File size: 90,400 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
"""
Second quantization operators and states for bosons.

This follow the formulation of Fetter and Welecka, "Quantum Theory
of Many-Particle Systems."
"""
from collections import defaultdict

from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Function
from sympy.core.mul import Mul
from sympy.core.numbers import I
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Dummy, Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.dense import zeros
from sympy.printing.str import StrPrinter
from sympy.utilities.iterables import has_dups

__all__ = [
    'Dagger',
    'KroneckerDelta',
    'BosonicOperator',
    'AnnihilateBoson',
    'CreateBoson',
    'AnnihilateFermion',
    'CreateFermion',
    'FockState',
    'FockStateBra',
    'FockStateKet',
    'FockStateBosonKet',
    'FockStateBosonBra',
    'FockStateFermionKet',
    'FockStateFermionBra',
    'BBra',
    'BKet',
    'FBra',
    'FKet',
    'F',
    'Fd',
    'B',
    'Bd',
    'apply_operators',
    'InnerProduct',
    'BosonicBasis',
    'VarBosonicBasis',
    'FixedBosonicBasis',
    'Commutator',
    'matrix_rep',
    'contraction',
    'wicks',
    'NO',
    'evaluate_deltas',
    'AntiSymmetricTensor',
    'substitute_dummies',
    'PermutationOperator',
    'simplify_index_permutations',
]


class SecondQuantizationError(Exception):
    pass


class AppliesOnlyToSymbolicIndex(SecondQuantizationError):
    pass


class ContractionAppliesOnlyToFermions(SecondQuantizationError):
    pass


class ViolationOfPauliPrinciple(SecondQuantizationError):
    pass


class SubstitutionOfAmbigousOperatorFailed(SecondQuantizationError):
    pass


class WicksTheoremDoesNotApply(SecondQuantizationError):
    pass


class Dagger(Expr):
    """
    Hermitian conjugate of creation/annihilation operators.

    Examples
    ========

    >>> from sympy import I
    >>> from sympy.physics.secondquant import Dagger, B, Bd
    >>> Dagger(2*I)
    -2*I
    >>> Dagger(B(0))
    CreateBoson(0)
    >>> Dagger(Bd(0))
    AnnihilateBoson(0)

    """

    def __new__(cls, arg):
        arg = sympify(arg)
        r = cls.eval(arg)
        if isinstance(r, Basic):
            return r
        obj = Basic.__new__(cls, arg)
        return obj

    @classmethod
    def eval(cls, arg):
        """
        Evaluates the Dagger instance.

        Examples
        ========

        >>> from sympy import I
        >>> from sympy.physics.secondquant import Dagger, B, Bd
        >>> Dagger(2*I)
        -2*I
        >>> Dagger(B(0))
        CreateBoson(0)
        >>> Dagger(Bd(0))
        AnnihilateBoson(0)

        The eval() method is called automatically.

        """
        dagger = getattr(arg, '_dagger_', None)
        if dagger is not None:
            return dagger()
        if isinstance(arg, Basic):
            if arg.is_Add:
                return Add(*tuple(map(Dagger, arg.args)))
            if arg.is_Mul:
                return Mul(*tuple(map(Dagger, reversed(arg.args))))
            if arg.is_Number:
                return arg
            if arg.is_Pow:
                return Pow(Dagger(arg.args[0]), arg.args[1])
            if arg == I:
                return -arg
        else:
            return None

    def _dagger_(self):
        return self.args[0]


class TensorSymbol(Expr):

    is_commutative = True


class AntiSymmetricTensor(TensorSymbol):
    """Stores upper and lower indices in separate Tuple's.

    Each group of indices is assumed to be antisymmetric.

    Examples
    ========

    >>> from sympy import symbols
    >>> from sympy.physics.secondquant import AntiSymmetricTensor
    >>> i, j = symbols('i j', below_fermi=True)
    >>> a, b = symbols('a b', above_fermi=True)
    >>> AntiSymmetricTensor('v', (a, i), (b, j))
    AntiSymmetricTensor(v, (a, i), (b, j))
    >>> AntiSymmetricTensor('v', (i, a), (b, j))
    -AntiSymmetricTensor(v, (a, i), (b, j))

    As you can see, the indices are automatically sorted to a canonical form.

    """

    def __new__(cls, symbol, upper, lower):

        try:
            upper, signu = _sort_anticommuting_fermions(
                upper, key=cls._sortkey)
            lower, signl = _sort_anticommuting_fermions(
                lower, key=cls._sortkey)

        except ViolationOfPauliPrinciple:
            return S.Zero

        symbol = sympify(symbol)
        upper = Tuple(*upper)
        lower = Tuple(*lower)

        if (signu + signl) % 2:
            return -TensorSymbol.__new__(cls, symbol, upper, lower)
        else:

            return TensorSymbol.__new__(cls, symbol, upper, lower)

    @classmethod
    def _sortkey(cls, index):
        """Key for sorting of indices.

        particle < hole < general

        FIXME: This is a bottle-neck, can we do it faster?
        """
        h = hash(index)
        label = str(index)
        if isinstance(index, Dummy):
            if index.assumptions0.get('above_fermi'):
                return (20, label, h)
            elif index.assumptions0.get('below_fermi'):
                return (21, label, h)
            else:
                return (22, label, h)

        if index.assumptions0.get('above_fermi'):
            return (10, label, h)
        elif index.assumptions0.get('below_fermi'):
            return (11, label, h)
        else:
            return (12, label, h)

    def _latex(self, printer):
        return "{%s^{%s}_{%s}}" % (
            self.symbol,
            "".join([ i.name for i in self.args[1]]),
            "".join([ i.name for i in self.args[2]])
        )

    @property
    def symbol(self):
        """
        Returns the symbol of the tensor.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.secondquant import AntiSymmetricTensor
        >>> i, j = symbols('i,j', below_fermi=True)
        >>> a, b = symbols('a,b', above_fermi=True)
        >>> AntiSymmetricTensor('v', (a, i), (b, j))
        AntiSymmetricTensor(v, (a, i), (b, j))
        >>> AntiSymmetricTensor('v', (a, i), (b, j)).symbol
        v

        """
        return self.args[0]

    @property
    def upper(self):
        """
        Returns the upper indices.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.secondquant import AntiSymmetricTensor
        >>> i, j = symbols('i,j', below_fermi=True)
        >>> a, b = symbols('a,b', above_fermi=True)
        >>> AntiSymmetricTensor('v', (a, i), (b, j))
        AntiSymmetricTensor(v, (a, i), (b, j))
        >>> AntiSymmetricTensor('v', (a, i), (b, j)).upper
        (a, i)


        """
        return self.args[1]

    @property
    def lower(self):
        """
        Returns the lower indices.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.secondquant import AntiSymmetricTensor
        >>> i, j = symbols('i,j', below_fermi=True)
        >>> a, b = symbols('a,b', above_fermi=True)
        >>> AntiSymmetricTensor('v', (a, i), (b, j))
        AntiSymmetricTensor(v, (a, i), (b, j))
        >>> AntiSymmetricTensor('v', (a, i), (b, j)).lower
        (b, j)

        """
        return self.args[2]

    def __str__(self):
        return "%s(%s,%s)" % self.args


class SqOperator(Expr):
    """
    Base class for Second Quantization operators.
    """

    op_symbol = 'sq'

    is_commutative = False

    def __new__(cls, k):
        obj = Basic.__new__(cls, sympify(k))
        return obj

    @property
    def state(self):
        """
        Returns the state index related to this operator.

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import F, Fd, B, Bd
        >>> p = Symbol('p')
        >>> F(p).state
        p
        >>> Fd(p).state
        p
        >>> B(p).state
        p
        >>> Bd(p).state
        p

        """
        return self.args[0]

    @property
    def is_symbolic(self):
        """
        Returns True if the state is a symbol (as opposed to a number).

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import F
        >>> p = Symbol('p')
        >>> F(p).is_symbolic
        True
        >>> F(1).is_symbolic
        False

        """
        if self.state.is_Integer:
            return False
        else:
            return True

    def __repr__(self):
        return NotImplemented

    def __str__(self):
        return "%s(%r)" % (self.op_symbol, self.state)

    def apply_operator(self, state):
        """
        Applies an operator to itself.
        """
        raise NotImplementedError('implement apply_operator in a subclass')


class BosonicOperator(SqOperator):
    pass


class Annihilator(SqOperator):
    pass


class Creator(SqOperator):
    pass


class AnnihilateBoson(BosonicOperator, Annihilator):
    """
    Bosonic annihilation operator.

    Examples
    ========

    >>> from sympy.physics.secondquant import B
    >>> from sympy.abc import x
    >>> B(x)
    AnnihilateBoson(x)
    """

    op_symbol = 'b'

    def _dagger_(self):
        return CreateBoson(self.state)

    def apply_operator(self, state):
        """
        Apply state to self if self is not symbolic and state is a FockStateKet, else
        multiply self by state.

        Examples
        ========

        >>> from sympy.physics.secondquant import B, BKet
        >>> from sympy.abc import x, y, n
        >>> B(x).apply_operator(y)
        y*AnnihilateBoson(x)
        >>> B(0).apply_operator(BKet((n,)))
        sqrt(n)*FockStateBosonKet((n - 1,))

        """
        if not self.is_symbolic and isinstance(state, FockStateKet):
            element = self.state
            amp = sqrt(state[element])
            return amp*state.down(element)
        else:
            return Mul(self, state)

    def __repr__(self):
        return "AnnihilateBoson(%s)" % self.state

    def _latex(self, printer):
        if self.state is S.Zero:
            return "b_{0}"
        else:
            return "b_{%s}" % self.state.name

class CreateBoson(BosonicOperator, Creator):
    """
    Bosonic creation operator.
    """

    op_symbol = 'b+'

    def _dagger_(self):
        return AnnihilateBoson(self.state)

    def apply_operator(self, state):
        """
        Apply state to self if self is not symbolic and state is a FockStateKet, else
        multiply self by state.

