Spaces:
Sleeping
Sleeping
File size: 72,986 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 |
"""Quantum mechanical angular momemtum."""
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.numbers import int_valued
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Integer, Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import (binomial, factorial)
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.simplify.simplify import simplify
from sympy.matrices import zeros
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.printing.pretty.pretty_symbology import pretty_symbol
from sympy.physics.quantum.qexpr import QExpr
from sympy.physics.quantum.operator import (HermitianOperator, Operator,
UnitaryOperator)
from sympy.physics.quantum.state import Bra, Ket, State
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.physics.quantum.constants import hbar
from sympy.physics.quantum.hilbert import ComplexSpace, DirectSumHilbertSpace
from sympy.physics.quantum.tensorproduct import TensorProduct
from sympy.physics.quantum.cg import CG
from sympy.physics.quantum.qapply import qapply
__all__ = [
'm_values',
'Jplus',
'Jminus',
'Jx',
'Jy',
'Jz',
'J2',
'Rotation',
'WignerD',
'JxKet',
'JxBra',
'JyKet',
'JyBra',
'JzKet',
'JzBra',
'JzOp',
'J2Op',
'JxKetCoupled',
'JxBraCoupled',
'JyKetCoupled',
'JyBraCoupled',
'JzKetCoupled',
'JzBraCoupled',
'couple',
'uncouple'
]
def m_values(j):
j = sympify(j)
size = 2*j + 1
if not size.is_Integer or not size > 0:
raise ValueError(
'Only integer or half-integer values allowed for j, got: : %r' % j
)
return size, [j - i for i in range(int(2*j + 1))]
#-----------------------------------------------------------------------------
# Spin Operators
#-----------------------------------------------------------------------------
class SpinOpBase:
"""Base class for spin operators."""
@classmethod
def _eval_hilbert_space(cls, label):
# We consider all j values so our space is infinite.
return ComplexSpace(S.Infinity)
@property
def name(self):
return self.args[0]
def _print_contents(self, printer, *args):
return '%s%s' % (self.name, self._coord)
def _print_contents_pretty(self, printer, *args):
a = stringPict(str(self.name))
b = stringPict(self._coord)
return self._print_subscript_pretty(a, b)
def _print_contents_latex(self, printer, *args):
return r'%s_%s' % ((self.name, self._coord))
def _represent_base(self, basis, **options):
j = options.get('j', S.Half)
size, mvals = m_values(j)
result = zeros(size, size)
for p in range(size):
for q in range(size):
me = self.matrix_element(j, mvals[p], j, mvals[q])
result[p, q] = me
return result
def _apply_op(self, ket, orig_basis, **options):
state = ket.rewrite(self.basis)
# If the state has only one term
if isinstance(state, State):
ret = (hbar*state.m)*state
# state is a linear combination of states
elif isinstance(state, Sum):
ret = self._apply_operator_Sum(state, **options)
else:
ret = qapply(self*state)
if ret == self*state:
raise NotImplementedError
return ret.rewrite(orig_basis)
def _apply_operator_JxKet(self, ket, **options):
return self._apply_op(ket, 'Jx', **options)
def _apply_operator_JxKetCoupled(self, ket, **options):
return self._apply_op(ket, 'Jx', **options)
def _apply_operator_JyKet(self, ket, **options):
return self._apply_op(ket, 'Jy', **options)
def _apply_operator_JyKetCoupled(self, ket, **options):
return self._apply_op(ket, 'Jy', **options)
def _apply_operator_JzKet(self, ket, **options):
return self._apply_op(ket, 'Jz', **options)
def _apply_operator_JzKetCoupled(self, ket, **options):
return self._apply_op(ket, 'Jz', **options)
def _apply_operator_TensorProduct(self, tp, **options):
# Uncoupling operator is only easily found for coordinate basis spin operators
# TODO: add methods for uncoupling operators
if not isinstance(self, (JxOp, JyOp, JzOp)):
raise NotImplementedError
result = []
for n in range(len(tp.args)):
arg = []
arg.extend(tp.args[:n])
arg.append(self._apply_operator(tp.args[n]))
arg.extend(tp.args[n + 1:])
result.append(tp.__class__(*arg))
return Add(*result).expand()
# TODO: move this to qapply_Mul
def _apply_operator_Sum(self, s, **options):
new_func = qapply(self*s.function)
if new_func == self*s.function:
raise NotImplementedError
return Sum(new_func, *s.limits)
def _eval_trace(self, **options):
#TODO: use options to use different j values
#For now eval at default basis
# is it efficient to represent each time
# to do a trace?
return self._represent_default_basis().trace()
class JplusOp(SpinOpBase, Operator):
"""The J+ operator."""
_coord = '+'
basis = 'Jz'
def _eval_commutator_JminusOp(self, other):
return 2*hbar*JzOp(self.name)
def _apply_operator_JzKet(self, ket, **options):
j = ket.j
m = ket.m
if m.is_Number and j.is_Number:
if m >= j:
return S.Zero
return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKet(j, m + S.One)
def _apply_operator_JzKetCoupled(self, ket, **options):
j = ket.j
m = ket.m
jn = ket.jn
coupling = ket.coupling
if m.is_Number and j.is_Number:
if m >= j:
return S.Zero
return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKetCoupled(j, m + S.One, jn, coupling)
def matrix_element(self, j, m, jp, mp):
result = hbar*sqrt(j*(j + S.One) - mp*(mp + S.One))
result *= KroneckerDelta(m, mp + 1)
result *= KroneckerDelta(j, jp)
return result
def _represent_default_basis(self, **options):
return self._represent_JzOp(None, **options)
def _represent_JzOp(self, basis, **options):
return self._represent_base(basis, **options)
def _eval_rewrite_as_xyz(self, *args, **kwargs):
return JxOp(args[0]) + I*JyOp(args[0])
class JminusOp(SpinOpBase, Operator):
"""The J- operator."""
_coord = '-'
basis = 'Jz'
def _apply_operator_JzKet(self, ket, **options):
j = ket.j
m = ket.m
if m.is_Number and j.is_Number:
if m <= -j:
return S.Zero
return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKet(j, m - S.One)
def _apply_operator_JzKetCoupled(self, ket, **options):
j = ket.j
m = ket.m
jn = ket.jn
coupling = ket.coupling
if m.is_Number and j.is_Number:
if m <= -j:
return S.Zero
return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKetCoupled(j, m - S.One, jn, coupling)
def matrix_element(self, j, m, jp, mp):
result = hbar*sqrt(j*(j + S.One) - mp*(mp - S.One))
result *= KroneckerDelta(m, mp - 1)
result *= KroneckerDelta(j, jp)
return result
def _represent_default_basis(self, **options):
return self._represent_JzOp(None, **options)
def _represent_JzOp(self, basis, **options):
return self._represent_base(basis, **options)
def _eval_rewrite_as_xyz(self, *args, **kwargs):
return JxOp(args[0]) - I*JyOp(args[0])
class JxOp(SpinOpBase, HermitianOperator):
"""The Jx operator."""
_coord = 'x'
basis = 'Jx'
def _eval_commutator_JyOp(self, other):
return I*hbar*JzOp(self.name)
def _eval_commutator_JzOp(self, other):
return -I*hbar*JyOp(self.name)
def _apply_operator_JzKet(self, ket, **options):
jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options)
jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options)
return (jp + jm)/Integer(2)
def _apply_operator_JzKetCoupled(self, ket, **options):
jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options)
jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options)
return (jp + jm)/Integer(2)
def _represent_default_basis(self, **options):
return self._represent_JzOp(None, **options)
def _represent_JzOp(self, basis, **options):
jp = JplusOp(self.name)._represent_JzOp(basis, **options)
jm = JminusOp(self.name)._represent_JzOp(basis, **options)
return (jp + jm)/Integer(2)
def _eval_rewrite_as_plusminus(self, *args, **kwargs):
return (JplusOp(args[0]) + JminusOp(args[0]))/2
class JyOp(SpinOpBase, HermitianOperator):
"""The Jy operator."""
