Spaces:
Sleeping
Sleeping
File size: 20,867 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
"""Simple Harmonic Oscillator 1-Dimension"""
from sympy.core.numbers import (I, Integer)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.physics.quantum.constants import hbar
from sympy.physics.quantum.operator import Operator
from sympy.physics.quantum.state import Bra, Ket, State
from sympy.physics.quantum.qexpr import QExpr
from sympy.physics.quantum.cartesian import X, Px
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.physics.quantum.hilbert import ComplexSpace
from sympy.physics.quantum.matrixutils import matrix_zeros
#------------------------------------------------------------------------------
class SHOOp(Operator):
"""A base class for the SHO Operators.
We are limiting the number of arguments to be 1.
"""
@classmethod
def _eval_args(cls, args):
args = QExpr._eval_args(args)
if len(args) == 1:
return args
else:
raise ValueError("Too many arguments")
@classmethod
def _eval_hilbert_space(cls, label):
return ComplexSpace(S.Infinity)
class RaisingOp(SHOOp):
"""The Raising Operator or a^dagger.
When a^dagger acts on a state it raises the state up by one. Taking
the adjoint of a^dagger returns 'a', the Lowering Operator. a^dagger
can be rewritten in terms of position and momentum. We can represent
a^dagger as a matrix, which will be its default basis.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
operator.
Examples
========
Create a Raising Operator and rewrite it in terms of position and
momentum, and show that taking its adjoint returns 'a':
>>> from sympy.physics.quantum.sho1d import RaisingOp
>>> from sympy.physics.quantum import Dagger
>>> ad = RaisingOp('a')
>>> ad.rewrite('xp').doit()
sqrt(2)*(m*omega*X - I*Px)/(2*sqrt(hbar)*sqrt(m*omega))
>>> Dagger(ad)
a
Taking the commutator of a^dagger with other Operators:
>>> from sympy.physics.quantum import Commutator
>>> from sympy.physics.quantum.sho1d import RaisingOp, LoweringOp
>>> from sympy.physics.quantum.sho1d import NumberOp
>>> ad = RaisingOp('a')
>>> a = LoweringOp('a')
>>> N = NumberOp('N')
>>> Commutator(ad, a).doit()
-1
>>> Commutator(ad, N).doit()
-RaisingOp(a)
Apply a^dagger to a state:
>>> from sympy.physics.quantum import qapply
>>> from sympy.physics.quantum.sho1d import RaisingOp, SHOKet
>>> ad = RaisingOp('a')
>>> k = SHOKet('k')
>>> qapply(ad*k)
sqrt(k + 1)*|k + 1>
Matrix Representation
>>> from sympy.physics.quantum.sho1d import RaisingOp
>>> from sympy.physics.quantum.represent import represent
>>> ad = RaisingOp('a')
>>> represent(ad, basis=N, ndim=4, format='sympy')
Matrix([
[0, 0, 0, 0],
[1, 0, 0, 0],
[0, sqrt(2), 0, 0],
[0, 0, sqrt(3), 0]])
"""
def _eval_rewrite_as_xp(self, *args, **kwargs):
return (S.One/sqrt(Integer(2)*hbar*m*omega))*(
S.NegativeOne*I*Px + m*omega*X)
def _eval_adjoint(self):
return LoweringOp(*self.args)
def _eval_commutator_LoweringOp(self, other):
return S.NegativeOne
def _eval_commutator_NumberOp(self, other):
return S.NegativeOne*self
def _apply_operator_SHOKet(self, ket, **options):
temp = ket.n + S.One
return sqrt(temp)*SHOKet(temp)
def _represent_default_basis(self, **options):
return self._represent_NumberOp(None, **options)
def _represent_XOp(self, basis, **options):
