File size: 17,250 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
"""Pauli operators and states"""

from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.numbers import I
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp
from sympy.physics.quantum import Operator, Ket, Bra
from sympy.physics.quantum import ComplexSpace
from sympy.matrices import Matrix
from sympy.functions.special.tensor_functions import KroneckerDelta

__all__ = [
    'SigmaX', 'SigmaY', 'SigmaZ', 'SigmaMinus', 'SigmaPlus', 'SigmaZKet',
    'SigmaZBra', 'qsimplify_pauli'
]


class SigmaOpBase(Operator):
    """Pauli sigma operator, base class"""

    @property
    def name(self):
        return self.args[0]

    @property
    def use_name(self):
        return bool(self.args[0]) is not False

    @classmethod
    def default_args(self):
        return (False,)

    def __new__(cls, *args, **hints):
        return Operator.__new__(cls, *args, **hints)

    def _eval_commutator_BosonOp(self, other, **hints):
        return S.Zero


class SigmaX(SigmaOpBase):
    """Pauli sigma x operator

    Parameters
    ==========

    name : str
        An optional string that labels the operator. Pauli operators with
        different names commute.

    Examples
    ========

    >>> from sympy.physics.quantum import represent
    >>> from sympy.physics.quantum.pauli import SigmaX
    >>> sx = SigmaX()
    >>> sx
    SigmaX()
    >>> represent(sx)
    Matrix([
    [0, 1],
    [1, 0]])
    """

    def __new__(cls, *args, **hints):
        return SigmaOpBase.__new__(cls, *args, **hints)

    def _eval_commutator_SigmaY(self, other, **hints):
        if self.name != other.name:
            return S.Zero
        else:
            return 2 * I * SigmaZ(self.name)

    def _eval_commutator_SigmaZ(self, other, **hints):
        if self.name != other.name:
            return S.Zero
        else:
            return - 2 * I * SigmaY(self.name)

    def _eval_commutator_BosonOp(self, other, **hints):
        return S.Zero

    def _eval_anticommutator_SigmaY(self, other, **hints):
        return S.Zero

    def _eval_anticommutator_SigmaZ(self, other, **hints):
        return S.Zero

    def _eval_adjoint(self):
        return self

    def _print_contents_latex(self, printer, *args):
        if self.use_name:
            return r'{\sigma_x^{(%s)}}' % str(self.name)
        else:
            return r'{\sigma_x}'

    def _print_contents(self, printer, *args):
        return 'SigmaX()'

    def _eval_power(self, e):
        if e.is_Integer and e.is_positive:
            return SigmaX(self.name).__pow__(int(e) % 2)

    def _represent_default_basis(self, **options):
        format = options.get('format', 'sympy')
        if format == 'sympy':
            return Matrix([[0, 1], [1, 0]])
        else:
            raise NotImplementedError('Representation in format ' +
                                      format + ' not implemented.')


class SigmaY(SigmaOpBase):
    """Pauli sigma y operator

    Parameters
    ==========

    name : str
        An optional string that labels the operator. Pauli operators with
        different names commute.

    Examples
    ========

    >>> from sympy.physics.quantum import represent
    >>> from sympy.physics.quantum.pauli import SigmaY
    >>> sy = SigmaY()
    >>> sy
    SigmaY()
    >>> represent(sy)
    Matrix([
    [0, -I],
    [I,  0]])
    """

    def __new__(cls, *args, **hints):
        return SigmaOpBase.__new__(cls, *args)

    def _eval_commutator_SigmaZ(self, other, **hints):
        if self.name != other.name:
            return S.Zero
        else:
            return 2 * I * SigmaX(self.name)

    def _eval_commutator_SigmaX(self, other, **hints):
        if self.name != other.name:
            return S.Zero
        else:
            return - 2 * I * SigmaZ(self.name)

    def _eval_anticommutator_SigmaX(self, other, **hints):
        return S.Zero

    def _eval_anticommutator_SigmaZ(self, other, **hints):
        return S.Zero

    def _eval_adjoint(self):
        return self

    def _print_contents_latex(self, printer, *args):
        if self.use_name:
            return r'{\sigma_y^{(%s)}}' % str(self.name)
        else:
            return r'{\sigma_y}'

    def _print_contents(self, printer, *args):
        return 'SigmaY()'

    def _eval_power(self, e):
        if e.is_Integer and e.is_positive:
            return SigmaY(self.name).__pow__(int(e) % 2)

    def _represent_default_basis(self, **options):
        format = options.get('format', 'sympy')
        if format == 'sympy':
            return Matrix([[0, -I], [I, 0]])
        else:
            raise NotImplementedError('Representation in format ' +
                                      format + ' not implemented.')


class SigmaZ(SigmaOpBase):
    """Pauli sigma z operator

    Parameters
    ==========

    name : str
        An optional string that labels the operator. Pauli operators with
        different names commute.