_coord = 'y'
basis = 'Jy'
def _eval_commutator_JzOp(self, other):
return I*hbar*JxOp(self.name)
def _eval_commutator_JxOp(self, other):
return -I*hbar*J2Op(self.name)
def _apply_operator_JzKet(self, ket, **options):
jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options)
jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options)
return (jp - jm)/(Integer(2)*I)
def _apply_operator_JzKetCoupled(self, ket, **options):
jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options)
jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options)
return (jp - jm)/(Integer(2)*I)
def _represent_default_basis(self, **options):
return self._represent_JzOp(None, **options)
def _represent_JzOp(self, basis, **options):
jp = JplusOp(self.name)._represent_JzOp(basis, **options)
jm = JminusOp(self.name)._represent_JzOp(basis, **options)
return (jp - jm)/(Integer(2)*I)
def _eval_rewrite_as_plusminus(self, *args, **kwargs):
return (JplusOp(args[0]) - JminusOp(args[0]))/(2*I)
class JzOp(SpinOpBase, HermitianOperator):
"""The Jz operator."""
_coord = 'z'
basis = 'Jz'
def _eval_commutator_JxOp(self, other):
return I*hbar*JyOp(self.name)
def _eval_commutator_JyOp(self, other):
return -I*hbar*JxOp(self.name)
def _eval_commutator_JplusOp(self, other):
return hbar*JplusOp(self.name)
def _eval_commutator_JminusOp(self, other):
return -hbar*JminusOp(self.name)
def matrix_element(self, j, m, jp, mp):
result = hbar*mp
result *= KroneckerDelta(m, mp)
result *= KroneckerDelta(j, jp)
return result
def _represent_default_basis(self, **options):
return self._represent_JzOp(None, **options)
def _represent_JzOp(self, basis, **options):
return self._represent_base(basis, **options)
class J2Op(SpinOpBase, HermitianOperator):
"""The J^2 operator."""
_coord = '2'
def _eval_commutator_JxOp(self, other):
return S.Zero
def _eval_commutator_JyOp(self, other):
return S.Zero
def _eval_commutator_JzOp(self, other):
return S.Zero
def _eval_commutator_JplusOp(self, other):
return S.Zero
def _eval_commutator_JminusOp(self, other):
return S.Zero
def _apply_operator_JxKet(self, ket, **options):
j = ket.j
return hbar**2*j*(j + 1)*ket
def _apply_operator_JxKetCoupled(self, ket, **options):
j = ket.j
return hbar**2*j*(j + 1)*ket
def _apply_operator_JyKet(self, ket, **options):
j = ket.j
return hbar**2*j*(j + 1)*ket
def _apply_operator_JyKetCoupled(self, ket, **options):
j = ket.j
return hbar**2*j*(j + 1)*ket
def _apply_operator_JzKet(self, ket, **options):
j = ket.j
return hbar**2*j*(j + 1)*ket
def _apply_operator_JzKetCoupled(self, ket, **options):
j = ket.j
return hbar**2*j*(j + 1)*ket
def matrix_element(self, j, m, jp, mp):
result = (hbar**2)*j*(j + 1)
result *= KroneckerDelta(m, mp)
result *= KroneckerDelta(j, jp)
return result
def _represent_default_basis(self, **options):
return self._represent_JzOp(None, **options)
def _represent_JzOp(self, basis, **options):
return self._represent_base(basis, **options)
def _print_contents_pretty(self, printer, *args):
a = prettyForm(str(self.name))
b = prettyForm('2')
return a**b
def _print_contents_latex(self, printer, *args):
return r'%s^2' % str(self.name)
def _eval_rewrite_as_xyz(self, *args, **kwargs):
return JxOp(args[0])**2 + JyOp(args[0])**2 + JzOp(args[0])**2
def _eval_rewrite_as_plusminus(self, *args, **kwargs):
a = args[0]
return JzOp(a)**2 + \
S.Half*(JplusOp(a)*JminusOp(a) + JminusOp(a)*JplusOp(a))
class Rotation(UnitaryOperator):
"""Wigner D operator in terms of Euler angles.
Defines the rotation operator in terms of the Euler angles defined by
the z-y-z convention for a passive transformation. That is the coordinate
axes are rotated first about the z-axis, giving the new x'-y'-z' axes. Then
this new coordinate system is rotated about the new y'-axis, giving new
x''-y''-z'' axes. Then this new coordinate system is rotated about the
z''-axis. Conventions follow those laid out in [1]_.
Parameters
==========
alpha : Number, Symbol
First Euler Angle
beta : Number, Symbol
Second Euler angle
gamma : Number, Symbol
Third Euler angle
Examples
========
A simple example rotation operator:
>>> from sympy import pi
>>> from sympy.physics.quantum.spin import Rotation
>>> Rotation(pi, 0, pi/2)
R(pi,0,pi/2)
With symbolic Euler angles and calculating the inverse rotation operator:
>>> from sympy import symbols
>>> a, b, c = symbols('a b c')
>>> Rotation(a, b, c)
R(a,b,c)
>>> Rotation(a, b, c).inverse()
R(-c,-b,-a)
See Also
========
WignerD: Symbolic Wigner-D function
D: Wigner-D function
d: Wigner small-d function
References
==========
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
"""
@classmethod
def _eval_args(cls, args):
args = QExpr._eval_args(args)
if len(args) != 3:
raise ValueError('3 Euler angles required, got: %r' % args)
return args
@classmethod
def _eval_hilbert_space(cls, label):
# We consider all j values so our space is infinite.
return ComplexSpace(S.Infinity)
@property
def alpha(self):
return self.label[0]
@property
def beta(self):
return self.label[1]
@property
def gamma(self):
return self.label[2]
def _print_operator_name(self, printer, *args):
return 'R'
def _print_operator_name_pretty(self, printer, *args):
if printer._use_unicode:
return prettyForm('\N{SCRIPT CAPITAL R}' + ' ')
else:
return prettyForm("R ")
def _print_operator_name_latex(self, printer, *args):
return r'\mathcal{R}'
def _eval_inverse(self):
return Rotation(-self.gamma, -self.beta, -self.alpha)
@classmethod
def D(cls, j, m, mp, alpha, beta, gamma):
"""Wigner D-function.
Returns an instance of the WignerD class corresponding to the Wigner-D
function specified by the parameters.
Parameters
===========
j : Number
Total angular momentum
m : Number
Eigenvalue of angular momentum along axis after rotation
mp : Number
Eigenvalue of angular momentum along rotated axis
alpha : Number, Symbol
First Euler angle of rotation
beta : Number, Symbol
Second Euler angle of rotation
gamma : Number, Symbol
Third Euler angle of rotation
Examples
========
Return the Wigner-D matrix element for a defined rotation, both
numerical and symbolic:
>>> from sympy.physics.quantum.spin import Rotation
>>> from sympy import pi, symbols
>>> alpha, beta, gamma = symbols('alpha beta gamma')
>>> Rotation.D(1, 1, 0,pi, pi/2,-pi)
WignerD(1, 1, 0, pi, pi/2, -pi)
See Also
========
WignerD: Symbolic Wigner-D function
"""
return WignerD(j, m, mp, alpha, beta, gamma)
@classmethod
def d(cls, j, m, mp, beta):
"""Wigner small-d function.
Returns an instance of the WignerD class corresponding to the Wigner-D
function specified by the parameters with the alpha and gamma angles
given as 0.
