File size: 31,042 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
"""Dirac notation for states."""

from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Function
from sympy.core.numbers import oo, equal_valued
from sympy.core.singleton import S
from sympy.functions.elementary.complexes import conjugate
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.integrals.integrals import integrate
from sympy.printing.pretty.stringpict import stringPict
from sympy.physics.quantum.qexpr import QExpr, dispatch_method

__all__ = [
    'KetBase',
    'BraBase',
    'StateBase',
    'State',
    'Ket',
    'Bra',
    'TimeDepState',
    'TimeDepBra',
    'TimeDepKet',
    'OrthogonalKet',
    'OrthogonalBra',
    'OrthogonalState',
    'Wavefunction'
]


#-----------------------------------------------------------------------------
# States, bras and kets.
#-----------------------------------------------------------------------------

# ASCII brackets
_lbracket = "<"
_rbracket = ">"
_straight_bracket = "|"


# Unicode brackets
# MATHEMATICAL ANGLE BRACKETS
_lbracket_ucode = "\N{MATHEMATICAL LEFT ANGLE BRACKET}"
_rbracket_ucode = "\N{MATHEMATICAL RIGHT ANGLE BRACKET}"
# LIGHT VERTICAL BAR
_straight_bracket_ucode = "\N{LIGHT VERTICAL BAR}"

# Other options for unicode printing of <, > and | for Dirac notation.

# LEFT-POINTING ANGLE BRACKET
# _lbracket = "\u2329"
# _rbracket = "\u232A"

# LEFT ANGLE BRACKET
# _lbracket = "\u3008"
# _rbracket = "\u3009"

# VERTICAL LINE
# _straight_bracket = "\u007C"


class StateBase(QExpr):
    """Abstract base class for general abstract states in quantum mechanics.

    All other state classes defined will need to inherit from this class. It
    carries the basic structure for all other states such as dual, _eval_adjoint
    and label.

    This is an abstract base class and you should not instantiate it directly,
    instead use State.
    """

    @classmethod
    def _operators_to_state(self, ops, **options):
        """ Returns the eigenstate instance for the passed operators.

        This method should be overridden in subclasses. It will handle being
        passed either an Operator instance or set of Operator instances. It
        should return the corresponding state INSTANCE or simply raise a
        NotImplementedError. See cartesian.py for an example.
        """

        raise NotImplementedError("Cannot map operators to states in this class. Method not implemented!")

    def _state_to_operators(self, op_classes, **options):
        """ Returns the operators which this state instance is an eigenstate
        of.

        This method should be overridden in subclasses. It will be called on
        state instances and be passed the operator classes that we wish to make
        into instances. The state instance will then transform the classes
        appropriately, or raise a NotImplementedError if it cannot return
        operator instances. See cartesian.py for examples,
        """

        raise NotImplementedError(
            "Cannot map this state to operators. Method not implemented!")

    @property
    def operators(self):
        """Return the operator(s) that this state is an eigenstate of"""
        from .operatorset import state_to_operators  # import internally to avoid circular import errors
        return state_to_operators(self)

    def _enumerate_state(self, num_states, **options):
        raise NotImplementedError("Cannot enumerate this state!")

    def _represent_default_basis(self, **options):
        return self._represent(basis=self.operators)

    def _apply_operator(self, op, **options):
        return None

    #-------------------------------------------------------------------------
    # Dagger/dual
    #-------------------------------------------------------------------------

    @property
    def dual(self):
        """Return the dual state of this one."""
        return self.dual_class()._new_rawargs(self.hilbert_space, *self.args)

    @classmethod
    def dual_class(self):
        """Return the class used to construct the dual."""
        raise NotImplementedError(
            'dual_class must be implemented in a subclass'
        )

    def _eval_adjoint(self):
        """Compute the dagger of this state using the dual."""
        return self.dual

    #-------------------------------------------------------------------------
    # Printing
    #-------------------------------------------------------------------------

    def _pretty_brackets(self, height, use_unicode=True):
        # Return pretty printed brackets for the state
        # Ideally, this could be done by pform.parens but it does not support the angled < and >