    Examples
    ========

    >>> from sympy.physics.quantum import represent
    >>> from sympy.physics.quantum.pauli import SigmaZ
    >>> sz = SigmaZ()
    >>> sz ** 3
    SigmaZ()
    >>> represent(sz)
    Matrix([
    [1,  0],
    [0, -1]])
    """

    def __new__(cls, *args, **hints):
        return SigmaOpBase.__new__(cls, *args)

    def _eval_commutator_SigmaX(self, other, **hints):
        if self.name != other.name:
            return S.Zero
        else:
            return 2 * I * SigmaY(self.name)

    def _eval_commutator_SigmaY(self, other, **hints):
        if self.name != other.name:
            return S.Zero
        else:
            return - 2 * I * SigmaX(self.name)

    def _eval_anticommutator_SigmaX(self, other, **hints):
        return S.Zero

    def _eval_anticommutator_SigmaY(self, other, **hints):
        return S.Zero

    def _eval_adjoint(self):
        return self

    def _print_contents_latex(self, printer, *args):
        if self.use_name:
            return r'{\sigma_z^{(%s)}}' % str(self.name)
        else:
            return r'{\sigma_z}'

    def _print_contents(self, printer, *args):
        return 'SigmaZ()'

    def _eval_power(self, e):
        if e.is_Integer and e.is_positive:
            return SigmaZ(self.name).__pow__(int(e) % 2)

    def _represent_default_basis(self, **options):
        format = options.get('format', 'sympy')
        if format == 'sympy':
            return Matrix([[1, 0], [0, -1]])
        else:
            raise NotImplementedError('Representation in format ' +
                                      format + ' not implemented.')


class SigmaMinus(SigmaOpBase):
    """Pauli sigma minus operator

    Parameters
    ==========

    name : str
        An optional string that labels the operator. Pauli operators with
        different names commute.

    Examples
    ========

    >>> from sympy.physics.quantum import represent, Dagger
    >>> from sympy.physics.quantum.pauli import SigmaMinus
    >>> sm = SigmaMinus()
    >>> sm
    SigmaMinus()
    >>> Dagger(sm)
    SigmaPlus()
    >>> represent(sm)
    Matrix([
    [0, 0],
    [1, 0]])
    """

    def __new__(cls, *args, **hints):
        return SigmaOpBase.__new__(cls, *args)

    def _eval_commutator_SigmaX(self, other, **hints):
        if self.name != other.name:
            return S.Zero
        else:
            return -SigmaZ(self.name)

    def _eval_commutator_SigmaY(self, other, **hints):
        if self.name != other.name:
            return S.Zero
        else:
            return I * SigmaZ(self.name)

    def _eval_commutator_SigmaZ(self, other, **hints):
        return 2 * self

    def _eval_commutator_SigmaMinus(self, other, **hints):
        return SigmaZ(self.name)

    def _eval_anticommutator_SigmaZ(self, other, **hints):
        return S.Zero

    def _eval_anticommutator_SigmaX(self, other, **hints):
        return S.One

    def _eval_anticommutator_SigmaY(self, other, **hints):
        return I * S.NegativeOne

    def _eval_anticommutator_SigmaPlus(self, other, **hints):
        return S.One

    def _eval_adjoint(self):
        return SigmaPlus(self.name)

    def _eval_power(self, e):
        if e.is_Integer and e.is_positive:
            return S.Zero

    def _print_contents_latex(self, printer, *args):
        if self.use_name:
            return r'{\sigma_-^{(%s)}}' % str(self.name)
        else:
            return r'{\sigma_-}'

    def _print_contents(self, printer, *args):
        return 'SigmaMinus()'

    def _represent_default_basis(self, **options):
        format = options.get('format', 'sympy')
        if format == 'sympy':
            return Matrix([[0, 0], [1, 0]])
        else:
            raise NotImplementedError('Representation in format ' +
                                      format + ' not implemented.')


class SigmaPlus(SigmaOpBase):
    """Pauli sigma plus operator

    Parameters
    ==========

    name : str
        An optional string that labels the operator. Pauli operators with
        different names commute.