        Examples
        ========

        >>> from sympy.physics.secondquant import B, Dagger, BKet
        >>> from sympy.abc import x, y, n
        >>> Dagger(B(x)).apply_operator(y)
        y*CreateBoson(x)
        >>> B(0).apply_operator(BKet((n,)))
        sqrt(n)*FockStateBosonKet((n - 1,))
        """
        if not self.is_symbolic and isinstance(state, FockStateKet):
            element = self.state
            amp = sqrt(state[element] + 1)
            return amp*state.up(element)
        else:
            return Mul(self, state)

    def __repr__(self):
        return "CreateBoson(%s)" % self.state

    def _latex(self, printer):
        if self.state is S.Zero:
            return "{b^\\dagger_{0}}"
        else:
            return "{b^\\dagger_{%s}}" % self.state.name

B = AnnihilateBoson
Bd = CreateBoson


class FermionicOperator(SqOperator):

    @property
    def is_restricted(self):
        """
        Is this FermionicOperator restricted with respect to fermi level?

        Returns
        =======

        1  : restricted to orbits above fermi
        0  : no restriction
        -1 : restricted to orbits below fermi

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import F, Fd
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        >>> F(a).is_restricted
        1
        >>> Fd(a).is_restricted
        1
        >>> F(i).is_restricted
        -1
        >>> Fd(i).is_restricted
        -1
        >>> F(p).is_restricted
        0
        >>> Fd(p).is_restricted
        0

        """
        ass = self.args[0].assumptions0
        if ass.get("below_fermi"):
            return -1
        if ass.get("above_fermi"):
            return 1
        return 0

    @property
    def is_above_fermi(self):
        """
        Does the index of this FermionicOperator allow values above fermi?

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import F
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        >>> F(a).is_above_fermi
        True
        >>> F(i).is_above_fermi
        False
        >>> F(p).is_above_fermi
        True

        Note
        ====

        The same applies to creation operators Fd

        """
        return not self.args[0].assumptions0.get("below_fermi")

    @property
    def is_below_fermi(self):
        """
        Does the index of this FermionicOperator allow values below fermi?

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import F
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        >>> F(a).is_below_fermi
        False
        >>> F(i).is_below_fermi
        True
        >>> F(p).is_below_fermi
        True

        The same applies to creation operators Fd

        """
        return not self.args[0].assumptions0.get("above_fermi")

    @property
    def is_only_below_fermi(self):
        """
        Is the index of this FermionicOperator restricted to values below fermi?

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import F
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        >>> F(a).is_only_below_fermi
        False
        >>> F(i).is_only_below_fermi
        True
        >>> F(p).is_only_below_fermi
        False

        The same applies to creation operators Fd
        """
        return self.is_below_fermi and not self.is_above_fermi

    @property
    def is_only_above_fermi(self):
        """
        Is the index of this FermionicOperator restricted to values above fermi?

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import F
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        >>> F(a).is_only_above_fermi
        True
        >>> F(i).is_only_above_fermi
        False
        >>> F(p).is_only_above_fermi
        False

        The same applies to creation operators Fd
        """
        return self.is_above_fermi and not self.is_below_fermi

    def _sortkey(self):
        h = hash(self)
        label = str(self.args[0])

        if self.is_only_q_creator:
            return 1, label, h
        if self.is_only_q_annihilator:
            return 4, label, h
        if isinstance(self, Annihilator):
            return 3, label, h
        if isinstance(self, Creator):
            return 2, label, h


class AnnihilateFermion(FermionicOperator, Annihilator):
    """
    Fermionic annihilation operator.
    """

    op_symbol = 'f'

    def _dagger_(self):
        return CreateFermion(self.state)

    def apply_operator(self, state):
        """
        Apply state to self if self is not symbolic and state is a FockStateKet, else
        multiply self by state.

        Examples
        ========

        >>> from sympy.physics.secondquant import B, Dagger, BKet
        >>> from sympy.abc import x, y, n
        >>> Dagger(B(x)).apply_operator(y)
        y*CreateBoson(x)
        >>> B(0).apply_operator(BKet((n,)))
        sqrt(n)*FockStateBosonKet((n - 1,))
        """
        if isinstance(state, FockStateFermionKet):
            element = self.state
            return state.down(element)

        elif isinstance(state, Mul):
            c_part, nc_part = state.args_cnc()
            if isinstance(nc_part[0], FockStateFermionKet):
                element = self.state
                return Mul(*(c_part + [nc_part[0].down(element)] + nc_part[1:]))
            else:
                return Mul(self, state)

        else:
            return Mul(self, state)

    @property
    def is_q_creator(self):
        """
        Can we create a quasi-particle?  (create hole or create particle)
        If so, would that be above or below the fermi surface?

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import F
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        >>> F(a).is_q_creator
        0
        >>> F(i).is_q_creator
        -1
        >>> F(p).is_q_creator
        -1

        """
        if self.is_below_fermi:
            return -1
        return 0

    @property
    def is_q_annihilator(self):
        """
        Can we destroy a quasi-particle?  (annihilate hole or annihilate particle)
        If so, would that be above or below the fermi surface?

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import F
        >>> a = Symbol('a', above_fermi=1)
        >>> i = Symbol('i', below_fermi=1)
        >>> p = Symbol('p')

        >>> F(a).is_q_annihilator
        1
        >>> F(i).is_q_annihilator
        0
        >>> F(p).is_q_annihilator
        1

        """
        if self.is_above_fermi:
            return 1
        return 0

    @property
    def is_only_q_creator(self):
        """
        Always create a quasi-particle?  (create hole or create particle)

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import F
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        >>> F(a).is_only_q_creator
        False
        >>> F(i).is_only_q_creator
        True
        >>> F(p).is_only_q_creator
        False

        """
        return self.is_only_below_fermi

    @property
    def is_only_q_annihilator(self):
        """
        Always destroy a quasi-particle?  (annihilate hole or annihilate particle)

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import F
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        >>> F(a).is_only_q_annihilator
        True
        >>> F(i).is_only_q_annihilator
        False
        >>> F(p).is_only_q_annihilator
        False

        """
        return self.is_only_above_fermi

    def __repr__(self):
        return "AnnihilateFermion(%s)" % self.state

    def _latex(self, printer):
        if self.state is S.Zero:
            return "a_{0}"
        else:
            return "a_{%s}" % self.state.name


class CreateFermion(FermionicOperator, Creator):
    """
    Fermionic creation operator.
    """

    op_symbol = 'f+'

    def _dagger_(self):
        return AnnihilateFermion(self.state)

    def apply_operator(self, state):
        """
        Apply state to self if self is not symbolic and state is a FockStateKet, else
        multiply self by state.

        Examples
        ========

        >>> from sympy.physics.secondquant import B, Dagger, BKet
        >>> from sympy.abc import x, y, n
        >>> Dagger(B(x)).apply_operator(y)
        y*CreateBoson(x)
        >>> B(0).apply_operator(BKet((n,)))
        sqrt(n)*FockStateBosonKet((n - 1,))
        """
        if isinstance(state, FockStateFermionKet):
            element = self.state
            return state.up(element)

        elif isinstance(state, Mul):
            c_part, nc_part = state.args_cnc()
            if isinstance(nc_part[0], FockStateFermionKet):
                element = self.state
                return Mul(*(c_part + [nc_part[0].up(element)] + nc_part[1:]))

        return Mul(self, state)

    @property
    def is_q_creator(self):
        """
        Can we create a quasi-particle?  (create hole or create particle)
        If so, would that be above or below the fermi surface?

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import Fd
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        >>> Fd(a).is_q_creator
        1
        >>> Fd(i).is_q_creator
        0
        >>> Fd(p).is_q_creator
        1

        """
        if self.is_above_fermi:
            return 1
        return 0

    @property
    def is_q_annihilator(self):
        """
        Can we destroy a quasi-particle?  (annihilate hole or annihilate particle)
        If so, would that be above or below the fermi surface?

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import Fd
        >>> a = Symbol('a', above_fermi=1)
        >>> i = Symbol('i', below_fermi=1)
        >>> p = Symbol('p')

        >>> Fd(a).is_q_annihilator
        0
        >>> Fd(i).is_q_annihilator
        -1
        >>> Fd(p).is_q_annihilator
        -1

        """
        if self.is_below_fermi:
            return -1
        return 0

    @property
    def is_only_q_creator(self):
        """
        Always create a quasi-particle?  (create hole or create particle)

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import Fd
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        >>> Fd(a).is_only_q_creator
        True
        >>> Fd(i).is_only_q_creator
        False
        >>> Fd(p).is_only_q_creator
        False

        """
        return self.is_only_above_fermi

    @property
    def is_only_q_annihilator(self):
        """
        Always destroy a quasi-particle?  (annihilate hole or annihilate particle)

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import Fd
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        >>> Fd(a).is_only_q_annihilator
        False
        >>> Fd(i).is_only_q_annihilator
        True
        >>> Fd(p).is_only_q_annihilator
        False

        """
        return self.is_only_below_fermi

    def __repr__(self):
        return "CreateFermion(%s)" % self.state

    def _latex(self, printer):
        if self.state is S.Zero:
            return "{a^\\dagger_{0}}"
        else:
            return "{a^\\dagger_{%s}}" % self.state.name

Fd = CreateFermion
F = AnnihilateFermion


class FockState(Expr):
    """
    Many particle Fock state with a sequence of occupation numbers.

    Anywhere you can have a FockState, you can also have S.Zero.
    All code must check for this!

    Base class to represent FockStates.
    """
    is_commutative = False

    def __new__(cls, occupations):
        """
        occupations is a list with two possible meanings:

        - For bosons it is a list of occupation numbers.
          Element i is the number of particles in state i.

        - For fermions it is a list of occupied orbits.
          Element 0 is the state that was occupied first, element i
          is the i'th occupied state.
        """
        occupations = list(map(sympify, occupations))
        obj = Basic.__new__(cls, Tuple(*occupations))
        return obj

    def __getitem__(self, i):
        i = int(i)
        return self.args[0][i]

    def __repr__(self):
        return ("FockState(%r)") % (self.args)

    def __str__(self):
        return "%s%r%s" % (getattr(self, 'lbracket', ""), self._labels(), getattr(self, 'rbracket', ""))

    def _labels(self):
        return self.args[0]

    def __len__(self):
        return len(self.args[0])

    def _latex(self, printer):
        return "%s%s%s" % (getattr(self, 'lbracket_latex', ""), printer._print(self._labels()), getattr(self, 'rbracket_latex', ""))


class BosonState(FockState):
    """
    Base class for FockStateBoson(Ket/Bra).
    """

    def up(self, i):
        """
        Performs the action of a creation operator.