        # Setup for unicode vs ascii
        if use_unicode:
            lbracket, rbracket = getattr(self, 'lbracket_ucode', ""), getattr(self, 'rbracket_ucode', "")
            slash, bslash, vert = '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT}', \
                                  '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT}', \
                                  '\N{BOX DRAWINGS LIGHT VERTICAL}'
        else:
            lbracket, rbracket = getattr(self, 'lbracket', ""), getattr(self, 'rbracket', "")
            slash, bslash, vert = '/', '\\', '|'

        # If height is 1, just return brackets
        if height == 1:
            return stringPict(lbracket), stringPict(rbracket)
        # Make height even
        height += (height % 2)

        brackets = []
        for bracket in lbracket, rbracket:
            # Create left bracket
            if bracket in {_lbracket, _lbracket_ucode}:
                bracket_args = [ ' ' * (height//2 - i - 1) +
                                 slash for i in range(height // 2)]
                bracket_args.extend(
                    [' ' * i + bslash for i in range(height // 2)])
            # Create right bracket
            elif bracket in {_rbracket, _rbracket_ucode}:
                bracket_args = [ ' ' * i + bslash for i in range(height // 2)]
                bracket_args.extend([ ' ' * (
                    height//2 - i - 1) + slash for i in range(height // 2)])
            # Create straight bracket
            elif bracket in {_straight_bracket, _straight_bracket_ucode}:
                bracket_args = [vert] * height
            else:
                raise ValueError(bracket)
            brackets.append(
                stringPict('\n'.join(bracket_args), baseline=height//2))
        return brackets

    def _sympystr(self, printer, *args):
        contents = self._print_contents(printer, *args)
        return '%s%s%s' % (getattr(self, 'lbracket', ""), contents, getattr(self, 'rbracket', ""))

    def _pretty(self, printer, *args):
        from sympy.printing.pretty.stringpict import prettyForm
        # Get brackets
        pform = self._print_contents_pretty(printer, *args)
        lbracket, rbracket = self._pretty_brackets(
            pform.height(), printer._use_unicode)
        # Put together state
        pform = prettyForm(*pform.left(lbracket))
        pform = prettyForm(*pform.right(rbracket))
        return pform

    def _latex(self, printer, *args):
        contents = self._print_contents_latex(printer, *args)
        # The extra {} brackets are needed to get matplotlib's latex
        # rendered to render this properly.
        return '{%s%s%s}' % (getattr(self, 'lbracket_latex', ""), contents, getattr(self, 'rbracket_latex', ""))


class KetBase(StateBase):
    """Base class for Kets.

    This class defines the dual property and the brackets for printing. This is
    an abstract base class and you should not instantiate it directly, instead
    use Ket.
    """

    lbracket = _straight_bracket
    rbracket = _rbracket
    lbracket_ucode = _straight_bracket_ucode
    rbracket_ucode = _rbracket_ucode
    lbracket_latex = r'\left|'
    rbracket_latex = r'\right\rangle '

    @classmethod
    def default_args(self):
        return ("psi",)

    @classmethod
    def dual_class(self):
        return BraBase

    def __mul__(self, other):
        """KetBase*other"""
        from sympy.physics.quantum.operator import OuterProduct
        if isinstance(other, BraBase):
            return OuterProduct(self, other)
        else:
            return Expr.__mul__(self, other)

    def __rmul__(self, other):
        """other*KetBase"""
        from sympy.physics.quantum.innerproduct import InnerProduct
        if isinstance(other, BraBase):
            return InnerProduct(other, self)
        else:
            return Expr.__rmul__(self, other)

    #-------------------------------------------------------------------------
    # _eval_* methods
    #-------------------------------------------------------------------------

    def _eval_innerproduct(self, bra, **hints):
        """Evaluate the inner product between this ket and a bra.

        This is called to compute <bra|ket>, where the ket is ``self``.