# This logic is good but the underlying position
# representation logic is broken.
# temp = self.rewrite('xp').doit()
# result = represent(temp, basis=X)
# return result
raise NotImplementedError('Position representation is not implemented')
def _represent_NumberOp(self, basis, **options):
ndim_info = options.get('ndim', 4)
format = options.get('format','sympy')
matrix = matrix_zeros(ndim_info, ndim_info, **options)
for i in range(ndim_info - 1):
value = sqrt(i + 1)
if format == 'scipy.sparse':
value = float(value)
matrix[i + 1, i] = value
if format == 'scipy.sparse':
matrix = matrix.tocsr()
return matrix
#--------------------------------------------------------------------------
# Printing Methods
#--------------------------------------------------------------------------
def _print_contents(self, printer, *args):
arg0 = printer._print(self.args[0], *args)
return '%s(%s)' % (self.__class__.__name__, arg0)
def _print_contents_pretty(self, printer, *args):
from sympy.printing.pretty.stringpict import prettyForm
pform = printer._print(self.args[0], *args)
pform = pform**prettyForm('\N{DAGGER}')
return pform
def _print_contents_latex(self, printer, *args):
arg = printer._print(self.args[0])
return '%s^{\\dagger}' % arg
class LoweringOp(SHOOp):
"""The Lowering Operator or 'a'.
When 'a' acts on a state it lowers the state up by one. Taking
the adjoint of 'a' returns a^dagger, the Raising Operator. 'a'
can be rewritten in terms of position and momentum. We can
represent 'a' as a matrix, which will be its default basis.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
operator.
Examples
========
Create a Lowering Operator and rewrite it in terms of position and
momentum, and show that taking its adjoint returns a^dagger:
>>> from sympy.physics.quantum.sho1d import LoweringOp
>>> from sympy.physics.quantum import Dagger
>>> a = LoweringOp('a')
>>> a.rewrite('xp').doit()
sqrt(2)*(m*omega*X + I*Px)/(2*sqrt(hbar)*sqrt(m*omega))
>>> Dagger(a)
RaisingOp(a)
Taking the commutator of 'a' with other Operators:
>>> from sympy.physics.quantum import Commutator
>>> from sympy.physics.quantum.sho1d import LoweringOp, RaisingOp
>>> from sympy.physics.quantum.sho1d import NumberOp
>>> a = LoweringOp('a')
>>> ad = RaisingOp('a')
>>> N = NumberOp('N')
>>> Commutator(a, ad).doit()
1
>>> Commutator(a, N).doit()
a
Apply 'a' to a state:
>>> from sympy.physics.quantum import qapply
>>> from sympy.physics.quantum.sho1d import LoweringOp, SHOKet
>>> a = LoweringOp('a')
>>> k = SHOKet('k')
>>> qapply(a*k)
sqrt(k)*|k - 1>
Taking 'a' of the lowest state will return 0:
>>> from sympy.physics.quantum import qapply
>>> from sympy.physics.quantum.sho1d import LoweringOp, SHOKet
>>> a = LoweringOp('a')
>>> k = SHOKet(0)
>>> qapply(a*k)
0
Matrix Representation
>>> from sympy.physics.quantum.sho1d import LoweringOp
>>> from sympy.physics.quantum.represent import represent
>>> a = LoweringOp('a')
>>> represent(a, basis=N, ndim=4, format='sympy')
Matrix([
[0, 1, 0, 0],
[0, 0, sqrt(2), 0],
[0, 0, 0, sqrt(3)],
[0, 0, 0, 0]])
"""
def _eval_rewrite_as_xp(self, *args, **kwargs):
return (S.One/sqrt(Integer(2)*hbar*m*omega))*(
I*Px + m*omega*X)
def _eval_adjoint(self):
return RaisingOp(*self.args)
def _eval_commutator_RaisingOp(self, other):
return S.One
def _eval_commutator_NumberOp(self, other):
return self
def _apply_operator_SHOKet(self, ket, **options):
temp = ket.n - Integer(1)
if ket.n is S.Zero:
return S.Zero
else:
return sqrt(ket.n)*SHOKet(temp)
def _represent_default_basis(self, **options):
return self._represent_NumberOp(None, **options)
def _represent_XOp(self, basis, **options):