    Examples
    ========

    >>> from sympy.physics.quantum import represent, Dagger
    >>> from sympy.physics.quantum.pauli import SigmaPlus
    >>> sp = SigmaPlus()
    >>> sp
    SigmaPlus()
    >>> Dagger(sp)
    SigmaMinus()
    >>> represent(sp)
    Matrix([
    [0, 1],
    [0, 0]])
    """

    def __new__(cls, *args, **hints):
        return SigmaOpBase.__new__(cls, *args)

    def _eval_commutator_SigmaX(self, other, **hints):
        if self.name != other.name:
            return S.Zero
        else:
            return SigmaZ(self.name)

    def _eval_commutator_SigmaY(self, other, **hints):
        if self.name != other.name:
            return S.Zero
        else:
            return I * SigmaZ(self.name)

    def _eval_commutator_SigmaZ(self, other, **hints):
        if self.name != other.name:
            return S.Zero
        else:
            return -2 * self

    def _eval_commutator_SigmaMinus(self, other, **hints):
        return SigmaZ(self.name)

    def _eval_anticommutator_SigmaZ(self, other, **hints):
        return S.Zero

    def _eval_anticommutator_SigmaX(self, other, **hints):
        return S.One

    def _eval_anticommutator_SigmaY(self, other, **hints):
        return I

    def _eval_anticommutator_SigmaMinus(self, other, **hints):
        return S.One

    def _eval_adjoint(self):
        return SigmaMinus(self.name)

    def _eval_mul(self, other):
        return self * other

    def _eval_power(self, e):
        if e.is_Integer and e.is_positive:
            return S.Zero

    def _print_contents_latex(self, printer, *args):
        if self.use_name:
            return r'{\sigma_+^{(%s)}}' % str(self.name)
        else:
            return r'{\sigma_+}'

    def _print_contents(self, printer, *args):
        return 'SigmaPlus()'

    def _represent_default_basis(self, **options):
        format = options.get('format', 'sympy')
        if format == 'sympy':
            return Matrix([[0, 1], [0, 0]])
        else:
            raise NotImplementedError('Representation in format ' +
                                      format + ' not implemented.')


class SigmaZKet(Ket):
    """Ket for a two-level system quantum system.

    Parameters
    ==========

    n : Number
        The state number (0 or 1).

    """

    def __new__(cls, n):
        if n not in (0, 1):
            raise ValueError("n must be 0 or 1")
        return Ket.__new__(cls, n)

    @property
    def n(self):
        return self.label[0]

    @classmethod
    def dual_class(self):
        return SigmaZBra

    @classmethod
    def _eval_hilbert_space(cls, label):
        return ComplexSpace(2)

    def _eval_innerproduct_SigmaZBra(self, bra, **hints):
        return KroneckerDelta(self.n, bra.n)

    def _apply_from_right_to_SigmaZ(self, op, **options):
        if self.n == 0:
            return self
        else:
            return S.NegativeOne * self

    def _apply_from_right_to_SigmaX(self, op, **options):
        return SigmaZKet(1) if self.n == 0 else SigmaZKet(0)

    def _apply_from_right_to_SigmaY(self, op, **options):
        return I * SigmaZKet(1) if self.n == 0 else (-I) * SigmaZKet(0)

    def _apply_from_right_to_SigmaMinus(self, op, **options):
        if self.n == 0:
            return SigmaZKet(1)
        else:
            return S.Zero

    def _apply_from_right_to_SigmaPlus(self, op, **options):
        if self.n == 0:
            return S.Zero
        else:
            return SigmaZKet(0)

    def _represent_default_basis(self, **options):
        format = options.get('format', 'sympy')
        if format == 'sympy':
            return Matrix([[1], [0]]) if self.n == 0 else Matrix([[0], [1]])
        else:
            raise NotImplementedError('Representation in format ' +
                                      format + ' not implemented.')


class SigmaZBra(Bra):
    """Bra for a two-level quantum system.

    Parameters
    ==========

    n : Number
        The state number (0 or 1).