        This method will dispatch to sub-methods having the format::

            ``def _eval_innerproduct_BraClass(self, **hints):``

        Subclasses should define these methods (one for each BraClass) to
        teach the ket how to take inner products with bras.
        """
        return dispatch_method(self, '_eval_innerproduct', bra, **hints)

    def _apply_from_right_to(self, op, **options):
        """Apply an Operator to this Ket as Operator*Ket

        This method will dispatch to methods having the format::

            ``def _apply_from_right_to_OperatorName(op, **options):``

        Subclasses should define these methods (one for each OperatorName) to
        teach the Ket how to implement OperatorName*Ket

        Parameters
        ==========

        op : Operator
            The Operator that is acting on the Ket as op*Ket
        options : dict
            A dict of key/value pairs that control how the operator is applied
            to the Ket.
        """
        return dispatch_method(self, '_apply_from_right_to', op, **options)


class BraBase(StateBase):
    """Base class for Bras.

    This class defines the dual property and the brackets for printing. This
    is an abstract base class and you should not instantiate it directly,
    instead use Bra.
    """

    lbracket = _lbracket
    rbracket = _straight_bracket
    lbracket_ucode = _lbracket_ucode
    rbracket_ucode = _straight_bracket_ucode
    lbracket_latex = r'\left\langle '
    rbracket_latex = r'\right|'

    @classmethod
    def _operators_to_state(self, ops, **options):
        state = self.dual_class()._operators_to_state(ops, **options)
        return state.dual

    def _state_to_operators(self, op_classes, **options):
        return self.dual._state_to_operators(op_classes, **options)

    def _enumerate_state(self, num_states, **options):
        dual_states = self.dual._enumerate_state(num_states, **options)
        return [x.dual for x in dual_states]

    @classmethod
    def default_args(self):
        return self.dual_class().default_args()

    @classmethod
    def dual_class(self):
        return KetBase

    def __mul__(self, other):
        """BraBase*other"""
        from sympy.physics.quantum.innerproduct import InnerProduct
        if isinstance(other, KetBase):
            return InnerProduct(self, other)
        else:
            return Expr.__mul__(self, other)

    def __rmul__(self, other):
        """other*BraBase"""
        from sympy.physics.quantum.operator import OuterProduct
        if isinstance(other, KetBase):
            return OuterProduct(other, self)
        else:
            return Expr.__rmul__(self, other)

    def _represent(self, **options):
        """A default represent that uses the Ket's version."""
        from sympy.physics.quantum.dagger import Dagger
        return Dagger(self.dual._represent(**options))


class State(StateBase):
    """General abstract quantum state used as a base class for Ket and Bra."""
    pass


class Ket(State, KetBase):
    """A general time-independent Ket in quantum mechanics.

    Inherits from State and KetBase. This class should be used as the base
    class for all physical, time-independent Kets in a system. This class
    and its subclasses will be the main classes that users will use for
    expressing Kets in Dirac notation [1]_.

    Parameters
    ==========

    args : tuple
        The list of numbers or parameters that uniquely specify the
        ket. This will usually be its symbol or its quantum numbers. For
        time-dependent state, this will include the time.

    Examples
    ========

    Create a simple Ket and looking at its properties::

        >>> from sympy.physics.quantum import Ket
        >>> from sympy import symbols, I
        >>> k = Ket('psi')
        >>> k
        |psi>
        >>> k.hilbert_space
        H
        >>> k.is_commutative
        False
        >>> k.label
        (psi,)

    Ket's know about their associated bra::

        >>> k.dual
        <psi|
        >>> k.dual_class()
        <class 'sympy.physics.quantum.state.Bra'>

    Take a linear combination of two kets::

        >>> k0 = Ket(0)
        >>> k1 = Ket(1)
        >>> 2*I*k0 - 4*k1
        2*I*|0> - 4*|1>

    Compound labels are passed as tuples::

        >>> n, m = symbols('n,m')
        >>> k = Ket(n,m)
        >>> k
        |nm>

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Bra-ket_notation
    """

    @classmethod
    def dual_class(self):
        return Bra


class Bra(State, BraBase):
    """A general time-independent Bra in quantum mechanics.