        Examples
        ========

        >>> from sympy.physics.secondquant import BBra
        >>> b = BBra([1, 2])
        >>> b
        FockStateBosonBra((1, 2))
        >>> b.up(1)
        FockStateBosonBra((1, 3))
        """
        i = int(i)
        new_occs = list(self.args[0])
        new_occs[i] = new_occs[i] + S.One
        return self.__class__(new_occs)

    def down(self, i):
        """
        Performs the action of an annihilation operator.

        Examples
        ========

        >>> from sympy.physics.secondquant import BBra
        >>> b = BBra([1, 2])
        >>> b
        FockStateBosonBra((1, 2))
        >>> b.down(1)
        FockStateBosonBra((1, 1))
        """
        i = int(i)
        new_occs = list(self.args[0])
        if new_occs[i] == S.Zero:
            return S.Zero
        else:
            new_occs[i] = new_occs[i] - S.One
            return self.__class__(new_occs)


class FermionState(FockState):
    """
    Base class for FockStateFermion(Ket/Bra).
    """

    fermi_level = 0

    def __new__(cls, occupations, fermi_level=0):
        occupations = list(map(sympify, occupations))
        if len(occupations) > 1:
            try:
                (occupations, sign) = _sort_anticommuting_fermions(
                    occupations, key=hash)
            except ViolationOfPauliPrinciple:
                return S.Zero
        else:
            sign = 0

        cls.fermi_level = fermi_level

        if cls._count_holes(occupations) > fermi_level:
            return S.Zero

        if sign % 2:
            return S.NegativeOne*FockState.__new__(cls, occupations)
        else:
            return FockState.__new__(cls, occupations)

    def up(self, i):
        """
        Performs the action of a creation operator.

        Explanation
        ===========

        If below fermi we try to remove a hole,
        if above fermi we try to create a particle.

        If general index p we return ``Kronecker(p,i)*self``
        where ``i`` is a new symbol with restriction above or below.

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import FKet
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        >>> FKet([]).up(a)
        FockStateFermionKet((a,))

        A creator acting on vacuum below fermi vanishes

        >>> FKet([]).up(i)
        0


        """
        present = i in self.args[0]

        if self._only_above_fermi(i):
            if present:
                return S.Zero
            else:
                return self._add_orbit(i)
        elif self._only_below_fermi(i):
            if present:
                return self._remove_orbit(i)
            else:
                return S.Zero
        else:
            if present:
                hole = Dummy("i", below_fermi=True)
                return KroneckerDelta(i, hole)*self._remove_orbit(i)
            else:
                particle = Dummy("a", above_fermi=True)
                return KroneckerDelta(i, particle)*self._add_orbit(i)

    def down(self, i):
        """
        Performs the action of an annihilation operator.

        Explanation
        ===========

        If below fermi we try to create a hole,
        If above fermi we try to remove a particle.

        If general index p we return ``Kronecker(p,i)*self``
        where ``i`` is a new symbol with restriction above or below.

        Examples
        ========

        >>> from sympy import Symbol
        >>> from sympy.physics.secondquant import FKet
        >>> a = Symbol('a', above_fermi=True)
        >>> i = Symbol('i', below_fermi=True)
        >>> p = Symbol('p')

        An annihilator acting on vacuum above fermi vanishes

        >>> FKet([]).down(a)
        0

        Also below fermi, it vanishes, unless we specify a fermi level > 0

        >>> FKet([]).down(i)
        0
        >>> FKet([],4).down(i)
        FockStateFermionKet((i,))

        """
        present = i in self.args[0]

        if self._only_above_fermi(i):
            if present:
                return self._remove_orbit(i)
            else:
                return S.Zero

        elif self._only_below_fermi(i):
            if present:
                return S.Zero
            else:
                return self._add_orbit(i)
        else:
            if present:
                hole = Dummy("i", below_fermi=True)
                return KroneckerDelta(i, hole)*self._add_orbit(i)
            else:
                particle = Dummy("a", above_fermi=True)
                return KroneckerDelta(i, particle)*self._remove_orbit(i)

    @classmethod
    def _only_below_fermi(cls, i):
        """
        Tests if given orbit is only below fermi surface.

        If nothing can be concluded we return a conservative False.
        """
        if i.is_number:
            return i <= cls.fermi_level
        if i.assumptions0.get('below_fermi'):
            return True
        return False

    @classmethod
    def _only_above_fermi(cls, i):
        """
        Tests if given orbit is only above fermi surface.

        If fermi level has not been set we return True.
        If nothing can be concluded we return a conservative False.
        """
        if i.is_number:
            return i > cls.fermi_level
        if i.assumptions0.get('above_fermi'):
            return True
        return not cls.fermi_level

    def _remove_orbit(self, i):
        """
        Removes particle/fills hole in orbit i. No input tests performed here.
        """
        new_occs = list(self.args[0])
        pos = new_occs.index(i)
        del new_occs[pos]
        if (pos) % 2:
            return S.NegativeOne*self.__class__(new_occs, self.fermi_level)
        else:
            return self.__class__(new_occs, self.fermi_level)

    def _add_orbit(self, i):
        """
        Adds particle/creates hole in orbit i. No input tests performed here.
        """
        return self.__class__((i,) + self.args[0], self.fermi_level)

    @classmethod
    def _count_holes(cls, list):
        """
        Returns the number of identified hole states in list.
        """
        return len([i for i in list if cls._only_below_fermi(i)])

    def _negate_holes(self, list):
        return tuple([-i if i <= self.fermi_level else i for i in list])

    def __repr__(self):
        if self.fermi_level:
            return "FockStateKet(%r, fermi_level=%s)" % (self.args[0], self.fermi_level)
        else:
            return "FockStateKet(%r)" % (self.args[0],)

    def _labels(self):
        return self._negate_holes(self.args[0])


class FockStateKet(FockState):
    """
    Representation of a ket.
    """
    lbracket = '|'
    rbracket = '>'
    lbracket_latex = r'\left|'
    rbracket_latex = r'\right\rangle'


class FockStateBra(FockState):
    """
    Representation of a bra.
    """
    lbracket = '<'
    rbracket = '|'
    lbracket_latex = r'\left\langle'
    rbracket_latex = r'\right|'

    def __mul__(self, other):
        if isinstance(other, FockStateKet):
            return InnerProduct(self, other)
        else:
            return Expr.__mul__(self, other)


class FockStateBosonKet(BosonState, FockStateKet):
    """
    Many particle Fock state with a sequence of occupation numbers.

    Occupation numbers can be any integer >= 0.

    Examples
    ========

    >>> from sympy.physics.secondquant import BKet
    >>> BKet([1, 2])
    FockStateBosonKet((1, 2))
    """
    def _dagger_(self):
        return FockStateBosonBra(*self.args)


class FockStateBosonBra(BosonState, FockStateBra):
    """
    Describes a collection of BosonBra particles.

    Examples
    ========

    >>> from sympy.physics.secondquant import BBra
    >>> BBra([1, 2])
    FockStateBosonBra((1, 2))
    """
    def _dagger_(self):
        return FockStateBosonKet(*self.args)


class FockStateFermionKet(FermionState, FockStateKet):
    """
    Many-particle Fock state with a sequence of occupied orbits.

    Explanation
    ===========

    Each state can only have one particle, so we choose to store a list of
    occupied orbits rather than a tuple with occupation numbers (zeros and ones).

    states below fermi level are holes, and are represented by negative labels
    in the occupation list.

    For symbolic state labels, the fermi_level caps the number of allowed hole-
    states.

    Examples
    ========

    >>> from sympy.physics.secondquant import FKet
    >>> FKet([1, 2])
    FockStateFermionKet((1, 2))
    """
    def _dagger_(self):
        return FockStateFermionBra(*self.args)


class FockStateFermionBra(FermionState, FockStateBra):
    """
    See Also
    ========

    FockStateFermionKet

    Examples
    ========

    >>> from sympy.physics.secondquant import FBra
    >>> FBra([1, 2])
    FockStateFermionBra((1, 2))
    """
    def _dagger_(self):
        return FockStateFermionKet(*self.args)

BBra = FockStateBosonBra
BKet = FockStateBosonKet
FBra = FockStateFermionBra
FKet = FockStateFermionKet


def _apply_Mul(m):
    """
    Take a Mul instance with operators and apply them to states.

    Explanation
    ===========

    This method applies all operators with integer state labels
    to the actual states.  For symbolic state labels, nothing is done.
    When inner products of FockStates are encountered (like <a|b>),
    they are converted to instances of InnerProduct.

    This does not currently work on double inner products like,
    <a|b><c|d>.

    If the argument is not a Mul, it is simply returned as is.
    """
    if not isinstance(m, Mul):
        return m
    c_part, nc_part = m.args_cnc()
    n_nc = len(nc_part)
    if n_nc in (0, 1):
        return m
    else:
        last = nc_part[-1]
        next_to_last = nc_part[-2]
        if isinstance(last, FockStateKet):
            if isinstance(next_to_last, SqOperator):
                if next_to_last.is_symbolic:
                    return m
                else:
                    result = next_to_last.apply_operator(last)
                    if result == 0:
                        return S.Zero
                    else:
                        return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
            elif isinstance(next_to_last, Pow):
                if isinstance(next_to_last.base, SqOperator) and \
                        next_to_last.exp.is_Integer:
                    if next_to_last.base.is_symbolic:
                        return m
                    else:
                        result = last
                        for i in range(next_to_last.exp):
                            result = next_to_last.base.apply_operator(result)
                            if result == 0:
                                break
                        if result == 0:
                            return S.Zero
                        else:
                            return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
                else:
                    return m
            elif isinstance(next_to_last, FockStateBra):
                result = InnerProduct(next_to_last, last)
                if result == 0:
                    return S.Zero
                else:
                    return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
            else:
                return m
        else:
            return m


def apply_operators(e):
    """
    Take a SymPy expression with operators and states and apply the operators.