Parameters
===========
j : Number
Total angular momentum
m : Number
Eigenvalue of angular momentum along axis after rotation
mp : Number
Eigenvalue of angular momentum along rotated axis
beta : Number, Symbol
Second Euler angle of rotation
Examples
========
Return the Wigner-D matrix element for a defined rotation, both
numerical and symbolic:
>>> from sympy.physics.quantum.spin import Rotation
>>> from sympy import pi, symbols
>>> beta = symbols('beta')
>>> Rotation.d(1, 1, 0, pi/2)
WignerD(1, 1, 0, 0, pi/2, 0)
See Also
========
WignerD: Symbolic Wigner-D function
"""
return WignerD(j, m, mp, 0, beta, 0)
def matrix_element(self, j, m, jp, mp):
result = self.__class__.D(
jp, m, mp, self.alpha, self.beta, self.gamma
)
result *= KroneckerDelta(j, jp)
return result
def _represent_base(self, basis, **options):
j = sympify(options.get('j', S.Half))
# TODO: move evaluation up to represent function/implement elsewhere
evaluate = sympify(options.get('doit'))
size, mvals = m_values(j)
result = zeros(size, size)
for p in range(size):
for q in range(size):
me = self.matrix_element(j, mvals[p], j, mvals[q])
if evaluate:
result[p, q] = me.doit()
else:
result[p, q] = me
return result
def _represent_default_basis(self, **options):
return self._represent_JzOp(None, **options)
def _represent_JzOp(self, basis, **options):
return self._represent_base(basis, **options)
def _apply_operator_uncoupled(self, state, ket, *, dummy=True, **options):
a = self.alpha
b = self.beta
g = self.gamma
j = ket.j
m = ket.m
if j.is_number:
s = []
size = m_values(j)
sz = size[1]
for mp in sz:
r = Rotation.D(j, m, mp, a, b, g)
z = r.doit()
s.append(z*state(j, mp))
return Add(*s)
else:
if dummy:
mp = Dummy('mp')
else:
mp = symbols('mp')
return Sum(Rotation.D(j, m, mp, a, b, g)*state(j, mp), (mp, -j, j))
def _apply_operator_JxKet(self, ket, **options):
return self._apply_operator_uncoupled(JxKet, ket, **options)
def _apply_operator_JyKet(self, ket, **options):
return self._apply_operator_uncoupled(JyKet, ket, **options)
def _apply_operator_JzKet(self, ket, **options):
return self._apply_operator_uncoupled(JzKet, ket, **options)
def _apply_operator_coupled(self, state, ket, *, dummy=True, **options):
a = self.alpha
b = self.beta
g = self.gamma
j = ket.j
m = ket.m
jn = ket.jn
coupling = ket.coupling
if j.is_number:
s = []
size = m_values(j)
sz = size[1]
for mp in sz:
r = Rotation.D(j, m, mp, a, b, g)
z = r.doit()
s.append(z*state(j, mp, jn, coupling))
return Add(*s)
else:
if dummy:
mp = Dummy('mp')
else:
mp = symbols('mp')
return Sum(Rotation.D(j, m, mp, a, b, g)*state(
j, mp, jn, coupling), (mp, -j, j))
def _apply_operator_JxKetCoupled(self, ket, **options):
return self._apply_operator_coupled(JxKetCoupled, ket, **options)
def _apply_operator_JyKetCoupled(self, ket, **options):
return self._apply_operator_coupled(JyKetCoupled, ket, **options)
def _apply_operator_JzKetCoupled(self, ket, **options):
return self._apply_operator_coupled(JzKetCoupled, ket, **options)
class WignerD(Expr):
r"""Wigner-D function
The Wigner D-function gives the matrix elements of the rotation
operator in the jm-representation. For the Euler angles `\alpha`,
`\beta`, `\gamma`, the D-function is defined such that:
.. math ::
<j,m| \mathcal{R}(\alpha, \beta, \gamma ) |j',m'> = \delta_{jj'} D(j, m, m', \alpha, \beta, \gamma)
Where the rotation operator is as defined by the Rotation class [1]_.
The Wigner D-function defined in this way gives:
.. math ::
D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma}
Where d is the Wigner small-d function, which is given by Rotation.d.
The Wigner small-d function gives the component of the Wigner
D-function that is determined by the second Euler angle. That is the
Wigner D-function is:
.. math ::
D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma}
Where d is the small-d function. The Wigner D-function is given by
Rotation.D.
Note that to evaluate the D-function, the j, m and mp parameters must
be integer or half integer numbers.
Parameters
==========
j : Number
Total angular momentum
m : Number
Eigenvalue of angular momentum along axis after rotation
mp : Number
Eigenvalue of angular momentum along rotated axis
alpha : Number, Symbol
First Euler angle of rotation
beta : Number, Symbol
Second Euler angle of rotation
gamma : Number, Symbol
Third Euler angle of rotation
Examples
========
Evaluate the Wigner-D matrix elements of a simple rotation:
>>> from sympy.physics.quantum.spin import Rotation
>>> from sympy import pi
>>> rot = Rotation.D(1, 1, 0, pi, pi/2, 0)
>>> rot
WignerD(1, 1, 0, pi, pi/2, 0)
>>> rot.doit()
sqrt(2)/2
Evaluate the Wigner-d matrix elements of a simple rotation
>>> rot = Rotation.d(1, 1, 0, pi/2)
>>> rot
WignerD(1, 1, 0, 0, pi/2, 0)
>>> rot.doit()
-sqrt(2)/2
See Also
========
Rotation: Rotation operator
References
==========
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
"""
is_commutative = True
def __new__(cls, *args, **hints):
if not len(args) == 6:
raise ValueError('6 parameters expected, got %s' % args)
args = sympify(args)
evaluate = hints.get('evaluate', False)
if evaluate:
return Expr.__new__(cls, *args)._eval_wignerd()
return Expr.__new__(cls, *args)
@property
def j(self):
return self.args[0]
@property
def m(self):
return self.args[1]
@property
def mp(self):
return self.args[2]
@property
def alpha(self):
return self.args[3]
@property
def beta(self):
return self.args[4]
@property
def gamma(self):
return self.args[5]
def _latex(self, printer, *args):
if self.alpha == 0 and self.gamma == 0:
return r'd^{%s}_{%s,%s}\left(%s\right)' % \
(
printer._print(self.j), printer._print(
self.m), printer._print(self.mp),
printer._print(self.beta) )
return r'D^{%s}_{%s,%s}\left(%s,%s,%s\right)' % \
(
printer._print(
self.j), printer._print(self.m), printer._print(self.mp),
printer._print(self.alpha), printer._print(self.beta), printer._print(self.gamma) )
def _pretty(self, printer, *args):
top = printer._print(self.j)
bot = printer._print(self.m)
bot = prettyForm(*bot.right(','))
bot = prettyForm(*bot.right(printer._print(self.mp)))
pad = max(top.width(), bot.width())
top = prettyForm(*top.left(' '))
bot = prettyForm(*bot.left(' '))
if pad > top.width():
top = prettyForm(*top.right(' '*(pad - top.width())))
if pad > bot.width():
bot = prettyForm(*bot.right(' '*(pad - bot.width())))
if self.alpha == 0 and self.gamma == 0:
args = printer._print(self.beta)
s = stringPict('d' + ' '*pad)
else:
args = printer._print(self.alpha)
args = prettyForm(*args.right(','))
args = prettyForm(*args.right(printer._print(self.beta)))
args = prettyForm(*args.right(','))
args = prettyForm(*args.right(printer._print(self.gamma)))
s = stringPict('D' + ' '*pad)
args = prettyForm(*args.parens())
s = prettyForm(*s.above(top))
s = prettyForm(*s.below(bot))
s = prettyForm(*s.right(args))
return s
def doit(self, **hints):
hints['evaluate'] = True
return WignerD(*self.args, **hints)
def _eval_wignerd(self):
j = self.j
m = self.m
mp = self.mp
alpha = self.alpha
beta = self.beta
gamma = self.gamma
if alpha == 0 and beta == 0 and gamma == 0:
return KroneckerDelta(m, mp)
if not j.is_number:
raise ValueError(
'j parameter must be numerical to evaluate, got %s' % j)
r = 0
if beta == pi/2:
# Varshalovich Equation (5), Section 4.16, page 113, setting
# alpha=gamma=0.
for k in range(2*j + 1):
if k > j + mp or k > j - m or k < mp - m:
continue
r += (S.NegativeOne)**k*binomial(j + mp, k)*binomial(j - mp, k + m - mp)
r *= (S.NegativeOne)**(m - mp) / 2**j*sqrt(factorial(j + m) *
factorial(j - m) / (factorial(j + mp)*factorial(j - mp)))
else:
# Varshalovich Equation(5), Section 4.7.2, page 87, where we set
# beta1=beta2=pi/2, and we get alpha=gamma=pi/2 and beta=phi+pi,
# then we use the Eq. (1), Section 4.4. page 79, to simplify:
# d(j, m, mp, beta+pi) = (-1)**(j-mp)*d(j, m, -mp, beta)
# This happens to be almost the same as in Eq.(10), Section 4.16,
# except that we need to substitute -mp for mp.
size, mvals = m_values(j)
for mpp in mvals:
r += Rotation.d(j, m, mpp, pi/2).doit()*(cos(-mpp*beta) + I*sin(-mpp*beta))*\
Rotation.d(j, mpp, -mp, pi/2).doit()
# Empirical normalization factor so results match Varshalovich
# Tables 4.3-4.12
# Note that this exact normalization does not follow from the
# above equations
r = r*I**(2*j - m - mp)*(-1)**(2*m)
# Finally, simplify the whole expression
r = simplify(r)
r *= exp(-I*m*alpha)*exp(-I*mp*gamma)
return r
Jx = JxOp('J')
Jy = JyOp('J')
Jz = JzOp('J')
J2 = J2Op('J')
Jplus = JplusOp('J')
Jminus = JminusOp('J')
#-----------------------------------------------------------------------------
# Spin States
#-----------------------------------------------------------------------------
class SpinState(State):
"""Base class for angular momentum states."""