    """

    def __new__(cls, n):
        if n not in (0, 1):
            raise ValueError("n must be 0 or 1")
        return Bra.__new__(cls, n)

    @property
    def n(self):
        return self.label[0]

    @classmethod
    def dual_class(self):
        return SigmaZKet


def _qsimplify_pauli_product(a, b):
    """
    Internal helper function for simplifying products of Pauli operators.
    """
    if not (isinstance(a, SigmaOpBase) and isinstance(b, SigmaOpBase)):
        return Mul(a, b)

    if a.name != b.name:
        # Pauli matrices with different labels commute; sort by name
        if a.name < b.name:
            return Mul(a, b)
        else:
            return Mul(b, a)

    elif isinstance(a, SigmaX):

        if isinstance(b, SigmaX):
            return S.One

        if isinstance(b, SigmaY):
            return I * SigmaZ(a.name)

        if isinstance(b, SigmaZ):
            return - I * SigmaY(a.name)

        if isinstance(b, SigmaMinus):
            return (S.Half + SigmaZ(a.name)/2)

        if isinstance(b, SigmaPlus):
            return (S.Half - SigmaZ(a.name)/2)

    elif isinstance(a, SigmaY):

        if isinstance(b, SigmaX):
            return - I * SigmaZ(a.name)

        if isinstance(b, SigmaY):
            return S.One

        if isinstance(b, SigmaZ):
            return I * SigmaX(a.name)

        if isinstance(b, SigmaMinus):
            return -I * (S.One + SigmaZ(a.name))/2

        if isinstance(b, SigmaPlus):
            return I * (S.One - SigmaZ(a.name))/2

    elif isinstance(a, SigmaZ):

        if isinstance(b, SigmaX):
            return I * SigmaY(a.name)

        if isinstance(b, SigmaY):
            return - I * SigmaX(a.name)

        if isinstance(b, SigmaZ):
            return S.One

        if isinstance(b, SigmaMinus):
            return - SigmaMinus(a.name)

        if isinstance(b, SigmaPlus):
            return SigmaPlus(a.name)

    elif isinstance(a, SigmaMinus):

        if isinstance(b, SigmaX):
            return (S.One - SigmaZ(a.name))/2

        if isinstance(b, SigmaY):
            return - I * (S.One - SigmaZ(a.name))/2

        if isinstance(b, SigmaZ):
            # (SigmaX(a.name) - I * SigmaY(a.name))/2
            return SigmaMinus(b.name)

        if isinstance(b, SigmaMinus):
            return S.Zero

        if isinstance(b, SigmaPlus):
            return S.Half - SigmaZ(a.name)/2

    elif isinstance(a, SigmaPlus):

        if isinstance(b, SigmaX):
            return (S.One + SigmaZ(a.name))/2

        if isinstance(b, SigmaY):
            return I * (S.One + SigmaZ(a.name))/2

        if isinstance(b, SigmaZ):
            #-(SigmaX(a.name) + I * SigmaY(a.name))/2
            return -SigmaPlus(a.name)

        if isinstance(b, SigmaMinus):
            return (S.One + SigmaZ(a.name))/2

        if isinstance(b, SigmaPlus):
            return S.Zero

    else:
        return a * b


def qsimplify_pauli(e):
    """
    Simplify an expression that includes products of pauli operators.

    Parameters
    ==========

    e : expression
        An expression that contains products of Pauli operators that is
        to be simplified.

    Examples
    ========

    >>> from sympy.physics.quantum.pauli import SigmaX, SigmaY
    >>> from sympy.physics.quantum.pauli import qsimplify_pauli
    >>> sx, sy = SigmaX(), SigmaY()
    >>> sx * sy
    SigmaX()*SigmaY()
    >>> qsimplify_pauli(sx * sy)
    I*SigmaZ()
    """
    if isinstance(e, Operator):
        return e

    if isinstance(e, (Add, Pow, exp)):
        t = type(e)
        return t(*(qsimplify_pauli(arg) for arg in e.args))

    if isinstance(e, Mul):

        c, nc = e.args_cnc()

        nc_s = []
        while nc:
            curr = nc.pop(0)

            while (len(nc) and
                   isinstance(curr, SigmaOpBase) and
                   isinstance(nc[0], SigmaOpBase) and
                   curr.name == nc[0].name):

                x = nc.pop(0)
                y = _qsimplify_pauli_product(curr, x)
                c1, nc1 = y.args_cnc()
                curr = Mul(*nc1)
                c = c + c1

            nc_s.append(curr)

        return Mul(*c) * Mul(*nc_s)

    return e