    Examples
    ========

    >>> from sympy.physics.secondquant import apply_operators
    >>> from sympy import sympify
    >>> apply_operators(sympify(3)+4)
    7
    """
    e = e.expand()
    muls = e.atoms(Mul)
    subs_list = [(m, _apply_Mul(m)) for m in iter(muls)]
    return e.subs(subs_list)


class InnerProduct(Basic):
    """
    An unevaluated inner product between a bra and ket.

    Explanation
    ===========

    Currently this class just reduces things to a product of
    Kronecker Deltas.  In the future, we could introduce abstract
    states like ``|a>`` and ``|b>``, and leave the inner product unevaluated as
    ``<a|b>``.

    """
    is_commutative = True

    def __new__(cls, bra, ket):
        if not isinstance(bra, FockStateBra):
            raise TypeError("must be a bra")
        if not isinstance(ket, FockStateKet):
            raise TypeError("must be a ket")
        return cls.eval(bra, ket)

    @classmethod
    def eval(cls, bra, ket):
        result = S.One
        for i, j in zip(bra.args[0], ket.args[0]):
            result *= KroneckerDelta(i, j)
            if result == 0:
                break
        return result

    @property
    def bra(self):
        """Returns the bra part of the state"""
        return self.args[0]

    @property
    def ket(self):
        """Returns the ket part of the state"""
        return self.args[1]

    def __repr__(self):
        sbra = repr(self.bra)
        sket = repr(self.ket)
        return "%s|%s" % (sbra[:-1], sket[1:])

    def __str__(self):
        return self.__repr__()


def matrix_rep(op, basis):
    """
    Find the representation of an operator in a basis.

    Examples
    ========

    >>> from sympy.physics.secondquant import VarBosonicBasis, B, matrix_rep
    >>> b = VarBosonicBasis(5)
    >>> o = B(0)
    >>> matrix_rep(o, b)
    Matrix([
    [0, 1,       0,       0, 0],
    [0, 0, sqrt(2),       0, 0],
    [0, 0,       0, sqrt(3), 0],
    [0, 0,       0,       0, 2],
    [0, 0,       0,       0, 0]])
    """
    a = zeros(len(basis))
    for i in range(len(basis)):
        for j in range(len(basis)):
            a[i, j] = apply_operators(Dagger(basis[i])*op*basis[j])
    return a


class BosonicBasis:
    """
    Base class for a basis set of bosonic Fock states.
    """
    pass


class VarBosonicBasis:
    """
    A single state, variable particle number basis set.

    Examples
    ========

    >>> from sympy.physics.secondquant import VarBosonicBasis
    >>> b = VarBosonicBasis(5)
    >>> b
    [FockState((0,)), FockState((1,)), FockState((2,)),
     FockState((3,)), FockState((4,))]
    """

    def __init__(self, n_max):
        self.n_max = n_max
        self._build_states()

    def _build_states(self):
        self.basis = []
        for i in range(self.n_max):
            self.basis.append(FockStateBosonKet([i]))
        self.n_basis = len(self.basis)

    def index(self, state):
        """
        Returns the index of state in basis.

        Examples
        ========

        >>> from sympy.physics.secondquant import VarBosonicBasis
        >>> b = VarBosonicBasis(3)
        >>> state = b.state(1)
        >>> b
        [FockState((0,)), FockState((1,)), FockState((2,))]
        >>> state
        FockStateBosonKet((1,))
        >>> b.index(state)
        1
        """
        return self.basis.index(state)

    def state(self, i):
        """
        The state of a single basis.

        Examples
        ========

        >>> from sympy.physics.secondquant import VarBosonicBasis
        >>> b = VarBosonicBasis(5)
        >>> b.state(3)
        FockStateBosonKet((3,))
        """
        return self.basis[i]

    def __getitem__(self, i):
        return self.state(i)

    def __len__(self):
        return len(self.basis)

    def __repr__(self):
        return repr(self.basis)


class FixedBosonicBasis(BosonicBasis):
    """
    Fixed particle number basis set.

    Examples
    ========

    >>> from sympy.physics.secondquant import FixedBosonicBasis
    >>> b = FixedBosonicBasis(2, 2)
    >>> state = b.state(1)
    >>> b
    [FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]
    >>> state
    FockStateBosonKet((1, 1))
    >>> b.index(state)
    1
    """
    def __init__(self, n_particles, n_levels):
        self.n_particles = n_particles
        self.n_levels = n_levels
        self._build_particle_locations()
        self._build_states()

    def _build_particle_locations(self):
        tup = ["i%i" % i for i in range(self.n_particles)]
        first_loop = "for i0 in range(%i)" % self.n_levels
        other_loops = ''
        for cur, prev in zip(tup[1:], tup):
            temp = "for %s in range(%s + 1) " % (cur, prev)
            other_loops = other_loops + temp
        tup_string = "(%s)" % ", ".join(tup)
        list_comp = "[%s %s %s]" % (tup_string, first_loop, other_loops)
        result = eval(list_comp)
        if self.n_particles == 1:
            result = [(item,) for item in result]
        self.particle_locations = result

    def _build_states(self):
        self.basis = []
        for tuple_of_indices in self.particle_locations:
            occ_numbers = self.n_levels*[0]
            for level in tuple_of_indices:
                occ_numbers[level] += 1
            self.basis.append(FockStateBosonKet(occ_numbers))
        self.n_basis = len(self.basis)

    def index(self, state):
        """Returns the index of state in basis.

        Examples
        ========

        >>> from sympy.physics.secondquant import FixedBosonicBasis
        >>> b = FixedBosonicBasis(2, 3)
        >>> b.index(b.state(3))
        3
        """
        return self.basis.index(state)

    def state(self, i):
        """Returns the state that lies at index i of the basis

        Examples
        ========

        >>> from sympy.physics.secondquant import FixedBosonicBasis
        >>> b = FixedBosonicBasis(2, 3)
        >>> b.state(3)
        FockStateBosonKet((1, 0, 1))
        """
        return self.basis[i]

    def __getitem__(self, i):
        return self.state(i)

    def __len__(self):
        return len(self.basis)

    def __repr__(self):
        return repr(self.basis)


class Commutator(Function):
    """
    The Commutator:  [A, B] = A*B - B*A

    The arguments are ordered according to .__cmp__()

    Examples
    ========

    >>> from sympy import symbols
    >>> from sympy.physics.secondquant import Commutator
    >>> A, B = symbols('A,B', commutative=False)
    >>> Commutator(B, A)
    -Commutator(A, B)

    Evaluate the commutator with .doit()

    >>> comm = Commutator(A,B); comm
    Commutator(A, B)
    >>> comm.doit()
    A*B - B*A


    For two second quantization operators the commutator is evaluated
    immediately:

    >>> from sympy.physics.secondquant import Fd, F
    >>> a = symbols('a', above_fermi=True)
    >>> i = symbols('i', below_fermi=True)
    >>> p,q = symbols('p,q')

    >>> Commutator(Fd(a),Fd(i))
    2*NO(CreateFermion(a)*CreateFermion(i))

    But for more complicated expressions, the evaluation is triggered by
    a call to .doit()

    >>> comm = Commutator(Fd(p)*Fd(q),F(i)); comm
    Commutator(CreateFermion(p)*CreateFermion(q), AnnihilateFermion(i))
    >>> comm.doit(wicks=True)
    -KroneckerDelta(i, p)*CreateFermion(q) +
     KroneckerDelta(i, q)*CreateFermion(p)

    """

    is_commutative = False

    @classmethod
    def eval(cls, a, b):
        """
        The Commutator [A,B] is on canonical form if A < B.

        Examples
        ========

        >>> from sympy.physics.secondquant import Commutator, F, Fd
        >>> from sympy.abc import x
        >>> c1 = Commutator(F(x), Fd(x))
        >>> c2 = Commutator(Fd(x), F(x))
        >>> Commutator.eval(c1, c2)
        0
        """
        if not (a and b):
            return S.Zero
        if a == b:
            return S.Zero
        if a.is_commutative or b.is_commutative:
            return S.Zero

        #
        # [A+B,C]  ->  [A,C] + [B,C]
        #
        a = a.expand()
        if isinstance(a, Add):
            return Add(*[cls(term, b) for term in a.args])
        b = b.expand()
        if isinstance(b, Add):
            return Add(*[cls(a, term) for term in b.args])

        #
        # [xA,yB]  ->  xy*[A,B]
        #
        ca, nca = a.args_cnc()
        cb, ncb = b.args_cnc()
        c_part = list(ca) + list(cb)
        if c_part:
            return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb)))

        #
        # single second quantization operators
        #
        if isinstance(a, BosonicOperator) and isinstance(b, BosonicOperator):
            if isinstance(b, CreateBoson) and isinstance(a, AnnihilateBoson):
                return KroneckerDelta(a.state, b.state)
            if isinstance(a, CreateBoson) and isinstance(b, AnnihilateBoson):
                return S.NegativeOne*KroneckerDelta(a.state, b.state)
            else:
                return S.Zero
        if isinstance(a, FermionicOperator) and isinstance(b, FermionicOperator):
            return wicks(a*b) - wicks(b*a)

        #
        # Canonical ordering of arguments
        #
        if a.sort_key() > b.sort_key():
            return S.NegativeOne*cls(b, a)

    def doit(self, **hints):
        """
        Enables the computation of complex expressions.