_label_separator = ','
def __new__(cls, j, m):
j = sympify(j)
m = sympify(m)
if j.is_number:
if 2*j != int(2*j):
raise ValueError(
'j must be integer or half-integer, got: %s' % j)
if j < 0:
raise ValueError('j must be >= 0, got: %s' % j)
if m.is_number:
if 2*m != int(2*m):
raise ValueError(
'm must be integer or half-integer, got: %s' % m)
if j.is_number and m.is_number:
if abs(m) > j:
raise ValueError('Allowed values for m are -j <= m <= j, got j, m: %s, %s' % (j, m))
if int(j - m) != j - m:
raise ValueError('Both j and m must be integer or half-integer, got j, m: %s, %s' % (j, m))
return State.__new__(cls, j, m)
@property
def j(self):
return self.label[0]
@property
def m(self):
return self.label[1]
@classmethod
def _eval_hilbert_space(cls, label):
return ComplexSpace(2*label[0] + 1)
def _represent_base(self, **options):
j = self.j
m = self.m
alpha = sympify(options.get('alpha', 0))
beta = sympify(options.get('beta', 0))
gamma = sympify(options.get('gamma', 0))
size, mvals = m_values(j)
result = zeros(size, 1)
# breaks finding angles on L930
for p, mval in enumerate(mvals):
if m.is_number:
result[p, 0] = Rotation.D(
self.j, mval, self.m, alpha, beta, gamma).doit()
else:
result[p, 0] = Rotation.D(self.j, mval,
self.m, alpha, beta, gamma)
return result
def _eval_rewrite_as_Jx(self, *args, **options):
if isinstance(self, Bra):
return self._rewrite_basis(Jx, JxBra, **options)
return self._rewrite_basis(Jx, JxKet, **options)
def _eval_rewrite_as_Jy(self, *args, **options):
if isinstance(self, Bra):
return self._rewrite_basis(Jy, JyBra, **options)
return self._rewrite_basis(Jy, JyKet, **options)
def _eval_rewrite_as_Jz(self, *args, **options):
if isinstance(self, Bra):
return self._rewrite_basis(Jz, JzBra, **options)
return self._rewrite_basis(Jz, JzKet, **options)
def _rewrite_basis(self, basis, evect, **options):
from sympy.physics.quantum.represent import represent
j = self.j
args = self.args[2:]
if j.is_number:
if isinstance(self, CoupledSpinState):
if j == int(j):
start = j**2
else:
start = (2*j - 1)*(2*j + 1)/4
else:
start = 0
vect = represent(self, basis=basis, **options)
result = Add(
*[vect[start + i]*evect(j, j - i, *args) for i in range(2*j + 1)])
if isinstance(self, CoupledSpinState) and options.get('coupled') is False:
return uncouple(result)
return result
else:
i = 0
mi = symbols('mi')
# make sure not to introduce a symbol already in the state
while self.subs(mi, 0) != self:
i += 1
mi = symbols('mi%d' % i)
break
# TODO: better way to get angles of rotation
if isinstance(self, CoupledSpinState):
test_args = (0, mi, (0, 0))
else:
test_args = (0, mi)
if isinstance(self, Ket):
angles = represent(
self.__class__(*test_args), basis=basis)[0].args[3:6]
else:
angles = represent(self.__class__(
*test_args), basis=basis)[0].args[0].args[3:6]
if angles == (0, 0, 0):
return self
else:
state = evect(j, mi, *args)
lt = Rotation.D(j, mi, self.m, *angles)
return Sum(lt*state, (mi, -j, j))
def _eval_innerproduct_JxBra(self, bra, **hints):
result = KroneckerDelta(self.j, bra.j)
if bra.dual_class() is not self.__class__:
result *= self._represent_JxOp(None)[bra.j - bra.m]
else:
result *= KroneckerDelta(
self.j, bra.j)*KroneckerDelta(self.m, bra.m)
return result
def _eval_innerproduct_JyBra(self, bra, **hints):
result = KroneckerDelta(self.j, bra.j)
if bra.dual_class() is not self.__class__:
result *= self._represent_JyOp(None)[bra.j - bra.m]
else:
result *= KroneckerDelta(
self.j, bra.j)*KroneckerDelta(self.m, bra.m)
return result
def _eval_innerproduct_JzBra(self, bra, **hints):
result = KroneckerDelta(self.j, bra.j)
if bra.dual_class() is not self.__class__:
result *= self._represent_JzOp(None)[bra.j - bra.m]
else:
result *= KroneckerDelta(
self.j, bra.j)*KroneckerDelta(self.m, bra.m)
return result
def _eval_trace(self, bra, **hints):
# One way to implement this method is to assume the basis set k is
# passed.
# Then we can apply the discrete form of Trace formula here
# Tr(|i><j| ) = \Sum_k <k|i><j|k>
#then we do qapply() on each each inner product and sum over them.
# OR
# Inner product of |i><j| = Trace(Outer Product).
# we could just use this unless there are cases when this is not true
return (bra*self).doit()
class JxKet(SpinState, Ket):
"""Eigenket of Jx.
See JzKet for the usage of spin eigenstates.
See Also
========
JzKet: Usage of spin states
"""
@classmethod
def dual_class(self):
return JxBra
@classmethod
def coupled_class(self):
return JxKetCoupled
def _represent_default_basis(self, **options):
return self._represent_JxOp(None, **options)
def _represent_JxOp(self, basis, **options):
return self._represent_base(**options)
def _represent_JyOp(self, basis, **options):
return self._represent_base(alpha=pi*Rational(3, 2), **options)
def _represent_JzOp(self, basis, **options):
return self._represent_base(beta=pi/2, **options)
class JxBra(SpinState, Bra):
"""Eigenbra of Jx.
See JzKet for the usage of spin eigenstates.
See Also
========
JzKet: Usage of spin states
"""
@classmethod
def dual_class(self):
return JxKet
@classmethod
def coupled_class(self):
return JxBraCoupled
class JyKet(SpinState, Ket):
"""Eigenket of Jy.
See JzKet for the usage of spin eigenstates.
See Also
========
JzKet: Usage of spin states
"""
@classmethod
def dual_class(self):
return JyBra
@classmethod
def coupled_class(self):
return JyKetCoupled
def _represent_default_basis(self, **options):
return self._represent_JyOp(None, **options)
def _represent_JxOp(self, basis, **options):
return self._represent_base(gamma=pi/2, **options)
def _represent_JyOp(self, basis, **options):
return self._represent_base(**options)
def _represent_JzOp(self, basis, **options):
return self._represent_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options)
class JyBra(SpinState, Bra):
"""Eigenbra of Jy.
See JzKet for the usage of spin eigenstates.
See Also
========
JzKet: Usage of spin states
"""
@classmethod
def dual_class(self):
return JyKet
@classmethod
def coupled_class(self):
return JyBraCoupled
class JzKet(SpinState, Ket):
"""Eigenket of Jz.
Spin state which is an eigenstate of the Jz operator. Uncoupled states,
that is states representing the interaction of multiple separate spin
states, are defined as a tensor product of states.