    Inherits from State and BraBase. A Bra is the dual of a Ket [1]_. This
    class and its subclasses will be the main classes that users will use for
    expressing Bras in Dirac notation.

    Parameters
    ==========

    args : tuple
        The list of numbers or parameters that uniquely specify the
        ket. This will usually be its symbol or its quantum numbers. For
        time-dependent state, this will include the time.

    Examples
    ========

    Create a simple Bra and look at its properties::

        >>> from sympy.physics.quantum import Bra
        >>> from sympy import symbols, I
        >>> b = Bra('psi')
        >>> b
        <psi|
        >>> b.hilbert_space
        H
        >>> b.is_commutative
        False

    Bra's know about their dual Ket's::

        >>> b.dual
        |psi>
        >>> b.dual_class()
        <class 'sympy.physics.quantum.state.Ket'>

    Like Kets, Bras can have compound labels and be manipulated in a similar
    manner::

        >>> n, m = symbols('n,m')
        >>> b = Bra(n,m) - I*Bra(m,n)
        >>> b
        -I*<mn| + <nm|

    Symbols in a Bra can be substituted using ``.subs``::

        >>> b.subs(n,m)
        <mm| - I*<mm|

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Bra-ket_notation
    """

    @classmethod
    def dual_class(self):
        return Ket

#-----------------------------------------------------------------------------
# Time dependent states, bras and kets.
#-----------------------------------------------------------------------------


class TimeDepState(StateBase):
    """Base class for a general time-dependent quantum state.

    This class is used as a base class for any time-dependent state. The main
    difference between this class and the time-independent state is that this
    class takes a second argument that is the time in addition to the usual
    label argument.

    Parameters
    ==========

    args : tuple
        The list of numbers or parameters that uniquely specify the ket. This
        will usually be its symbol or its quantum numbers. For time-dependent
        state, this will include the time as the final argument.
    """

    #-------------------------------------------------------------------------
    # Initialization
    #-------------------------------------------------------------------------

    @classmethod
    def default_args(self):
        return ("psi", "t")

    #-------------------------------------------------------------------------
    # Properties
    #-------------------------------------------------------------------------

    @property
    def label(self):
        """The label of the state."""
        return self.args[:-1]

    @property
    def time(self):
        """The time of the state."""
        return self.args[-1]

    #-------------------------------------------------------------------------
    # Printing
    #-------------------------------------------------------------------------

    def _print_time(self, printer, *args):
        return printer._print(self.time, *args)

    _print_time_repr = _print_time
    _print_time_latex = _print_time

    def _print_time_pretty(self, printer, *args):
        pform = printer._print(self.time, *args)
        return pform

    def _print_contents(self, printer, *args):
        label = self._print_label(printer, *args)
        time = self._print_time(printer, *args)
        return '%s;%s' % (label, time)

    def _print_label_repr(self, printer, *args):
        label = self._print_sequence(self.label, ',', printer, *args)
        time = self._print_time_repr(printer, *args)
        return '%s,%s' % (label, time)

    def _print_contents_pretty(self, printer, *args):
        label = self._print_label_pretty(printer, *args)
        time = self._print_time_pretty(printer, *args)
        return printer._print_seq((label, time), delimiter=';')

    def _print_contents_latex(self, printer, *args):
        label = self._print_sequence(
            self.label, self._label_separator, printer, *args)
        time = self._print_time_latex(printer, *args)
        return '%s;%s' % (label, time)


class TimeDepKet(TimeDepState, KetBase):
    """General time-dependent Ket in quantum mechanics.

    This inherits from ``TimeDepState`` and ``KetBase`` and is the main class
    that should be used for Kets that vary with time. Its dual is a
    ``TimeDepBra``.

    Parameters
    ==========

    args : tuple
        The list of numbers or parameters that uniquely specify the ket. This
        will usually be its symbol or its quantum numbers. For time-dependent
        state, this will include the time as the final argument.