        Examples
        ========

        >>> from sympy.physics.secondquant import Commutator, F, Fd
        >>> from sympy import symbols
        >>> i, j = symbols('i,j', below_fermi=True)
        >>> a, b = symbols('a,b', above_fermi=True)
        >>> c = Commutator(Fd(a)*F(i),Fd(b)*F(j))
        >>> c.doit(wicks=True)
        0
        """
        a = self.args[0]
        b = self.args[1]

        if hints.get("wicks"):
            a = a.doit(**hints)
            b = b.doit(**hints)
            try:
                return wicks(a*b) - wicks(b*a)
            except ContractionAppliesOnlyToFermions:
                pass
            except WicksTheoremDoesNotApply:
                pass

        return (a*b - b*a).doit(**hints)

    def __repr__(self):
        return "Commutator(%s,%s)" % (self.args[0], self.args[1])

    def __str__(self):
        return "[%s,%s]" % (self.args[0], self.args[1])

    def _latex(self, printer):
        return "\\left[%s,%s\\right]" % tuple([
            printer._print(arg) for arg in self.args])


class NO(Expr):
    """
    This Object is used to represent normal ordering brackets.

    i.e.  {abcd}  sometimes written  :abcd:

    Explanation
    ===========

    Applying the function NO(arg) to an argument means that all operators in
    the argument will be assumed to anticommute, and have vanishing
    contractions.  This allows an immediate reordering to canonical form
    upon object creation.

    Examples
    ========

    >>> from sympy import symbols
    >>> from sympy.physics.secondquant import NO, F, Fd
    >>> p,q = symbols('p,q')
    >>> NO(Fd(p)*F(q))
    NO(CreateFermion(p)*AnnihilateFermion(q))
    >>> NO(F(q)*Fd(p))
    -NO(CreateFermion(p)*AnnihilateFermion(q))


    Note
    ====

    If you want to generate a normal ordered equivalent of an expression, you
    should use the function wicks().  This class only indicates that all
    operators inside the brackets anticommute, and have vanishing contractions.
    Nothing more, nothing less.

    """
    is_commutative = False

    def __new__(cls, arg):
        """
        Use anticommutation to get canonical form of operators.

        Explanation
        ===========

        Employ associativity of normal ordered product: {ab{cd}} = {abcd}
        but note that {ab}{cd} /= {abcd}.

        We also employ distributivity: {ab + cd} = {ab} + {cd}.

        Canonical form also implies expand() {ab(c+d)} = {abc} + {abd}.

        """

        # {ab + cd} = {ab} + {cd}
        arg = sympify(arg)
        arg = arg.expand()
        if arg.is_Add:
            return Add(*[ cls(term) for term in arg.args])

        if arg.is_Mul:

            # take coefficient outside of normal ordering brackets
            c_part, seq = arg.args_cnc()
            if c_part:
                coeff = Mul(*c_part)
                if not seq:
                    return coeff
            else:
                coeff = S.One

            # {ab{cd}} = {abcd}
            newseq = []
            foundit = False
            for fac in seq:
                if isinstance(fac, NO):
                    newseq.extend(fac.args)
                    foundit = True
                else:
                    newseq.append(fac)
            if foundit:
                return coeff*cls(Mul(*newseq))

            # We assume that the user don't mix B and F operators
            if isinstance(seq[0], BosonicOperator):
                raise NotImplementedError

            try:
                newseq, sign = _sort_anticommuting_fermions(seq)
            except ViolationOfPauliPrinciple:
                return S.Zero

            if sign % 2:
                return (S.NegativeOne*coeff)*cls(Mul(*newseq))
            elif sign:
                return coeff*cls(Mul(*newseq))
            else:
                pass  # since sign==0, no permutations was necessary

            # if we couldn't do anything with Mul object, we just
            # mark it as normal ordered
            if coeff != S.One:
                return coeff*cls(Mul(*newseq))
            return Expr.__new__(cls, Mul(*newseq))

        if isinstance(arg, NO):
            return arg

        # if object was not Mul or Add, normal ordering does not apply
        return arg

    @property
    def has_q_creators(self):
        """
        Return 0 if the leftmost argument of the first argument is a not a
        q_creator, else 1 if it is above fermi or -1 if it is below fermi.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.secondquant import NO, F, Fd

        >>> a = symbols('a', above_fermi=True)
        >>> i = symbols('i', below_fermi=True)
        >>> NO(Fd(a)*Fd(i)).has_q_creators
        1
        >>> NO(F(i)*F(a)).has_q_creators
        -1
        >>> NO(Fd(i)*F(a)).has_q_creators           #doctest: +SKIP
        0

        """
        return self.args[0].args[0].is_q_creator

    @property
    def has_q_annihilators(self):
        """
        Return 0 if the rightmost argument of the first argument is a not a
        q_annihilator, else 1 if it is above fermi or -1 if it is below fermi.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.secondquant import NO, F, Fd

        >>> a = symbols('a', above_fermi=True)
        >>> i = symbols('i', below_fermi=True)
        >>> NO(Fd(a)*Fd(i)).has_q_annihilators
        -1
        >>> NO(F(i)*F(a)).has_q_annihilators
        1
        >>> NO(Fd(a)*F(i)).has_q_annihilators
        0

        """
        return self.args[0].args[-1].is_q_annihilator

    def doit(self, **hints):
        """
        Either removes the brackets or enables complex computations
        in its arguments.

        Examples
        ========

        >>> from sympy.physics.secondquant import NO, Fd, F
        >>> from textwrap import fill
        >>> from sympy import symbols, Dummy
        >>> p,q = symbols('p,q', cls=Dummy)
        >>> print(fill(str(NO(Fd(p)*F(q)).doit())))
        KroneckerDelta(_a, _p)*KroneckerDelta(_a,
        _q)*CreateFermion(_a)*AnnihilateFermion(_a) + KroneckerDelta(_a,
        _p)*KroneckerDelta(_i, _q)*CreateFermion(_a)*AnnihilateFermion(_i) -
        KroneckerDelta(_a, _q)*KroneckerDelta(_i,
        _p)*AnnihilateFermion(_a)*CreateFermion(_i) - KroneckerDelta(_i,
        _p)*KroneckerDelta(_i, _q)*AnnihilateFermion(_i)*CreateFermion(_i)
        """
        if hints.get("remove_brackets", True):
            return self._remove_brackets()
        else:
            return self.__new__(type(self), self.args[0].doit(**hints))

    def _remove_brackets(self):
        """
        Returns the sorted string without normal order brackets.

        The returned string have the property that no nonzero
        contractions exist.
        """

        # check if any creator is also an annihilator
        subslist = []
        for i in self.iter_q_creators():
            if self[i].is_q_annihilator:
                assume = self[i].state.assumptions0

                # only operators with a dummy index can be split in two terms
                if isinstance(self[i].state, Dummy):

                    # create indices with fermi restriction
                    assume.pop("above_fermi", None)
                    assume["below_fermi"] = True
                    below = Dummy('i', **assume)
                    assume.pop("below_fermi", None)
                    assume["above_fermi"] = True
                    above = Dummy('a', **assume)

                    cls = type(self[i])
                    split = (
                        self[i].__new__(cls, below)
                        * KroneckerDelta(below, self[i].state)
                        + self[i].__new__(cls, above)
                        * KroneckerDelta(above, self[i].state)
                    )
                    subslist.append((self[i], split))
                else:
                    raise SubstitutionOfAmbigousOperatorFailed(self[i])
        if subslist:
            result = NO(self.subs(subslist))
            if isinstance(result, Add):
                return Add(*[term.doit() for term in result.args])
        else:
            return self.args[0]

    def _expand_operators(self):
        """
        Returns a sum of NO objects that contain no ambiguous q-operators.

        Explanation
        ===========

        If an index q has range both above and below fermi, the operator F(q)
        is ambiguous in the sense that it can be both a q-creator and a q-annihilator.
        If q is dummy, it is assumed to be a summation variable and this method
        rewrites it into a sum of NO terms with unambiguous operators:

        {Fd(p)*F(q)} = {Fd(a)*F(b)} + {Fd(a)*F(i)} + {Fd(j)*F(b)} -{F(i)*Fd(j)}

        where a,b are above and i,j are below fermi level.
        """
        return NO(self._remove_brackets)

    def __getitem__(self, i):
        if isinstance(i, slice):
            indices = i.indices(len(self))
            return [self.args[0].args[i] for i in range(*indices)]
        else:
            return self.args[0].args[i]

    def __len__(self):
        return len(self.args[0].args)

    def iter_q_annihilators(self):
        """
        Iterates over the annihilation operators.

        Examples
        ========

        >>> from sympy import symbols
        >>> i, j = symbols('i j', below_fermi=True)
        >>> a, b = symbols('a b', above_fermi=True)
        >>> from sympy.physics.secondquant import NO, F, Fd
        >>> no = NO(Fd(a)*F(i)*F(b)*Fd(j))

        >>> no.iter_q_creators()
        <generator object... at 0x...>
        >>> list(no.iter_q_creators())
        [0, 1]
        >>> list(no.iter_q_annihilators())
        [3, 2]

        """
        ops = self.args[0].args
        iter = range(len(ops) - 1, -1, -1)
        for i in iter:
            if ops[i].is_q_annihilator:
                yield i
            else:
                break

    def iter_q_creators(self):
        """
        Iterates over the creation operators.

        Examples
        ========

        >>> from sympy import symbols
        >>> i, j = symbols('i j', below_fermi=True)
        >>> a, b = symbols('a b', above_fermi=True)
        >>> from sympy.physics.secondquant import NO, F, Fd
        >>> no = NO(Fd(a)*F(i)*F(b)*Fd(j))

        >>> no.iter_q_creators()
        <generator object... at 0x...>
        >>> list(no.iter_q_creators())
        [0, 1]
        >>> list(no.iter_q_annihilators())
        [3, 2]

        """

        ops = self.args[0].args
        iter = range(0, len(ops))
        for i in iter:
            if ops[i].is_q_creator:
                yield i
            else:
                break

    def get_subNO(self, i):
        """
        Returns a NO() without FermionicOperator at index i.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.secondquant import F, NO
        >>> p, q, r = symbols('p,q,r')

        >>> NO(F(p)*F(q)*F(r)).get_subNO(1)
        NO(AnnihilateFermion(p)*AnnihilateFermion(r))

        """
        arg0 = self.args[0]  # it's a Mul by definition of how it's created
        mul = arg0._new_rawargs(*(arg0.args[:i] + arg0.args[i + 1:]))
        return NO(mul)

    def _latex(self, printer):
        return "\\left\\{%s\\right\\}" % printer._print(self.args[0])

    def __repr__(self):
        return "NO(%s)" % self.args[0]

    def __str__(self):
        return ":%s:" % self.args[0]


def contraction(a, b):
    """
    Calculates contraction of Fermionic operators a and b.