# This logic is good but the underlying position
# representation logic is broken.
# temp = self.rewrite('xp').doit()
# result = represent(temp, basis=X)
# return result
raise NotImplementedError('Position representation is not implemented')
def _represent_NumberOp(self, basis, **options):
ndim_info = options.get('ndim', 4)
format = options.get('format', 'sympy')
matrix = matrix_zeros(ndim_info, ndim_info, **options)
for i in range(ndim_info - 1):
value = sqrt(i + 1)
if format == 'scipy.sparse':
value = float(value)
matrix[i,i + 1] = value
if format == 'scipy.sparse':
matrix = matrix.tocsr()
return matrix
class NumberOp(SHOOp):
"""The Number Operator is simply a^dagger*a
It is often useful to write a^dagger*a as simply the Number Operator
because the Number Operator commutes with the Hamiltonian. And can be
expressed using the Number Operator. Also the Number Operator can be
applied to states. We can represent the Number Operator as a matrix,
which will be its default basis.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
operator.
Examples
========
Create a Number Operator and rewrite it in terms of the ladder
operators, position and momentum operators, and Hamiltonian:
>>> from sympy.physics.quantum.sho1d import NumberOp
>>> N = NumberOp('N')
>>> N.rewrite('a').doit()
RaisingOp(a)*a
>>> N.rewrite('xp').doit()
-1/2 + (m**2*omega**2*X**2 + Px**2)/(2*hbar*m*omega)
>>> N.rewrite('H').doit()
-1/2 + H/(hbar*omega)
Take the Commutator of the Number Operator with other Operators:
>>> from sympy.physics.quantum import Commutator
>>> from sympy.physics.quantum.sho1d import NumberOp, Hamiltonian
>>> from sympy.physics.quantum.sho1d import RaisingOp, LoweringOp
>>> N = NumberOp('N')
>>> H = Hamiltonian('H')
>>> ad = RaisingOp('a')
>>> a = LoweringOp('a')
>>> Commutator(N,H).doit()
0
>>> Commutator(N,ad).doit()
RaisingOp(a)
>>> Commutator(N,a).doit()
-a
Apply the Number Operator to a state:
>>> from sympy.physics.quantum import qapply
>>> from sympy.physics.quantum.sho1d import NumberOp, SHOKet
>>> N = NumberOp('N')
>>> k = SHOKet('k')
>>> qapply(N*k)
k*|k>
Matrix Representation
>>> from sympy.physics.quantum.sho1d import NumberOp
>>> from sympy.physics.quantum.represent import represent
>>> N = NumberOp('N')
>>> represent(N, basis=N, ndim=4, format='sympy')
Matrix([
[0, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 2, 0],
[0, 0, 0, 3]])
"""
def _eval_rewrite_as_a(self, *args, **kwargs):
return ad*a
def _eval_rewrite_as_xp(self, *args, **kwargs):
return (S.One/(Integer(2)*m*hbar*omega))*(Px**2 + (
m*omega*X)**2) - S.Half
def _eval_rewrite_as_H(self, *args, **kwargs):
return H/(hbar*omega) - S.Half
def _apply_operator_SHOKet(self, ket, **options):
return ket.n*ket
def _eval_commutator_Hamiltonian(self, other):
return S.Zero
def _eval_commutator_RaisingOp(self, other):
return other
def _eval_commutator_LoweringOp(self, other):
return S.NegativeOne*other
def _represent_default_basis(self, **options):
return self._represent_NumberOp(None, **options)
def _represent_XOp(self, basis, **options):
# This logic is good but the underlying position
# representation logic is broken.
# temp = self.rewrite('xp').doit()
# result = represent(temp, basis=X)
# return result
raise NotImplementedError('Position representation is not implemented')
def _represent_NumberOp(self, basis, **options):
ndim_info = options.get('ndim', 4)
format = options.get('format', 'sympy')
matrix = matrix_zeros(ndim_info, ndim_info, **options)
for i in range(ndim_info):
value = i
if format == 'scipy.sparse':
value = float(value)
matrix[i,i] = value
if format == 'scipy.sparse':
matrix = matrix.tocsr()
return matrix
class Hamiltonian(SHOOp):
"""The Hamiltonian Operator.