    Examples
    ========

    Create a TimeDepKet and look at its attributes::

        >>> from sympy.physics.quantum import TimeDepKet
        >>> k = TimeDepKet('psi', 't')
        >>> k
        |psi;t>
        >>> k.time
        t
        >>> k.label
        (psi,)
        >>> k.hilbert_space
        H

    TimeDepKets know about their dual bra::

        >>> k.dual
        <psi;t|
        >>> k.dual_class()
        <class 'sympy.physics.quantum.state.TimeDepBra'>
    """

    @classmethod
    def dual_class(self):
        return TimeDepBra


class TimeDepBra(TimeDepState, BraBase):
    """General time-dependent Bra in quantum mechanics.

    This inherits from TimeDepState and BraBase and is the main class that
    should be used for Bras that vary with time. Its dual is a TimeDepBra.

    Parameters
    ==========

    args : tuple
        The list of numbers or parameters that uniquely specify the ket. This
        will usually be its symbol or its quantum numbers. For time-dependent
        state, this will include the time as the final argument.

    Examples
    ========

        >>> from sympy.physics.quantum import TimeDepBra
        >>> b = TimeDepBra('psi', 't')
        >>> b
        <psi;t|
        >>> b.time
        t
        >>> b.label
        (psi,)
        >>> b.hilbert_space
        H
        >>> b.dual
        |psi;t>
    """

    @classmethod
    def dual_class(self):
        return TimeDepKet


class OrthogonalState(State, StateBase):
    """General abstract quantum state used as a base class for Ket and Bra."""
    pass

class OrthogonalKet(OrthogonalState, KetBase):
    """Orthogonal Ket in quantum mechanics.

    The inner product of two states with different labels will give zero,
    states with the same label will give one.

        >>> from sympy.physics.quantum import OrthogonalBra, OrthogonalKet
        >>> from sympy.abc import m, n
        >>> (OrthogonalBra(n)*OrthogonalKet(n)).doit()
        1
        >>> (OrthogonalBra(n)*OrthogonalKet(n+1)).doit()
        0
        >>> (OrthogonalBra(n)*OrthogonalKet(m)).doit()
        <n|m>
    """

    @classmethod
    def dual_class(self):
        return OrthogonalBra

    def _eval_innerproduct(self, bra, **hints):

        if len(self.args) != len(bra.args):
            raise ValueError('Cannot multiply a ket that has a different number of labels.')

        for arg, bra_arg in zip(self.args, bra.args):
            diff = arg - bra_arg
            diff = diff.expand()

            is_zero = diff.is_zero

            if is_zero is False:
                return S.Zero # i.e. Integer(0)

            if is_zero is None:
                return None

        return S.One # i.e. Integer(1)


class OrthogonalBra(OrthogonalState, BraBase):
    """Orthogonal Bra in quantum mechanics.
    """

    @classmethod
    def dual_class(self):
        return OrthogonalKet


class Wavefunction(Function):
    """Class for representations in continuous bases

    This class takes an expression and coordinates in its constructor. It can
    be used to easily calculate normalizations and probabilities.

    Parameters
    ==========

    expr : Expr
           The expression representing the functional form of the w.f.

    coords : Symbol or tuple
           The coordinates to be integrated over, and their bounds

    Examples
    ========

    Particle in a box, specifying bounds in the more primitive way of using
    Piecewise:

        >>> from sympy import Symbol, Piecewise, pi, N
        >>> from sympy.functions import sqrt, sin
        >>> from sympy.physics.quantum.state import Wavefunction
        >>> x = Symbol('x', real=True)
        >>> n = 1
        >>> L = 1
        >>> g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True))
        >>> f = Wavefunction(g, x)
        >>> f.norm
        1
        >>> f.is_normalized
        True
        >>> p = f.prob()
        >>> p(0)
        0
        >>> p(L)
        0
        >>> p(0.5)
        2
        >>> p(0.85*L)
        2*sin(0.85*pi)**2
        >>> N(p(0.85*L))
        0.412214747707527

    Additionally, you can specify the bounds of the function and the indices in
    a more compact way:

        >>> from sympy import symbols, pi, diff
        >>> from sympy.functions import sqrt, sin
        >>> from sympy.physics.quantum.state import Wavefunction
        >>> x, L = symbols('x,L', positive=True)
        >>> n = symbols('n', integer=True, positive=True)
        >>> g = sqrt(2/L)*sin(n*pi*x/L)
        >>> f = Wavefunction(g, (x, 0, L))
        >>> f.norm
        1
        >>> f(L+1)
        0
        >>> f(L-1)
        sqrt(2)*sin(pi*n*(L - 1)/L)/sqrt(L)
        >>> f(-1)
        0
        >>> f(0.85)
        sqrt(2)*sin(0.85*pi*n/L)/sqrt(L)
        >>> f(0.85, n=1, L=1)
        sqrt(2)*sin(0.85*pi)
        >>> f.is_commutative
        False

    All arguments are automatically sympified, so you can define the variables
    as strings rather than symbols:

        >>> expr = x**2
        >>> f = Wavefunction(expr, 'x')
        >>> type(f.variables[0])
        <class 'sympy.core.symbol.Symbol'>

    Derivatives of Wavefunctions will return Wavefunctions:

        >>> diff(f, x)
        Wavefunction(2*x, x)

    """

    #Any passed tuples for coordinates and their bounds need to be
    #converted to Tuples before Function's constructor is called, to
    #avoid errors from calling is_Float in the constructor
    def __new__(cls, *args, **options):
        new_args = [None for i in args]
        ct = 0
        for arg in args:
            if isinstance(arg, tuple):
                new_args[ct] = Tuple(*arg)
            else:
                new_args[ct] = arg
            ct += 1

        return super().__new__(cls, *new_args, **options)

    def __call__(self, *args, **options):
        var = self.variables

        if len(args) != len(var):
            raise NotImplementedError(
                "Incorrect number of arguments to function!")

        ct = 0
        #If the passed value is outside the specified bounds, return 0
        for v in var:
            lower, upper = self.limits[v]

            #Do the comparison to limits only if the passed symbol is actually
            #a symbol present in the limits;
            #Had problems with a comparison of x > L
            if isinstance(args[ct], Expr) and \
                not (lower in args[ct].free_symbols
                     or upper in args[ct].free_symbols):
                continue

            if (args[ct] < lower) == True or (args[ct] > upper) == True:
                return S.Zero

            ct += 1

        expr = self.expr

        #Allows user to make a call like f(2, 4, m=1, n=1)
        for symbol in list(expr.free_symbols):
            if str(symbol) in options.keys():
                val = options[str(symbol)]
                expr = expr.subs(symbol, val)

        return expr.subs(zip(var, args))

    def _eval_derivative(self, symbol):
        expr = self.expr
        deriv = expr._eval_derivative(symbol)

        return Wavefunction(deriv, *self.args[1:])

    def _eval_conjugate(self):
        return Wavefunction(conjugate(self.expr), *self.args[1:])

    def _eval_transpose(self):
        return self

    @property
    def free_symbols(self):
        return self.expr.free_symbols

    @property
    def is_commutative(self):
        """
        Override Function's is_commutative so that order is preserved in
        represented expressions
        """
        return False

    @classmethod
    def eval(self, *args):
        return None

    @property
    def variables(self):
        """
        Return the coordinates which the wavefunction depends on

        Examples
        ========

            >>> from sympy.physics.quantum.state import Wavefunction
            >>> from sympy import symbols
            >>> x,y = symbols('x,y')
            >>> f = Wavefunction(x*y, x, y)
            >>> f.variables
            (x, y)
            >>> g = Wavefunction(x*y, x)
            >>> g.variables
            (x,)

        """
        var = [g[0] if isinstance(g, Tuple) else g for g in self._args[1:]]
        return tuple(var)

    @property
    def limits(self):
        """
        Return the limits of the coordinates which the w.f. depends on If no
        limits are specified, defaults to ``(-oo, oo)``.