    Examples
    ========

    >>> from sympy import symbols
    >>> from sympy.physics.secondquant import F, Fd, contraction
    >>> p, q = symbols('p,q')
    >>> a, b = symbols('a,b', above_fermi=True)
    >>> i, j = symbols('i,j', below_fermi=True)

    A contraction is non-zero only if a quasi-creator is to the right of a
    quasi-annihilator:

    >>> contraction(F(a),Fd(b))
    KroneckerDelta(a, b)
    >>> contraction(Fd(i),F(j))
    KroneckerDelta(i, j)

    For general indices a non-zero result restricts the indices to below/above
    the fermi surface:

    >>> contraction(Fd(p),F(q))
    KroneckerDelta(_i, q)*KroneckerDelta(p, q)
    >>> contraction(F(p),Fd(q))
    KroneckerDelta(_a, q)*KroneckerDelta(p, q)

    Two creators or two annihilators always vanishes:

    >>> contraction(F(p),F(q))
    0
    >>> contraction(Fd(p),Fd(q))
    0

    """
    if isinstance(b, FermionicOperator) and isinstance(a, FermionicOperator):
        if isinstance(a, AnnihilateFermion) and isinstance(b, CreateFermion):
            if b.state.assumptions0.get("below_fermi"):
                return S.Zero
            if a.state.assumptions0.get("below_fermi"):
                return S.Zero
            if b.state.assumptions0.get("above_fermi"):
                return KroneckerDelta(a.state, b.state)
            if a.state.assumptions0.get("above_fermi"):
                return KroneckerDelta(a.state, b.state)

            return (KroneckerDelta(a.state, b.state)*
                    KroneckerDelta(b.state, Dummy('a', above_fermi=True)))
        if isinstance(b, AnnihilateFermion) and isinstance(a, CreateFermion):
            if b.state.assumptions0.get("above_fermi"):
                return S.Zero
            if a.state.assumptions0.get("above_fermi"):
                return S.Zero
            if b.state.assumptions0.get("below_fermi"):
                return KroneckerDelta(a.state, b.state)
            if a.state.assumptions0.get("below_fermi"):
                return KroneckerDelta(a.state, b.state)

            return (KroneckerDelta(a.state, b.state)*
                    KroneckerDelta(b.state, Dummy('i', below_fermi=True)))

        # vanish if 2xAnnihilator or 2xCreator
        return S.Zero

    else:
        #not fermion operators
        t = ( isinstance(i, FermionicOperator) for i in (a, b) )
        raise ContractionAppliesOnlyToFermions(*t)


def _sqkey(sq_operator):
    """Generates key for canonical sorting of SQ operators."""
    return sq_operator._sortkey()


def _sort_anticommuting_fermions(string1, key=_sqkey):
    """Sort fermionic operators to canonical order, assuming all pairs anticommute.

    Explanation
    ===========

    Uses a bidirectional bubble sort.  Items in string1 are not referenced
    so in principle they may be any comparable objects.   The sorting depends on the
    operators '>' and '=='.

    If the Pauli principle is violated, an exception is raised.

    Returns
    =======

    tuple (sorted_str, sign)

    sorted_str: list containing the sorted operators
    sign: int telling how many times the sign should be changed
          (if sign==0 the string was already sorted)
    """

    verified = False
    sign = 0
    rng = list(range(len(string1) - 1))
    rev = list(range(len(string1) - 3, -1, -1))

    keys = list(map(key, string1))
    key_val = dict(list(zip(keys, string1)))

    while not verified:
        verified = True
        for i in rng:
            left = keys[i]
            right = keys[i + 1]
            if left == right:
                raise ViolationOfPauliPrinciple([left, right])
            if left > right:
                verified = False
                keys[i:i + 2] = [right, left]
                sign = sign + 1
        if verified:
            break
        for i in rev:
            left = keys[i]
            right = keys[i + 1]
            if left == right:
                raise ViolationOfPauliPrinciple([left, right])
            if left > right:
                verified = False
                keys[i:i + 2] = [right, left]
                sign = sign + 1
    string1 = [ key_val[k] for k in keys ]
    return (string1, sign)


def evaluate_deltas(e):
    """
    We evaluate KroneckerDelta symbols in the expression assuming Einstein summation.

    Explanation
    ===========

    If one index is repeated it is summed over and in effect substituted with
    the other one. If both indices are repeated we substitute according to what
    is the preferred index.  this is determined by
    KroneckerDelta.preferred_index and KroneckerDelta.killable_index.

    In case there are no possible substitutions or if a substitution would
    imply a loss of information, nothing is done.

    In case an index appears in more than one KroneckerDelta, the resulting
    substitution depends on the order of the factors.  Since the ordering is platform
    dependent, the literal expression resulting from this function may be hard to
    predict.

    Examples
    ========

    We assume the following:

    >>> from sympy import symbols, Function, Dummy, KroneckerDelta
    >>> from sympy.physics.secondquant import evaluate_deltas
    >>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
    >>> a,b = symbols('a b', above_fermi=True, cls=Dummy)
    >>> p,q = symbols('p q', cls=Dummy)
    >>> f = Function('f')
    >>> t = Function('t')

    The order of preference for these indices according to KroneckerDelta is
    (a, b, i, j, p, q).

    Trivial cases:

    >>> evaluate_deltas(KroneckerDelta(i,j)*f(i))       # d_ij f(i) -> f(j)
    f(_j)
    >>> evaluate_deltas(KroneckerDelta(i,j)*f(j))       # d_ij f(j) -> f(i)
    f(_i)
    >>> evaluate_deltas(KroneckerDelta(i,p)*f(p))       # d_ip f(p) -> f(i)
    f(_i)
    >>> evaluate_deltas(KroneckerDelta(q,p)*f(p))       # d_qp f(p) -> f(q)
    f(_q)
    >>> evaluate_deltas(KroneckerDelta(q,p)*f(q))       # d_qp f(q) -> f(p)
    f(_p)

    More interesting cases:

    >>> evaluate_deltas(KroneckerDelta(i,p)*t(a,i)*f(p,q))
    f(_i, _q)*t(_a, _i)
    >>> evaluate_deltas(KroneckerDelta(a,p)*t(a,i)*f(p,q))
    f(_a, _q)*t(_a, _i)
    >>> evaluate_deltas(KroneckerDelta(p,q)*f(p,q))
    f(_p, _p)

    Finally, here are some cases where nothing is done, because that would
    imply a loss of information:

    >>> evaluate_deltas(KroneckerDelta(i,p)*f(q))
    f(_q)*KroneckerDelta(_i, _p)
    >>> evaluate_deltas(KroneckerDelta(i,p)*f(i))
    f(_i)*KroneckerDelta(_i, _p)
    """

    # We treat Deltas only in mul objects
    # for general function objects we don't evaluate KroneckerDeltas in arguments,
    # but here we hard code exceptions to this rule
    accepted_functions = (
        Add,
    )
    if isinstance(e, accepted_functions):
        return e.func(*[evaluate_deltas(arg) for arg in e.args])

    elif isinstance(e, Mul):
        # find all occurrences of delta function and count each index present in
        # expression.
        deltas = []
        indices = {}
        for i in e.args:
            for s in i.free_symbols:
                if s in indices:
                    indices[s] += 1
                else:
                    indices[s] = 0  # geek counting simplifies logic below
            if isinstance(i, KroneckerDelta):
                deltas.append(i)

        for d in deltas:
            # If we do something, and there are more deltas, we should recurse
            # to treat the resulting expression properly
            if d.killable_index.is_Symbol and indices[d.killable_index]:
                e = e.subs(d.killable_index, d.preferred_index)
                if len(deltas) > 1:
                    return evaluate_deltas(e)
            elif (d.preferred_index.is_Symbol and indices[d.preferred_index]
                  and d.indices_contain_equal_information):
                e = e.subs(d.preferred_index, d.killable_index)
                if len(deltas) > 1:
                    return evaluate_deltas(e)
            else:
                pass

        return e
    # nothing to do, maybe we hit a Symbol or a number
    else:
        return e


def substitute_dummies(expr, new_indices=False, pretty_indices={}):
    """
    Collect terms by substitution of dummy variables.

    Explanation
    ===========

    This routine allows simplification of Add expressions containing terms
    which differ only due to dummy variables.

    The idea is to substitute all dummy variables consistently depending on
    the structure of the term.  For each term, we obtain a sequence of all
    dummy variables, where the order is determined by the index range, what
    factors the index belongs to and its position in each factor.  See
    _get_ordered_dummies() for more information about the sorting of dummies.
    The index sequence is then substituted consistently in each term.

    Examples
    ========

    >>> from sympy import symbols, Function, Dummy
    >>> from sympy.physics.secondquant import substitute_dummies
    >>> a,b,c,d = symbols('a b c d', above_fermi=True, cls=Dummy)
    >>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
    >>> f = Function('f')

    >>> expr = f(a,b) + f(c,d); expr
    f(_a, _b) + f(_c, _d)

    Since a, b, c and d are equivalent summation indices, the expression can be
    simplified to a single term (for which the dummy indices are still summed over)

    >>> substitute_dummies(expr)
    2*f(_a, _b)


    Controlling output:

    By default the dummy symbols that are already present in the expression
    will be reused in a different permutation.  However, if new_indices=True,
    new dummies will be generated and inserted.  The keyword 'pretty_indices'
    can be used to control this generation of new symbols.

    By default the new dummies will be generated on the form i_1, i_2, a_1,
    etc.  If you supply a dictionary with key:value pairs in the form:

        { index_group: string_of_letters }

    The letters will be used as labels for the new dummy symbols.  The
    index_groups must be one of 'above', 'below' or 'general'.