Parameters
==========
j : Number, Symbol
Total spin angular momentum
m : Number, Symbol
Eigenvalue of the Jz spin operator
Examples
========
*Normal States:*
Defining simple spin states, both numerical and symbolic:
>>> from sympy.physics.quantum.spin import JzKet, JxKet
>>> from sympy import symbols
>>> JzKet(1, 0)
|1,0>
>>> j, m = symbols('j m')
>>> JzKet(j, m)
|j,m>
Rewriting the JzKet in terms of eigenkets of the Jx operator:
Note: that the resulting eigenstates are JxKet's
>>> JzKet(1,1).rewrite("Jx")
|1,-1>/2 - sqrt(2)*|1,0>/2 + |1,1>/2
Get the vector representation of a state in terms of the basis elements
of the Jx operator:
>>> from sympy.physics.quantum.represent import represent
>>> from sympy.physics.quantum.spin import Jx, Jz
>>> represent(JzKet(1,-1), basis=Jx)
Matrix([
[ 1/2],
[sqrt(2)/2],
[ 1/2]])
Apply innerproducts between states:
>>> from sympy.physics.quantum.innerproduct import InnerProduct
>>> from sympy.physics.quantum.spin import JxBra
>>> i = InnerProduct(JxBra(1,1), JzKet(1,1))
>>> i
<1,1|1,1>
>>> i.doit()
1/2
*Uncoupled States:*
Define an uncoupled state as a TensorProduct between two Jz eigenkets:
>>> from sympy.physics.quantum.tensorproduct import TensorProduct
>>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2')
>>> TensorProduct(JzKet(1,0), JzKet(1,1))
|1,0>x|1,1>
>>> TensorProduct(JzKet(j1,m1), JzKet(j2,m2))
|j1,m1>x|j2,m2>
A TensorProduct can be rewritten, in which case the eigenstates that make
up the tensor product is rewritten to the new basis:
>>> TensorProduct(JzKet(1,1),JxKet(1,1)).rewrite('Jz')
|1,1>x|1,-1>/2 + sqrt(2)*|1,1>x|1,0>/2 + |1,1>x|1,1>/2
The represent method for TensorProduct's gives the vector representation of
the state. Note that the state in the product basis is the equivalent of the
tensor product of the vector representation of the component eigenstates:
>>> represent(TensorProduct(JzKet(1,0),JzKet(1,1)))
Matrix([
[0],
[0],
[0],
[1],
[0],
[0],
[0],
[0],
[0]])
>>> represent(TensorProduct(JzKet(1,1),JxKet(1,1)), basis=Jz)
Matrix([
[ 1/2],
[sqrt(2)/2],
[ 1/2],
[ 0],
[ 0],
[ 0],
[ 0],
[ 0],
[ 0]])
See Also
========
JzKetCoupled: Coupled eigenstates
sympy.physics.quantum.tensorproduct.TensorProduct: Used to specify uncoupled states
uncouple: Uncouples states given coupling parameters
couple: Couples uncoupled states
"""
@classmethod
def dual_class(self):
return JzBra
@classmethod
def coupled_class(self):
return JzKetCoupled
def _represent_default_basis(self, **options):
return self._represent_JzOp(None, **options)
def _represent_JxOp(self, basis, **options):
return self._represent_base(beta=pi*Rational(3, 2), **options)
def _represent_JyOp(self, basis, **options):
return self._represent_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options)
def _represent_JzOp(self, basis, **options):
return self._represent_base(**options)
class JzBra(SpinState, Bra):
"""Eigenbra of Jz.
See the JzKet for the usage of spin eigenstates.
See Also
========
JzKet: Usage of spin states
"""
@classmethod
def dual_class(self):
return JzKet
@classmethod
def coupled_class(self):
return JzBraCoupled
# Method used primarily to create coupled_n and coupled_jn by __new__ in
# CoupledSpinState
# This same method is also used by the uncouple method, and is separated from
# the CoupledSpinState class to maintain consistency in defining coupling
def _build_coupled(jcoupling, length):
n_list = [ [n + 1] for n in range(length) ]
coupled_jn = []
coupled_n = []
for n1, n2, j_new in jcoupling:
coupled_jn.append(j_new)
coupled_n.append( (n_list[n1 - 1], n_list[n2 - 1]) )
n_sort = sorted(n_list[n1 - 1] + n_list[n2 - 1])
n_list[n_sort[0] - 1] = n_sort
return coupled_n, coupled_jn
class CoupledSpinState(SpinState):
"""Base class for coupled angular momentum states."""
def __new__(cls, j, m, jn, *jcoupling):
# Check j and m values using SpinState
SpinState(j, m)
# Build and check coupling scheme from arguments
if len(jcoupling) == 0:
# Use default coupling scheme
jcoupling = []
for n in range(2, len(jn)):
jcoupling.append( (1, n, Add(*[jn[i] for i in range(n)])) )
jcoupling.append( (1, len(jn), j) )
elif len(jcoupling) == 1:
# Use specified coupling scheme
jcoupling = jcoupling[0]
else:
raise TypeError("CoupledSpinState only takes 3 or 4 arguments, got: %s" % (len(jcoupling) + 3) )
# Check arguments have correct form
if not isinstance(jn, (list, tuple, Tuple)):
raise TypeError('jn must be Tuple, list or tuple, got %s' %
jn.__class__.__name__)
if not isinstance(jcoupling, (list, tuple, Tuple)):
raise TypeError('jcoupling must be Tuple, list or tuple, got %s' %
jcoupling.__class__.__name__)
if not all(isinstance(term, (list, tuple, Tuple)) for term in jcoupling):
raise TypeError(
'All elements of jcoupling must be list, tuple or Tuple')
if not len(jn) - 1 == len(jcoupling):
raise ValueError('jcoupling must have length of %d, got %d' %
(len(jn) - 1, len(jcoupling)))
if not all(len(x) == 3 for x in jcoupling):
raise ValueError('All elements of jcoupling must have length 3')
# Build sympified args
j = sympify(j)
m = sympify(m)
jn = Tuple( *[sympify(ji) for ji in jn] )
jcoupling = Tuple( *[Tuple(sympify(
n1), sympify(n2), sympify(ji)) for (n1, n2, ji) in jcoupling] )
# Check values in coupling scheme give physical state
if any(2*ji != int(2*ji) for ji in jn if ji.is_number):
raise ValueError('All elements of jn must be integer or half-integer, got: %s' % jn)
if any(n1 != int(n1) or n2 != int(n2) for (n1, n2, _) in jcoupling):
raise ValueError('Indices in jcoupling must be integers')
if any(n1 < 1 or n2 < 1 or n1 > len(jn) or n2 > len(jn) for (n1, n2, _) in jcoupling):
raise ValueError('Indices must be between 1 and the number of coupled spin spaces')
if any(2*ji != int(2*ji) for (_, _, ji) in jcoupling if ji.is_number):
raise ValueError('All coupled j values in coupling scheme must be integer or half-integer')
coupled_n, coupled_jn = _build_coupled(jcoupling, len(jn))
jvals = list(jn)
for n, (n1, n2) in enumerate(coupled_n):
j1 = jvals[min(n1) - 1]
j2 = jvals[min(n2) - 1]
j3 = coupled_jn[n]
if sympify(j1).is_number and sympify(j2).is_number and sympify(j3).is_number:
if j1 + j2 < j3:
raise ValueError('All couplings must have j1+j2 >= j3, '
'in coupling number %d got j1,j2,j3: %d,%d,%d' % (n + 1, j1, j2, j3))
if abs(j1 - j2) > j3:
raise ValueError("All couplings must have |j1+j2| <= j3, "
"in coupling number %d got j1,j2,j3: %d,%d,%d" % (n + 1, j1, j2, j3))
if int_valued(j1 + j2):
pass
jvals[min(n1 + n2) - 1] = j3
if len(jcoupling) > 0 and jcoupling[-1][2] != j:
raise ValueError('Last j value coupled together must be the final j of the state')
# Return state
return State.__new__(cls, j, m, jn, jcoupling)
def _print_label(self, printer, *args):
label = [printer._print(self.j), printer._print(self.m)]
for i, ji in enumerate(self.jn, start=1):
label.append('j%d=%s' % (
i, printer._print(ji)
))
for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]):
label.append('j(%s)=%s' % (
','.join(str(i) for i in sorted(n1 + n2)), printer._print(jn)
))
return ','.join(label)
def _print_label_pretty(self, printer, *args):
label = [self.j, self.m]
for i, ji in enumerate(self.jn, start=1):
symb = 'j%d' % i
symb = pretty_symbol(symb)
symb = prettyForm(symb + '=')
item = prettyForm(*symb.right(printer._print(ji)))
label.append(item)
for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]):
n = ','.join(pretty_symbol("j%d" % i)[-1] for i in sorted(n1 + n2))
symb = prettyForm('j' + n + '=')