        Examples
        ========

            >>> from sympy.physics.quantum.state import Wavefunction
            >>> from sympy import symbols
            >>> x, y = symbols('x, y')
            >>> f = Wavefunction(x**2, (x, 0, 1))
            >>> f.limits
            {x: (0, 1)}
            >>> f = Wavefunction(x**2, x)
            >>> f.limits
            {x: (-oo, oo)}
            >>> f = Wavefunction(x**2 + y**2, x, (y, -1, 2))
            >>> f.limits
            {x: (-oo, oo), y: (-1, 2)}

        """
        limits = [(g[1], g[2]) if isinstance(g, Tuple) else (-oo, oo)
                  for g in self._args[1:]]
        return dict(zip(self.variables, tuple(limits)))

    @property
    def expr(self):
        """
        Return the expression which is the functional form of the Wavefunction

        Examples
        ========

            >>> from sympy.physics.quantum.state import Wavefunction
            >>> from sympy import symbols
            >>> x, y = symbols('x, y')
            >>> f = Wavefunction(x**2, x)
            >>> f.expr
            x**2

        """
        return self._args[0]

    @property
    def is_normalized(self):
        """
        Returns true if the Wavefunction is properly normalized

        Examples
        ========

            >>> from sympy import symbols, pi
            >>> from sympy.functions import sqrt, sin
            >>> from sympy.physics.quantum.state import Wavefunction
            >>> x, L = symbols('x,L', positive=True)
            >>> n = symbols('n', integer=True, positive=True)
            >>> g = sqrt(2/L)*sin(n*pi*x/L)
            >>> f = Wavefunction(g, (x, 0, L))
            >>> f.is_normalized
            True

        """

        return equal_valued(self.norm, 1)

    @property  # type: ignore
    @cacheit
    def norm(self):
        """
        Return the normalization of the specified functional form.

        This function integrates over the coordinates of the Wavefunction, with
        the bounds specified.

        Examples
        ========

            >>> from sympy import symbols, pi
            >>> from sympy.functions import sqrt, sin
            >>> from sympy.physics.quantum.state import Wavefunction
            >>> x, L = symbols('x,L', positive=True)
            >>> n = symbols('n', integer=True, positive=True)
            >>> g = sqrt(2/L)*sin(n*pi*x/L)
            >>> f = Wavefunction(g, (x, 0, L))
            >>> f.norm
            1
            >>> g = sin(n*pi*x/L)
            >>> f = Wavefunction(g, (x, 0, L))
            >>> f.norm
            sqrt(2)*sqrt(L)/2

        """

        exp = self.expr*conjugate(self.expr)
        var = self.variables
        limits = self.limits

        for v in var:
            curr_limits = limits[v]
            exp = integrate(exp, (v, curr_limits[0], curr_limits[1]))

        return sqrt(exp)

    def normalize(self):
        """
        Return a normalized version of the Wavefunction

        Examples
        ========

            >>> from sympy import symbols, pi
            >>> from sympy.functions import sin
            >>> from sympy.physics.quantum.state import Wavefunction
            >>> x = symbols('x', real=True)
            >>> L = symbols('L', positive=True)
            >>> n = symbols('n', integer=True, positive=True)
            >>> g = sin(n*pi*x/L)
            >>> f = Wavefunction(g, (x, 0, L))
            >>> f.normalize()
            Wavefunction(sqrt(2)*sin(pi*n*x/L)/sqrt(L), (x, 0, L))

        """
        const = self.norm

        if const is oo:
            raise NotImplementedError("The function is not normalizable!")
        else:
            return Wavefunction((const)**(-1)*self.expr, *self.args[1:])

    def prob(self):
        r"""
        Return the absolute magnitude of the w.f., `|\psi(x)|^2`

        Examples
        ========

            >>> from sympy import symbols, pi
            >>> from sympy.functions import sin
            >>> from sympy.physics.quantum.state import Wavefunction
            >>> x, L = symbols('x,L', real=True)
            >>> n = symbols('n', integer=True)
            >>> g = sin(n*pi*x/L)
            >>> f = Wavefunction(g, (x, 0, L))
            >>> f.prob()
            Wavefunction(sin(pi*n*x/L)**2, x)

        """

        return Wavefunction(self.expr*conjugate(self.expr), *self.variables)