    >>> expr = f(a,b,i,j)
    >>> my_dummies = { 'above':'st', 'below':'uv' }
    >>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
    f(_s, _t, _u, _v)

    If we run out of letters, or if there is no keyword for some index_group
    the default dummy generator will be used as a fallback:

    >>> p,q = symbols('p q', cls=Dummy)  # general indices
    >>> expr = f(p,q)
    >>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
    f(_p_0, _p_1)

    """

    # setup the replacing dummies
    if new_indices:
        letters_above = pretty_indices.get('above', "")
        letters_below = pretty_indices.get('below', "")
        letters_general = pretty_indices.get('general', "")
        len_above = len(letters_above)
        len_below = len(letters_below)
        len_general = len(letters_general)

        def _i(number):
            try:
                return letters_below[number]
            except IndexError:
                return 'i_' + str(number - len_below)

        def _a(number):
            try:
                return letters_above[number]
            except IndexError:
                return 'a_' + str(number - len_above)

        def _p(number):
            try:
                return letters_general[number]
            except IndexError:
                return 'p_' + str(number - len_general)

    aboves = []
    belows = []
    generals = []

    dummies = expr.atoms(Dummy)
    if not new_indices:
        dummies = sorted(dummies, key=default_sort_key)

    # generate lists with the dummies we will insert
    a = i = p = 0
    for d in dummies:
        assum = d.assumptions0

        if assum.get("above_fermi"):
            if new_indices:
                sym = _a(a)
                a += 1
            l1 = aboves
        elif assum.get("below_fermi"):
            if new_indices:
                sym = _i(i)
                i += 1
            l1 = belows
        else:
            if new_indices:
                sym = _p(p)
                p += 1
            l1 = generals

        if new_indices:
            l1.append(Dummy(sym, **assum))
        else:
            l1.append(d)

    expr = expr.expand()
    terms = Add.make_args(expr)
    new_terms = []
    for term in terms:
        i = iter(belows)
        a = iter(aboves)
        p = iter(generals)
        ordered = _get_ordered_dummies(term)
        subsdict = {}
        for d in ordered:
            if d.assumptions0.get('below_fermi'):
                subsdict[d] = next(i)
            elif d.assumptions0.get('above_fermi'):
                subsdict[d] = next(a)
            else:
                subsdict[d] = next(p)
        subslist = []
        final_subs = []
        for k, v in subsdict.items():
            if k == v:
                continue
            if v in subsdict:
                # We check if the sequence of substitutions end quickly.  In
                # that case, we can avoid temporary symbols if we ensure the
                # correct substitution order.
                if subsdict[v] in subsdict:
                    # (x, y) -> (y, x),  we need a temporary variable
                    x = Dummy('x')
                    subslist.append((k, x))
                    final_subs.append((x, v))
                else:
                    # (x, y) -> (y, a),  x->y must be done last
                    # but before temporary variables are resolved
                    final_subs.insert(0, (k, v))
            else:
                subslist.append((k, v))
        subslist.extend(final_subs)
        new_terms.append(term.subs(subslist))
    return Add(*new_terms)


class KeyPrinter(StrPrinter):
    """Printer for which only equal objects are equal in print"""
    def _print_Dummy(self, expr):
        return "(%s_%i)" % (expr.name, expr.dummy_index)


def __kprint(expr):
    p = KeyPrinter()
    return p.doprint(expr)


def _get_ordered_dummies(mul, verbose=False):
    """Returns all dummies in the mul sorted in canonical order.

    Explanation
    ===========

    The purpose of the canonical ordering is that dummies can be substituted
    consistently across terms with the result that equivalent terms can be
    simplified.

    It is not possible to determine if two terms are equivalent based solely on
    the dummy order.  However, a consistent substitution guided by the ordered
    dummies should lead to trivially (non-)equivalent terms, thereby revealing
    the equivalence.  This also means that if two terms have identical sequences of
    dummies, the (non-)equivalence should already be apparent.

    Strategy
    --------

    The canonical order is given by an arbitrary sorting rule.  A sort key
    is determined for each dummy as a tuple that depends on all factors where
    the index is present.  The dummies are thereby sorted according to the
    contraction structure of the term, instead of sorting based solely on the
    dummy symbol itself.

    After all dummies in the term has been assigned a key, we check for identical
    keys, i.e. unorderable dummies.  If any are found, we call a specialized
    method, _determine_ambiguous(), that will determine a unique order based
    on recursive calls to _get_ordered_dummies().

    Key description
    ---------------

    A high level description of the sort key:

        1. Range of the dummy index
        2. Relation to external (non-dummy) indices
        3. Position of the index in the first factor
        4. Position of the index in the second factor

    The sort key is a tuple with the following components:

        1. A single character indicating the range of the dummy (above, below
           or general.)
        2. A list of strings with fully masked string representations of all
           factors where the dummy is present.  By masked, we mean that dummies
           are represented by a symbol to indicate either below fermi, above or
           general.  No other information is displayed about the dummies at
           this point.  The list is sorted stringwise.
        3. An integer number indicating the position of the index, in the first
           factor as sorted in 2.
        4. An integer number indicating the position of the index, in the second
           factor as sorted in 2.

    If a factor is either of type AntiSymmetricTensor or SqOperator, the index
    position in items 3 and 4 is indicated as 'upper' or 'lower' only.
    (Creation operators are considered upper and annihilation operators lower.)

    If the masked factors are identical, the two factors cannot be ordered
    unambiguously in item 2.  In this case, items 3, 4 are left out.  If several
    indices are contracted between the unorderable factors, it will be handled by
    _determine_ambiguous()


    """
    # setup dicts to avoid repeated calculations in key()
    args = Mul.make_args(mul)
    fac_dum = { fac: fac.atoms(Dummy) for fac in args }
    fac_repr = { fac: __kprint(fac) for fac in args }
    all_dums = set().union(*fac_dum.values())
    mask = {}
    for d in all_dums:
        if d.assumptions0.get('below_fermi'):
            mask[d] = '0'
        elif d.assumptions0.get('above_fermi'):
            mask[d] = '1'
        else:
            mask[d] = '2'
    dum_repr = {d: __kprint(d) for d in all_dums}

    def _key(d):
        dumstruct = [ fac for fac in fac_dum if d in fac_dum[fac] ]
        other_dums = set().union(*[fac_dum[fac] for fac in dumstruct])
        fac = dumstruct[-1]
        if other_dums is fac_dum[fac]:
            other_dums = fac_dum[fac].copy()
        other_dums.remove(d)
        masked_facs = [ fac_repr[fac] for fac in dumstruct ]
        for d2 in other_dums:
            masked_facs = [ fac.replace(dum_repr[d2], mask[d2])
                    for fac in masked_facs ]
        all_masked = [ fac.replace(dum_repr[d], mask[d])
                       for fac in masked_facs ]
        masked_facs = dict(list(zip(dumstruct, masked_facs)))

        # dummies for which the ordering cannot be determined
        if has_dups(all_masked):
            all_masked.sort()
            return mask[d], tuple(all_masked)  # positions are ambiguous

        # sort factors according to fully masked strings
        keydict = dict(list(zip(dumstruct, all_masked)))
        dumstruct.sort(key=lambda x: keydict[x])
        all_masked.sort()

        pos_val = []
        for fac in dumstruct:
            if isinstance(fac, AntiSymmetricTensor):
                if d in fac.upper:
                    pos_val.append('u')
                if d in fac.lower:
                    pos_val.append('l')
            elif isinstance(fac, Creator):
                pos_val.append('u')
            elif isinstance(fac, Annihilator):
                pos_val.append('l')
            elif isinstance(fac, NO):
                ops = [ op for op in fac if op.has(d) ]
                for op in ops:
                    if isinstance(op, Creator):
                        pos_val.append('u')
                    else:
                        pos_val.append('l')
            else:
                # fallback to position in string representation
                facpos = -1
                while 1:
                    facpos = masked_facs[fac].find(dum_repr[d], facpos + 1)
                    if facpos == -1:
                        break
                    pos_val.append(facpos)
        return (mask[d], tuple(all_masked), pos_val[0], pos_val[-1])
    dumkey = dict(list(zip(all_dums, list(map(_key, all_dums)))))
    result = sorted(all_dums, key=lambda x: dumkey[x])
    if has_dups(iter(dumkey.values())):
        # We have ambiguities
        unordered = defaultdict(set)
        for d, k in dumkey.items():
            unordered[k].add(d)
        for k in [ k for k in unordered if len(unordered[k]) < 2 ]:
            del unordered[k]

        unordered = [ unordered[k] for k in sorted(unordered) ]
        result = _determine_ambiguous(mul, result, unordered)
    return result


def _determine_ambiguous(term, ordered, ambiguous_groups):
    # We encountered a term for which the dummy substitution is ambiguous.
    # This happens for terms with 2 or more contractions between factors that
    # cannot be uniquely ordered independent of summation indices.  For
    # example:
    #
    # Sum(p, q) v^{p, .}_{q, .}v^{q, .}_{p, .}
    #
    # Assuming that the indices represented by . are dummies with the
    # same range, the factors cannot be ordered, and there is no
    # way to determine a consistent ordering of p and q.
    #
    # The strategy employed here, is to relabel all unambiguous dummies with
    # non-dummy symbols and call _get_ordered_dummies again.  This procedure is
    # applied to the entire term so there is a possibility that
    # _determine_ambiguous() is called again from a deeper recursion level.

