame.x)
vecty = vect.dot(frame.y)
vectz = vect.dot(frame.z)
out = S.Zero
out += diff(vectx, frame[0])
out += diff(vecty, frame[1])
out += diff(vectz, frame[2])
return out
def gradient(scalar, frame):
"""
Returns the vector gradient of a scalar field computed wrt the
coordinate symbols of the given frame.
Parameters
==========
scalar : sympifiable
The scalar field to take the gradient of
frame : ReferenceFrame
The frame to calculate the gradient in
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import gradient
>>> R = ReferenceFrame('R')
>>> s1 = R[0]*R[1]*R[2]
>>> gradient(s1, R)
R_y*R_z*R.x + R_x*R_z*R.y + R_x*R_y*R.z
>>> s2 = 5*R[0]**2*R[2]
>>> gradient(s2, R)
10*R_x*R_z*R.x + 5*R_x**2*R.z
"""
_check_frame(frame)
outvec = Vector(0)
scalar = express(scalar, frame, variables=True)
for i, x in enumerate(frame):
outvec += diff(scalar, frame[i]) * x
return outvec
def is_conservative(field):
"""
Checks if a field is conservative.
Parameters
==========
field : Vector
The field to check for conservative property
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import is_conservative
>>> R = ReferenceFrame('R')
>>> is_conservative(R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z)
True
>>> is_conservative(R[2] * R.y)
False
"""
# Field is conservative irrespective of frame
# Take the first frame in the result of the separate method of Vector
if field == Vector(0):
return True
frame = list(field.separate())[0]
return curl(field, frame).simplify() == Vector(0)
def is_solenoidal(field):
"""
Checks if a field is solenoidal.
Parameters
==========
field : Vector
The field to check for solenoidal property
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import is_solenoidal
>>> R = ReferenceFrame('R')
>>> is_solenoidal(R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z)
True
>>> is_solenoidal(R[1] * R.y)
False
"""
# Field is solenoidal irrespective of frame
# Take the first frame in the result of the separate method in Vector
if field == Vector(0):
return True
frame = list(field.separate())[0]
return divergence(field, frame).simplify() is S.Zero
def scalar_potential(field, frame):
"""
Returns the scalar potential function of a field in a given frame
(without the added integration constant).
Parameters
==========
field : Vector
The vector field whose scalar potential function is to be
calculated
frame : ReferenceFrame
The frame to do the calculation in
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy.physics.vector import scalar_potential, gradient
>>> R = ReferenceFrame('R')
>>> scalar_potential(R.z, R) == R[2]
True
>>> scalar_field = 2*R[0]**2*R[1]*R[2]
>>> grad_field = gradient(scalar_field, R)
>>> scalar_potential(grad_field, R)
2*R_x**2*R_y*R_z
"""
# Check whether field is conservative
if not is_conservative(field):
raise ValueError("Field is not conservative")
if field == Vector(0):
return S.Zero
# Express the field exntirely in frame
# Substitute coordinate variables also
_check_frame(frame)
field = express(field, frame, variables=True)
# Make a list of dimensions of the frame
dimensions = list(frame)
# Calculate scalar potential function
temp_function = integrate(field.dot(dimensions[0]), frame[0])
for i, dim in enumerate(dimensions[1:]):
partial_diff = diff(temp_function, frame[i + 1])
partial_diff = field.dot(dim) - partial_diff
temp_function += integrate(partial_diff, frame[i + 1])
return temp_function
def scalar_potential_difference(field, frame, point1, point2, origin):
"""
Returns the scalar potential difference between two points in a
certain frame, wrt a given field.
If a scalar field is provided, its values at the two points are
considered. If a conservative vector field is provided, the values
of its scalar potential function at the two points are used.
Returns (potential at position 2) - (potential at position 1)
Parameters
==========
field : Vector/sympyfiable
The field to calculate wrt
frame : ReferenceFrame
The frame to do the calculations in
point1 : Point
The initial Point in given frame
position2 : Point
The second Point in the given frame
origin : Point
The Point to use as reference point for position vector
calculation
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, Point
>>> from sympy.physics.vector import scalar_potential_difference
>>> R = ReferenceFrame('R')
>>> O = Point('O')
>>> P = O.locatenew('P', R[0]*R.x + R[1]*R.y + R[2]*R.z)
>>> vectfield = 4*R[0]*R[1]*R.x + 2*R[0]**2*R.y
>>> scalar_potential_difference(vectfield, R, O, P, O)
2*R_x**2*R_y
>>> Q = O.locatenew('O', 3*R.x + R.y + 2*R.z)
>>> scalar_potential_difference(vectfield, R, P, Q, O)
-2*R_x**2*R_y + 18
"""
_check_frame(frame)
if isinstance(field, Vector):
# Get the scalar potential function
scalar_fn = scalar_potential(field, frame)
else:
# Field is a scalar
scalar_fn = field
# Express positions in required frame
position1 = express(point1.pos_from(origin), frame, variables=True)
position2 = express(point2.pos_from(origin), frame, variables=True)
# Get the two positions as substitution dicts for coordinate variables
subs_dict1 = {}
subs_dict2 = {}
for i, x in enumerate(frame):
subs_dict1[frame[i]] = x.dot(position1)
subs_dict2[frame[i]] = x.dot(position2)
return scalar_fn.subs(subs_dict2) - scalar_fn.subs(subs_dict1)
|