item = prettyForm(*symb.right(printer._print(jn)))
label.append(item)
return self._print_sequence_pretty(
label, self._label_separator, printer, *args
)
def _print_label_latex(self, printer, *args):
label = [
printer._print(self.j, *args),
printer._print(self.m, *args)
]
for i, ji in enumerate(self.jn, start=1):
label.append('j_{%d}=%s' % (i, printer._print(ji, *args)) )
for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]):
n = ','.join(str(i) for i in sorted(n1 + n2))
label.append('j_{%s}=%s' % (n, printer._print(jn, *args)) )
return self._label_separator.join(label)
@property
def jn(self):
return self.label[2]
@property
def coupling(self):
return self.label[3]
@property
def coupled_jn(self):
return _build_coupled(self.label[3], len(self.label[2]))[1]
@property
def coupled_n(self):
return _build_coupled(self.label[3], len(self.label[2]))[0]
@classmethod
def _eval_hilbert_space(cls, label):
j = Add(*label[2])
if j.is_number:
return DirectSumHilbertSpace(*[ ComplexSpace(x) for x in range(int(2*j + 1), 0, -2) ])
else:
# TODO: Need hilbert space fix, see issue 5732
# Desired behavior:
#ji = symbols('ji')
#ret = Sum(ComplexSpace(2*ji + 1), (ji, 0, j))
# Temporary fix:
return ComplexSpace(2*j + 1)
def _represent_coupled_base(self, **options):
evect = self.uncoupled_class()
if not self.j.is_number:
raise ValueError(
'State must not have symbolic j value to represent')
if not self.hilbert_space.dimension.is_number:
raise ValueError(
'State must not have symbolic j values to represent')
result = zeros(self.hilbert_space.dimension, 1)
if self.j == int(self.j):
start = self.j**2
else:
start = (2*self.j - 1)*(1 + 2*self.j)/4
result[start:start + 2*self.j + 1, 0] = evect(
self.j, self.m)._represent_base(**options)
return result
def _eval_rewrite_as_Jx(self, *args, **options):
if isinstance(self, Bra):
return self._rewrite_basis(Jx, JxBraCoupled, **options)
return self._rewrite_basis(Jx, JxKetCoupled, **options)
def _eval_rewrite_as_Jy(self, *args, **options):
if isinstance(self, Bra):
return self._rewrite_basis(Jy, JyBraCoupled, **options)
return self._rewrite_basis(Jy, JyKetCoupled, **options)
def _eval_rewrite_as_Jz(self, *args, **options):
if isinstance(self, Bra):
return self._rewrite_basis(Jz, JzBraCoupled, **options)
return self._rewrite_basis(Jz, JzKetCoupled, **options)
class JxKetCoupled(CoupledSpinState, Ket):
"""Coupled eigenket of Jx.
See JzKetCoupled for the usage of coupled spin eigenstates.
See Also
========
JzKetCoupled: Usage of coupled spin states
"""
@classmethod
def dual_class(self):
return JxBraCoupled
@classmethod
def uncoupled_class(self):
return JxKet
def _represent_default_basis(self, **options):
return self._represent_JzOp(None, **options)
def _represent_JxOp(self, basis, **options):
return self._represent_coupled_base(**options)
def _represent_JyOp(self, basis, **options):
return self._represent_coupled_base(alpha=pi*Rational(3, 2), **options)
def _represent_JzOp(self, basis, **options):
return self._represent_coupled_base(beta=pi/2, **options)
class JxBraCoupled(CoupledSpinState, Bra):
"""Coupled eigenbra of Jx.
See JzKetCoupled for the usage of coupled spin eigenstates.
See Also
========
JzKetCoupled: Usage of coupled spin states
"""
@classmethod
def dual_class(self):
return JxKetCoupled
@classmethod
def uncoupled_class(self):
return JxBra
class JyKetCoupled(CoupledSpinState, Ket):
"""Coupled eigenket of Jy.
See JzKetCoupled for the usage of coupled spin eigenstates.
See Also
========
JzKetCoupled: Usage of coupled spin states
"""
@classmethod
def dual_class(self):
return JyBraCoupled
@classmethod
def uncoupled_class(self):
return JyKet
def _represent_default_basis(self, **options):
return self._represent_JzOp(None, **options)
def _represent_JxOp(self, basis, **options):
return self._represent_coupled_base(gamma=pi/2, **options)
def _represent_JyOp(self, basis, **options):
return self._represent_coupled_base(**options)
def _represent_JzOp(self, basis, **options):
return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options)
class JyBraCoupled(CoupledSpinState, Bra):
"""Coupled eigenbra of Jy.
See JzKetCoupled for the usage of coupled spin eigenstates.
See Also
========
JzKetCoupled: Usage of coupled spin states
"""
@classmethod
def dual_class(self):
return JyKetCoupled
@classmethod
def uncoupled_class(self):
return JyBra
class JzKetCoupled(CoupledSpinState, Ket):
r"""Coupled eigenket of Jz
Spin state that is an eigenket of Jz which represents the coupling of
separate spin spaces.
The arguments for creating instances of JzKetCoupled are ``j``, ``m``,
``jn`` and an optional ``jcoupling`` argument. The ``j`` and ``m`` options
are the total angular momentum quantum numbers, as used for normal states
(e.g. JzKet).
The other required parameter in ``jn``, which is a tuple defining the `j_n`
angular momentum quantum numbers of the product spaces. So for example, if
a state represented the coupling of the product basis state
`\left|j_1,m_1\right\rangle\times\left|j_2,m_2\right\rangle`, the ``jn``
for this state would be ``(j1,j2)``.
The final option is ``jcoupling``, which is used to define how the spaces
specified by ``jn`` are coupled, which includes both the order these spaces
are coupled together and the quantum numbers that arise from these
couplings. The ``jcoupling`` parameter itself is a list of lists, such that
each of the sublists defines a single coupling between the spin spaces. If
there are N coupled angular momentum spaces, that is ``jn`` has N elements,
then there must be N-1 sublists. Each of these sublists making up the
``jcoupling`` parameter have length 3. The first two elements are the
indices of the product spaces that are considered to be coupled together.
For example, if we want to couple `j_1` and `j_4`, the indices would be 1
and 4. If a state has already been coupled, it is referenced by the
smallest index that is coupled, so if `j_2` and `j_4` has already been
coupled to some `j_{24}`, then this value can be coupled by referencing it
with index 2. The final element of the sublist is the quantum number of the
coupled state. So putting everything together, into a valid sublist for
``jcoupling``, if `j_1` and `j_2` are coupled to an angular momentum space
with quantum number `j_{12}` with the value ``j12``, the sublist would be
``(1,2,j12)``, N-1 of these sublists are used in the list for
``jcoupling``.
Note the ``jcoupling`` parameter is optional, if it is not specified, the
default coupling is taken. This default value is to coupled the spaces in
order and take the quantum number of the coupling to be the maximum value.
For example, if the spin spaces are `j_1`, `j_2`, `j_3`, `j_4`, then the
default coupling couples `j_1` and `j_2` to `j_{12}=j_1+j_2`, then,
`j_{12}` and `j_3` are coupled to `j_{123}=j_{12}+j_3`, and finally
`j_{123}` and `j_4` to `j=j_{123}+j_4`. The jcoupling value that would
correspond to this is:
``((1,2,j1+j2),(1,3,j1+j2+j3))``
Parameters
==========
args : tuple
The arguments that must be passed are ``j``, ``m``, ``jn``, and
``jcoupling``. The ``j`` value is the total angular momentum. The ``m``
value is the eigenvalue of the Jz spin operator. The ``jn`` list are
the j values of argular momentum spaces coupled together. The
``jcoupling`` parameter is an optional parameter defining how the spaces
are coupled together. See the above description for how these coupling
parameters are defined.