    # break recursion if there are no ordered dummies
    all_ambiguous = set()
    for dummies in ambiguous_groups:
        all_ambiguous |= dummies
    all_ordered = set(ordered) - all_ambiguous
    if not all_ordered:
        # FIXME: If we arrive here, there are no ordered dummies. A method to
        # handle this needs to be implemented.  In order to return something
        # useful nevertheless, we choose arbitrarily the first dummy and
        # determine the rest from this one.  This method is dependent on the
        # actual dummy labels which violates an assumption for the
        # canonicalization procedure.  A better implementation is needed.
        group = [ d for d in ordered if d in ambiguous_groups[0] ]
        d = group[0]
        all_ordered.add(d)
        ambiguous_groups[0].remove(d)

    stored_counter = _symbol_factory._counter
    subslist = []
    for d in [ d for d in ordered if d in all_ordered ]:
        nondum = _symbol_factory._next()
        subslist.append((d, nondum))
    newterm = term.subs(subslist)
    neworder = _get_ordered_dummies(newterm)
    _symbol_factory._set_counter(stored_counter)

    # update ordered list with new information
    for group in ambiguous_groups:
        ordered_group = [ d for d in neworder if d in group ]
        ordered_group.reverse()
        result = []
        for d in ordered:
            if d in group:
                result.append(ordered_group.pop())
            else:
                result.append(d)
        ordered = result
    return ordered


class _SymbolFactory:
    def __init__(self, label):
        self._counterVar = 0
        self._label = label

    def _set_counter(self, value):
        """
        Sets counter to value.
        """
        self._counterVar = value

    @property
    def _counter(self):
        """
        What counter is currently at.
        """
        return self._counterVar

    def _next(self):
        """
        Generates the next symbols and increments counter by 1.
        """
        s = Symbol("%s%i" % (self._label, self._counterVar))
        self._counterVar += 1
        return s
_symbol_factory = _SymbolFactory('_]"]_')  # most certainly a unique label


@cacheit
def _get_contractions(string1, keep_only_fully_contracted=False):
    """
    Returns Add-object with contracted terms.

    Uses recursion to find all contractions. -- Internal helper function --

    Will find nonzero contractions in string1 between indices given in
    leftrange and rightrange.

    """

    # Should we store current level of contraction?
    if keep_only_fully_contracted and string1:
        result = []
    else:
        result = [NO(Mul(*string1))]

    for i in range(len(string1) - 1):
        for j in range(i + 1, len(string1)):

            c = contraction(string1[i], string1[j])

            if c:
                sign = (j - i + 1) % 2
                if sign:
                    coeff = S.NegativeOne*c
                else:
                    coeff = c

                #
                #  Call next level of recursion
                #  ============================
                #
                # We now need to find more contractions among operators
                #
                # oplist = string1[:i]+ string1[i+1:j] + string1[j+1:]
                #
                # To prevent overcounting, we don't allow contractions
                # we have already encountered. i.e. contractions between
                #       string1[:i] <---> string1[i+1:j]
                # and   string1[:i] <---> string1[j+1:].
                #
                # This leaves the case:
                oplist = string1[i + 1:j] + string1[j + 1:]

                if oplist:

                    result.append(coeff*NO(
                        Mul(*string1[:i])*_get_contractions( oplist,
                            keep_only_fully_contracted=keep_only_fully_contracted)))

                else:
                    result.append(coeff*NO( Mul(*string1[:i])))

        if keep_only_fully_contracted:
            break   # next iteration over i leaves leftmost operator string1[0] uncontracted

    return Add(*result)


def wicks(e, **kw_args):
    """
    Returns the normal ordered equivalent of an expression using Wicks Theorem.

    Examples
    ========

    >>> from sympy import symbols, Dummy
    >>> from sympy.physics.secondquant import wicks, F, Fd
    >>> p, q, r = symbols('p,q,r')
    >>> wicks(Fd(p)*F(q))
    KroneckerDelta(_i, q)*KroneckerDelta(p, q) + NO(CreateFermion(p)*AnnihilateFermion(q))

    By default, the expression is expanded:

    >>> wicks(F(p)*(F(q)+F(r)))
    NO(AnnihilateFermion(p)*AnnihilateFermion(q)) + NO(AnnihilateFermion(p)*AnnihilateFermion(r))

    With the keyword 'keep_only_fully_contracted=True', only fully contracted
    terms are returned.

    By request, the result can be simplified in the following order:
     -- KroneckerDelta functions are evaluated
     -- Dummy variables are substituted consistently across terms

    >>> p, q, r = symbols('p q r', cls=Dummy)
    >>> wicks(Fd(p)*(F(q)+F(r)), keep_only_fully_contracted=True)
    KroneckerDelta(_i, _q)*KroneckerDelta(_p, _q) + KroneckerDelta(_i, _r)*KroneckerDelta(_p, _r)

    """

    if not e:
        return S.Zero

    opts = {
        'simplify_kronecker_deltas': False,
        'expand': True,
        'simplify_dummies': False,
        'keep_only_fully_contracted': False
    }
    opts.update(kw_args)

    # check if we are already normally ordered
    if isinstance(e, NO):
        if opts['keep_only_fully_contracted']:
            return S.Zero
        else:
            return e
    elif isinstance(e, FermionicOperator):
        if opts['keep_only_fully_contracted']:
            return S.Zero
        else:
            return e

    # break up any NO-objects, and evaluate commutators
    e = e.doit(wicks=True)

    # make sure we have only one term to consider
    e = e.expand()
    if isinstance(e, Add):
        if opts['simplify_dummies']:
            return substitute_dummies(Add(*[ wicks(term, **kw_args) for term in e.args]))
        else:
            return Add(*[ wicks(term, **kw_args) for term in e.args])

    # For Mul-objects we can actually do something
    if isinstance(e, Mul):

        # we don't want to mess around with commuting part of Mul
        # so we factorize it out before starting recursion
        c_part = []
        string1 = []
        for factor in e.args:
            if factor.is_commutative:
                c_part.append(factor)
            else:
                string1.append(factor)
        n = len(string1)

        # catch trivial cases
        if n == 0:
            result = e
        elif n == 1:
            if opts['keep_only_fully_contracted']:
                return S.Zero
            else:
                result = e

        else:  # non-trivial

            if isinstance(string1[0], BosonicOperator):
                raise NotImplementedError

            string1 = tuple(string1)

            # recursion over higher order contractions
            result = _get_contractions(string1,
                keep_only_fully_contracted=opts['keep_only_fully_contracted'] )
            result = Mul(*c_part)*result

        if opts['expand']:
            result = result.expand()
        if opts['simplify_kronecker_deltas']:
            result = evaluate_deltas(result)

        return result

    # there was nothing to do
    return e


class PermutationOperator(Expr):
    """
    Represents the index permutation operator P(ij).

    P(ij)*f(i)*g(j) = f(i)*g(j) - f(j)*g(i)
    """
    is_commutative = True

    def __new__(cls, i, j):
        i, j = sorted(map(sympify, (i, j)), key=default_sort_key)
        obj = Basic.__new__(cls, i, j)
        return obj

    def get_permuted(self, expr):
        """
        Returns -expr with permuted indices.

        Explanation
        ===========

        >>> from sympy import symbols, Function
        >>> from sympy.physics.secondquant import PermutationOperator
        >>> p,q = symbols('p,q')
        >>> f = Function('f')
        >>> PermutationOperator(p,q).get_permuted(f(p,q))
        -f(q, p)

        """
        i = self.args[0]
        j = self.args[1]
        if expr.has(i) and expr.has(j):
            tmp = Dummy()
            expr = expr.subs(i, tmp)
            expr = expr.subs(j, i)
            expr = expr.subs(tmp, j)
            return S.NegativeOne*expr
        else:
            return expr

    def _latex(self, printer):
        return "P(%s%s)" % self.args


def simplify_index_permutations(expr, permutation_operators):
    """
    Performs simplification by introducing PermutationOperators where appropriate.

    Explanation
    ===========

    Schematically:
        [abij] - [abji] - [baij] + [baji] ->  P(ab)*P(ij)*[abij]

    permutation_operators is a list of PermutationOperators to consider.

    If permutation_operators=[P(ab),P(ij)] we will try to introduce the
    permutation operators P(ij) and P(ab) in the expression.  If there are other
    possible simplifications, we ignore them.

    >>> from sympy import symbols, Function
    >>> from sympy.physics.secondquant import simplify_index_permutations
    >>> from sympy.physics.secondquant import PermutationOperator
    >>> p,q,r,s = symbols('p,q,r,s')
    >>> f = Function('f')
    >>> g = Function('g')

    >>> expr = f(p)*g(q) - f(q)*g(p); expr
    f(p)*g(q) - f(q)*g(p)
    >>> simplify_index_permutations(expr,[PermutationOperator(p,q)])
    f(p)*g(q)*PermutationOperator(p, q)

    >>> PermutList = [PermutationOperator(p,q),PermutationOperator(r,s)]
    >>> expr = f(p,r)*g(q,s) - f(q,r)*g(p,s) + f(q,s)*g(p,r) - f(p,s)*g(q,r)
    >>> simplify_index_permutations(expr,PermutList)
    f(p, r)*g(q, s)*PermutationOperator(p, q)*PermutationOperator(r, s)

    """

    def _get_indices(expr, ind):
        """
        Collects indices recursively in predictable order.
        """
        result = []
        for arg in expr.args:
            if arg in ind:
                result.append(arg)
            else:
                if arg.args:
                    result.extend(_get_indices(arg, ind))
        return result

    def _choose_one_to_keep(a, b, ind):
        # we keep the one where indices in ind are in order ind[0] < ind[1]
        return min(a, b, key=lambda x: default_sort_key(_get_indices(x, ind)))

    expr = expr.expand()
    if isinstance(expr, Add):
        terms = set(expr.args)

        for P in permutation_operators:
            new_terms = set()
            on_hold = set()
            while terms:
                term = terms.pop()
                permuted = P.get_permuted(term)
                if permuted in terms | on_hold:
                    try:
                        terms.remove(permuted)
                    except KeyError:
                        on_hold.remove(permuted)
                    keep = _choose_one_to_keep(term, permuted, P.args)
                    new_terms.add(P*keep)
                else:

                    # Some terms must get a second chance because the permuted
                    # term may already have canonical dummy ordering.  Then
                    # substitute_dummies() does nothing.  However, the other
                    # term, if it exists, will be able to match with us.
                    permuted1 = permuted
                    permuted = substitute_dummies(permuted)
                    if permuted1 == permuted:
                        on_hold.add(term)
                    elif permuted in terms | on_hold:
                        try:
                            terms.remove(permuted)
                        except KeyError:
                            on_hold.remove(permuted)
                        keep = _choose_one_to_keep(term, permuted, P.args)
                        new_terms.add(P*keep)
                    else:
                        new_terms.add(term)
            terms = new_terms | on_hold
        return Add(*terms)
    return expr