The Hamiltonian is used to solve the time-independent Schrodinger
equation. The Hamiltonian can be expressed using the ladder operators,
as well as by position and momentum. We can represent the Hamiltonian
Operator as a matrix, which will be its default basis.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
operator.
Examples
========
Create a Hamiltonian Operator and rewrite it in terms of the ladder
operators, position and momentum, and the Number Operator:
>>> from sympy.physics.quantum.sho1d import Hamiltonian
>>> H = Hamiltonian('H')
>>> H.rewrite('a').doit()
hbar*omega*(1/2 + RaisingOp(a)*a)
>>> H.rewrite('xp').doit()
(m**2*omega**2*X**2 + Px**2)/(2*m)
>>> H.rewrite('N').doit()
hbar*omega*(1/2 + N)
Take the Commutator of the Hamiltonian and the Number Operator:
>>> from sympy.physics.quantum import Commutator
>>> from sympy.physics.quantum.sho1d import Hamiltonian, NumberOp
>>> H = Hamiltonian('H')
>>> N = NumberOp('N')
>>> Commutator(H,N).doit()
0
Apply the Hamiltonian Operator to a state:
>>> from sympy.physics.quantum import qapply
>>> from sympy.physics.quantum.sho1d import Hamiltonian, SHOKet
>>> H = Hamiltonian('H')
>>> k = SHOKet('k')
>>> qapply(H*k)
hbar*k*omega*|k> + hbar*omega*|k>/2
Matrix Representation
>>> from sympy.physics.quantum.sho1d import Hamiltonian
>>> from sympy.physics.quantum.represent import represent
>>> H = Hamiltonian('H')
>>> represent(H, basis=N, ndim=4, format='sympy')
Matrix([
[hbar*omega/2, 0, 0, 0],
[ 0, 3*hbar*omega/2, 0, 0],
[ 0, 0, 5*hbar*omega/2, 0],
[ 0, 0, 0, 7*hbar*omega/2]])
"""
def _eval_rewrite_as_a(self, *args, **kwargs):
return hbar*omega*(ad*a + S.Half)
def _eval_rewrite_as_xp(self, *args, **kwargs):
return (S.One/(Integer(2)*m))*(Px**2 + (m*omega*X)**2)
def _eval_rewrite_as_N(self, *args, **kwargs):
return hbar*omega*(N + S.Half)
def _apply_operator_SHOKet(self, ket, **options):
return (hbar*omega*(ket.n + S.Half))*ket
def _eval_commutator_NumberOp(self, other):
return S.Zero
def _represent_default_basis(self, **options):
return self._represent_NumberOp(None, **options)
def _represent_XOp(self, basis, **options):
# This logic is good but the underlying position
# representation logic is broken.
# temp = self.rewrite('xp').doit()
# result = represent(temp, basis=X)
# return result
raise NotImplementedError('Position representation is not implemented')
def _represent_NumberOp(self, basis, **options):
ndim_info = options.get('ndim', 4)
format = options.get('format', 'sympy')
matrix = matrix_zeros(ndim_info, ndim_info, **options)
for i in range(ndim_info):
value = i + S.Half
if format == 'scipy.sparse':
value = float(value)
matrix[i,i] = value
if format == 'scipy.sparse':
matrix = matrix.tocsr()
return hbar*omega*matrix
#------------------------------------------------------------------------------
class SHOState(State):
"""State class for SHO states"""
@classmethod
def _eval_hilbert_space(cls, label):
return ComplexSpace(S.Infinity)
@property
def n(self):
return self.args[0]
class SHOKet(SHOState, Ket):
"""1D eigenket.