Examples
========
Defining simple spin states, both numerical and symbolic:
>>> from sympy.physics.quantum.spin import JzKetCoupled
>>> from sympy import symbols
>>> JzKetCoupled(1, 0, (1, 1))
|1,0,j1=1,j2=1>
>>> j, m, j1, j2 = symbols('j m j1 j2')
>>> JzKetCoupled(j, m, (j1, j2))
|j,m,j1=j1,j2=j2>
Defining coupled spin states for more than 2 coupled spaces with various
coupling parameters:
>>> JzKetCoupled(2, 1, (1, 1, 1))
|2,1,j1=1,j2=1,j3=1,j(1,2)=2>
>>> JzKetCoupled(2, 1, (1, 1, 1), ((1,2,2),(1,3,2)) )
|2,1,j1=1,j2=1,j3=1,j(1,2)=2>
>>> JzKetCoupled(2, 1, (1, 1, 1), ((2,3,1),(1,2,2)) )
|2,1,j1=1,j2=1,j3=1,j(2,3)=1>
Rewriting the JzKetCoupled in terms of eigenkets of the Jx operator:
Note: that the resulting eigenstates are JxKetCoupled
>>> JzKetCoupled(1,1,(1,1)).rewrite("Jx")
|1,-1,j1=1,j2=1>/2 - sqrt(2)*|1,0,j1=1,j2=1>/2 + |1,1,j1=1,j2=1>/2
The rewrite method can be used to convert a coupled state to an uncoupled
state. This is done by passing coupled=False to the rewrite function:
>>> JzKetCoupled(1, 0, (1, 1)).rewrite('Jz', coupled=False)
-sqrt(2)*|1,-1>x|1,1>/2 + sqrt(2)*|1,1>x|1,-1>/2
Get the vector representation of a state in terms of the basis elements
of the Jx operator:
>>> from sympy.physics.quantum.represent import represent
>>> from sympy.physics.quantum.spin import Jx
>>> from sympy import S
>>> represent(JzKetCoupled(1,-1,(S(1)/2,S(1)/2)), basis=Jx)
Matrix([
[ 0],
[ 1/2],
[sqrt(2)/2],
[ 1/2]])
See Also
========
JzKet: Normal spin eigenstates
uncouple: Uncoupling of coupling spin states
couple: Coupling of uncoupled spin states
"""
@classmethod
def dual_class(self):
return JzBraCoupled
@classmethod
def uncoupled_class(self):
return JzKet
def _represent_default_basis(self, **options):
return self._represent_JzOp(None, **options)
def _represent_JxOp(self, basis, **options):
return self._represent_coupled_base(beta=pi*Rational(3, 2), **options)
def _represent_JyOp(self, basis, **options):
return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options)
def _represent_JzOp(self, basis, **options):
return self._represent_coupled_base(**options)
class JzBraCoupled(CoupledSpinState, Bra):
"""Coupled eigenbra of Jz.
See the JzKetCoupled for the usage of coupled spin eigenstates.
See Also
========
JzKetCoupled: Usage of coupled spin states
"""
@classmethod
def dual_class(self):
return JzKetCoupled
@classmethod
def uncoupled_class(self):
return JzBra
#-----------------------------------------------------------------------------
# Coupling/uncoupling
#-----------------------------------------------------------------------------
def couple(expr, jcoupling_list=None):
""" Couple a tensor product of spin states
This function can be used to couple an uncoupled tensor product of spin
states. All of the eigenstates to be coupled must be of the same class. It
will return a linear combination of eigenstates that are subclasses of
CoupledSpinState determined by Clebsch-Gordan angular momentum coupling
coefficients.
Parameters
==========
expr : Expr
An expression involving TensorProducts of spin states to be coupled.
Each state must be a subclass of SpinState and they all must be the
same class.
jcoupling_list : list or tuple
Elements of this list are sub-lists of length 2 specifying the order of
the coupling of the spin spaces. The length of this must be N-1, where N
is the number of states in the tensor product to be coupled. The
elements of this sublist are the same as the first two elements of each
sublist in the ``jcoupling`` parameter defined for JzKetCoupled. If this
parameter is not specified, the default value is taken, which couples
the first and second product basis spaces, then couples this new coupled
space to the third product space, etc
Examples
========
Couple a tensor product of numerical states for two spaces:
>>> from sympy.physics.quantum.spin import JzKet, couple
>>> from sympy.physics.quantum.tensorproduct import TensorProduct
>>> couple(TensorProduct(JzKet(1,0), JzKet(1,1)))
-sqrt(2)*|1,1,j1=1,j2=1>/2 + sqrt(2)*|2,1,j1=1,j2=1>/2
Numerical coupling of three spaces using the default coupling method, i.e.
first and second spaces couple, then this couples to the third space:
>>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0)))
sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,2)=2>/3
Perform this same coupling, but we define the coupling to first couple
the first and third spaces:
>>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0)), ((1,3),(1,2)) )
sqrt(2)*|2,2,j1=1,j2=1,j3=1,j(1,3)=1>/2 - sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,3)=2>/6 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,3)=2>/3
Couple a tensor product of symbolic states:
>>> from sympy import symbols
>>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2')
>>> couple(TensorProduct(JzKet(j1,m1), JzKet(j2,m2)))
Sum(CG(j1, m1, j2, m2, j, m1 + m2)*|j,m1 + m2,j1=j1,j2=j2>, (j, m1 + m2, j1 + j2))
"""
a = expr.atoms(TensorProduct)
for tp in a:
# Allow other tensor products to be in expression
if not all(isinstance(state, SpinState) for state in tp.args):
continue
# If tensor product has all spin states, raise error for invalid tensor product state
if not all(state.__class__ is tp.args[0].__class__ for state in tp.args):
raise TypeError('All states must be the same basis')
expr = expr.subs(tp, _couple(tp, jcoupling_list))
return expr
def _couple(tp, jcoupling_list):
states = tp.args
coupled_evect = states[0].coupled_class()
# Define default coupling if none is specified
if jcoupling_list is None:
jcoupling_list = []
for n in range(1, len(states)):
jcoupling_list.append( (1, n + 1) )
# Check jcoupling_list valid
if not len(jcoupling_list) == len(states) - 1:
raise TypeError('jcoupling_list must be length %d, got %d' %
(len(states) - 1, len(jcoupling_list)))
if not all( len(coupling) == 2 for coupling in jcoupling_list):
raise ValueError('Each coupling must define 2 spaces')
if any(n1 == n2 for n1, n2 in jcoupling_list):
raise ValueError('Spin spaces cannot couple to themselves')
if all(sympify(n1).is_number and sympify(n2).is_number for n1, n2 in jcoupling_list):
j_test = [0]*len(states)
for n1, n2 in jcoupling_list:
if j_test[n1 - 1] == -1 or j_test[n2 - 1] == -1:
raise ValueError('Spaces coupling j_n\'s are referenced by smallest n value')
j_test[max(n1, n2) - 1] = -1
# j values of states to be coupled together
jn = [state.j for state in states]
mn = [state.m for state in states]
# Create coupling_list, which defines all the couplings between all
# the spaces from jcoupling_list
coupling_list = []
n_list = [ [i + 1] for i in range(len(states)) ]
for j_coupling in jcoupling_list:
# Least n for all j_n which is coupled as first and second spaces
n1, n2 = j_coupling
# List of all n's coupled in first and second spaces
j1_n = list(n_list[n1 - 1])
j2_n = list(n_list[n2 - 1])
coupling_list.append( (j1_n, j2_n) )
# Set new j_n to be coupling of all j_n in both first and second spaces
n_list[ min(n1, n2) - 1 ] = sorted(j1_n + j2_n)
if all(state.j.is_number and state.m.is_number for state in states):
# Numerical coupling
# Iterate over difference between maximum possible j value of each coupling and the actual value
diff_max = [ Add( *[ jn[n - 1] - mn[n - 1] for n in coupling[0] +
coupling[1] ] ) for coupling in coupling_list ]
result = []
for diff in range(diff_max[-1] + 1):
# Determine available configurations
n = len(coupling_list)
tot = binomial(diff + n - 1, diff)
for config_num in range(tot):
diff_list = _confignum_to_difflist(config_num, diff, n)