Inherits from SHOState and Ket.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the ket
This is usually its quantum numbers or its symbol.
Examples
========
Ket's know about their associated bra:
>>> from sympy.physics.quantum.sho1d import SHOKet
>>> k = SHOKet('k')
>>> k.dual
<k|
>>> k.dual_class()
<class 'sympy.physics.quantum.sho1d.SHOBra'>
Take the Inner Product with a bra:
>>> from sympy.physics.quantum import InnerProduct
>>> from sympy.physics.quantum.sho1d import SHOKet, SHOBra
>>> k = SHOKet('k')
>>> b = SHOBra('b')
>>> InnerProduct(b,k).doit()
KroneckerDelta(b, k)
Vector representation of a numerical state ket:
>>> from sympy.physics.quantum.sho1d import SHOKet, NumberOp
>>> from sympy.physics.quantum.represent import represent
>>> k = SHOKet(3)
>>> N = NumberOp('N')
>>> represent(k, basis=N, ndim=4)
Matrix([
[0],
[0],
[0],
[1]])
"""
@classmethod
def dual_class(self):
return SHOBra
def _eval_innerproduct_SHOBra(self, bra, **hints):
result = KroneckerDelta(self.n, bra.n)
return result
def _represent_default_basis(self, **options):
return self._represent_NumberOp(None, **options)
def _represent_NumberOp(self, basis, **options):
ndim_info = options.get('ndim', 4)
format = options.get('format', 'sympy')
options['spmatrix'] = 'lil'
vector = matrix_zeros(ndim_info, 1, **options)
if isinstance(self.n, Integer):
if self.n >= ndim_info:
return ValueError("N-Dimension too small")
if format == 'scipy.sparse':
vector[int(self.n), 0] = 1.0
vector = vector.tocsr()
elif format == 'numpy':
vector[int(self.n), 0] = 1.0
else:
vector[self.n, 0] = S.One
return vector
else:
return ValueError("Not Numerical State")
class SHOBra(SHOState, Bra):
"""A time-independent Bra in SHO.
Inherits from SHOState and Bra.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the ket
This is usually its quantum numbers or its symbol.
Examples
========
Bra's know about their associated ket:
>>> from sympy.physics.quantum.sho1d import SHOBra
>>> b = SHOBra('b')
>>> b.dual
|b>
>>> b.dual_class()
<class 'sympy.physics.quantum.sho1d.SHOKet'>
Vector representation of a numerical state bra:
>>> from sympy.physics.quantum.sho1d import SHOBra, NumberOp
>>> from sympy.physics.quantum.represent import represent
>>> b = SHOBra(3)
>>> N = NumberOp('N')
>>> represent(b, basis=N, ndim=4)
Matrix([[0, 0, 0, 1]])
"""
@classmethod
def dual_class(self):
return SHOKet
def _represent_default_basis(self, **options):
return self._represent_NumberOp(None, **options)
def _represent_NumberOp(self, basis, **options):
ndim_info = options.get('ndim', 4)
format = options.get('format', 'sympy')
options['spmatrix'] = 'lil'
vector = matrix_zeros(1, ndim_info, **options)
if isinstance(self.n, Integer):
if self.n >= ndim_info:
return ValueError("N-Dimension too small")
if format == 'scipy.sparse':
vector[0, int(self.n)] = 1.0
vector = vector.tocsr()
elif format == 'numpy':
vector[0, int(self.n)] = 1.0
else:
vector[0, self.n] = S.One
return vector
else:
return ValueError("Not Numerical State")
ad = RaisingOp('a')
a = LoweringOp('a')
H = Hamiltonian('H')
N = NumberOp('N')
omega = Symbol('omega')
m = Symbol('m')
|