# Skip the configuration if non-physical
# This is a lazy check for physical states given the loose restrictions of diff_max
if any(d > m for d, m in zip(diff_list, diff_max)):
continue
# Determine term
cg_terms = []
coupled_j = list(jn)
jcoupling = []
for (j1_n, j2_n), coupling_diff in zip(coupling_list, diff_list):
j1 = coupled_j[ min(j1_n) - 1 ]
j2 = coupled_j[ min(j2_n) - 1 ]
j3 = j1 + j2 - coupling_diff
coupled_j[ min(j1_n + j2_n) - 1 ] = j3
m1 = Add( *[ mn[x - 1] for x in j1_n] )
m2 = Add( *[ mn[x - 1] for x in j2_n] )
m3 = m1 + m2
cg_terms.append( (j1, m1, j2, m2, j3, m3) )
jcoupling.append( (min(j1_n), min(j2_n), j3) )
# Better checks that state is physical
if any(abs(term[5]) > term[4] for term in cg_terms):
continue
if any(term[0] + term[2] < term[4] for term in cg_terms):
continue
if any(abs(term[0] - term[2]) > term[4] for term in cg_terms):
continue
coeff = Mul( *[ CG(*term).doit() for term in cg_terms] )
state = coupled_evect(j3, m3, jn, jcoupling)
result.append(coeff*state)
return Add(*result)
else:
# Symbolic coupling
cg_terms = []
jcoupling = []
sum_terms = []
coupled_j = list(jn)
for j1_n, j2_n in coupling_list:
j1 = coupled_j[ min(j1_n) - 1 ]
j2 = coupled_j[ min(j2_n) - 1 ]
if len(j1_n + j2_n) == len(states):
j3 = symbols('j')
else:
j3_name = 'j' + ''.join(["%s" % n for n in j1_n + j2_n])
j3 = symbols(j3_name)
coupled_j[ min(j1_n + j2_n) - 1 ] = j3
m1 = Add( *[ mn[x - 1] for x in j1_n] )
m2 = Add( *[ mn[x - 1] for x in j2_n] )
m3 = m1 + m2
cg_terms.append( (j1, m1, j2, m2, j3, m3) )
jcoupling.append( (min(j1_n), min(j2_n), j3) )
sum_terms.append((j3, m3, j1 + j2))
coeff = Mul( *[ CG(*term) for term in cg_terms] )
state = coupled_evect(j3, m3, jn, jcoupling)
return Sum(coeff*state, *sum_terms)
def uncouple(expr, jn=None, jcoupling_list=None):
""" Uncouple a coupled spin state
Gives the uncoupled representation of a coupled spin state. Arguments must
be either a spin state that is a subclass of CoupledSpinState or a spin
state that is a subclass of SpinState and an array giving the j values
of the spaces that are to be coupled
Parameters
==========
expr : Expr
The expression containing states that are to be coupled. If the states
are a subclass of SpinState, the ``jn`` and ``jcoupling`` parameters
must be defined. If the states are a subclass of CoupledSpinState,
``jn`` and ``jcoupling`` will be taken from the state.
jn : list or tuple
The list of the j-values that are coupled. If state is a
CoupledSpinState, this parameter is ignored. This must be defined if
state is not a subclass of CoupledSpinState. The syntax of this
parameter is the same as the ``jn`` parameter of JzKetCoupled.
jcoupling_list : list or tuple
The list defining how the j-values are coupled together. If state is a
CoupledSpinState, this parameter is ignored. This must be defined if
state is not a subclass of CoupledSpinState. The syntax of this
parameter is the same as the ``jcoupling`` parameter of JzKetCoupled.
Examples
========
Uncouple a numerical state using a CoupledSpinState state:
>>> from sympy.physics.quantum.spin import JzKetCoupled, uncouple
>>> from sympy import S
>>> uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2)))
sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2
Perform the same calculation using a SpinState state:
>>> from sympy.physics.quantum.spin import JzKet
>>> uncouple(JzKet(1, 0), (S(1)/2, S(1)/2))
sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2
Uncouple a numerical state of three coupled spaces using a CoupledSpinState state:
>>> uncouple(JzKetCoupled(1, 1, (1, 1, 1), ((1,3,1),(1,2,1)) ))
|1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2
Perform the same calculation using a SpinState state:
>>> uncouple(JzKet(1, 1), (1, 1, 1), ((1,3,1),(1,2,1)) )
|1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2
Uncouple a symbolic state using a CoupledSpinState state:
>>> from sympy import symbols
>>> j,m,j1,j2 = symbols('j m j1 j2')
>>> uncouple(JzKetCoupled(j, m, (j1, j2)))
Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2))
Perform the same calculation using a SpinState state
>>> uncouple(JzKet(j, m), (j1, j2))
Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2))
"""
a = expr.atoms(SpinState)
for state in a:
expr = expr.subs(state, _uncouple(state, jn, jcoupling_list))
return expr
def _uncouple(state, jn, jcoupling_list):
if isinstance(state, CoupledSpinState):
jn = state.jn
coupled_n = state.coupled_n
coupled_jn = state.coupled_jn
evect = state.uncoupled_class()
elif isinstance(state, SpinState):
if jn is None:
raise ValueError("Must specify j-values for coupled state")
if not isinstance(jn, (list, tuple)):
raise TypeError("jn must be list or tuple")
if jcoupling_list is None:
# Use default
jcoupling_list = []
for i in range(1, len(jn)):
jcoupling_list.append(
(1, 1 + i, Add(*[jn[j] for j in range(i + 1)])) )
if not isinstance(jcoupling_list, (list, tuple)):
raise TypeError("jcoupling must be a list or tuple")
if not len(jcoupling_list) == len(jn) - 1:
raise ValueError("Must specify 2 fewer coupling terms than the number of j values")
coupled_n, coupled_jn = _build_coupled(jcoupling_list, len(jn))
evect = state.__class__
else:
raise TypeError("state must be a spin state")
j = state.j
m = state.m
coupling_list = []
j_list = list(jn)
# Create coupling, which defines all the couplings between all the spaces
for j3, (n1, n2) in zip(coupled_jn, coupled_n):
# j's which are coupled as first and second spaces
j1 = j_list[n1[0] - 1]
j2 = j_list[n2[0] - 1]
# Build coupling list
coupling_list.append( (n1, n2, j1, j2, j3) )
# Set new value in j_list
j_list[min(n1 + n2) - 1] = j3
if j.is_number and m.is_number:
diff_max = [ 2*x for x in jn ]
diff = Add(*jn) - m
n = len(jn)
tot = binomial(diff + n - 1, diff)
result = []
for config_num in range(tot):
diff_list = _confignum_to_difflist(config_num, diff, n)
if any(d > p for d, p in zip(diff_list, diff_max)):
continue
cg_terms = []
for coupling in coupling_list:
j1_n, j2_n, j1, j2, j3 = coupling
m1 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j1_n ] )
m2 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j2_n ] )
m3 = m1 + m2
cg_terms.append( (j1, m1, j2, m2, j3, m3) )
coeff = Mul( *[ CG(*term).doit() for term in cg_terms ] )
state = TensorProduct(
*[ evect(j, j - d) for j, d in zip(jn, diff_list) ] )
result.append(coeff*state)
return Add(*result)
else:
# Symbolic coupling
m_str = "m1:%d" % (len(jn) + 1)
mvals = symbols(m_str)
cg_terms = [(j1, Add(*[mvals[n - 1] for n in j1_n]),
j2, Add(*[mvals[n - 1] for n in j2_n]),
j3, Add(*[mvals[n - 1] for n in j1_n + j2_n])) for j1_n, j2_n, j1, j2, j3 in coupling_list[:-1] ]
cg_terms.append(*[(j1, Add(*[mvals[n - 1] for n in j1_n]),
j2, Add(*[mvals[n - 1] for n in j2_n]),
j, m) for j1_n, j2_n, j1, j2, j3 in [coupling_list[-1]] ])
cg_coeff = Mul(*[CG(*cg_term) for cg_term in cg_terms])
sum_terms = [ (m, -j, j) for j, m in zip(jn, mvals) ]
state = TensorProduct( *[ evect(j, m) for j, m in zip(jn, mvals) ] )
return Sum(cg_coeff*state, *sum_terms)
def _confignum_to_difflist(config_num, diff, list_len):
# Determines configuration of diffs into list_len number of slots
diff_list = []
for n in range(list_len):
prev_diff = diff
# Number of spots after current one
rem_spots = list_len - n - 1
# Number of configurations of distributing diff among the remaining spots
rem_configs = binomial(diff + rem_spots - 1, diff)
while config_num >= rem_configs:
config_num -= rem_configs
diff -= 1
rem_configs = binomial(diff + rem_spots - 1, diff)
diff_list.append(prev_diff - diff)
return diff_list
|