File size: 19,632 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
"""Hilbert spaces for quantum mechanics.

Authors:
* Brian Granger
* Matt Curry
"""

from functools import reduce

from sympy.core.basic import Basic
from sympy.core.singleton import S
from sympy.core.sympify import sympify
from sympy.sets.sets import Interval
from sympy.printing.pretty.stringpict import prettyForm
from sympy.physics.quantum.qexpr import QuantumError


__all__ = [
    'HilbertSpaceError',
    'HilbertSpace',
    'TensorProductHilbertSpace',
    'TensorPowerHilbertSpace',
    'DirectSumHilbertSpace',
    'ComplexSpace',
    'L2',
    'FockSpace'
]

#-----------------------------------------------------------------------------
# Main objects
#-----------------------------------------------------------------------------


class HilbertSpaceError(QuantumError):
    pass

#-----------------------------------------------------------------------------
# Main objects
#-----------------------------------------------------------------------------


class HilbertSpace(Basic):
    """An abstract Hilbert space for quantum mechanics.

    In short, a Hilbert space is an abstract vector space that is complete
    with inner products defined [1]_.

    Examples
    ========

    >>> from sympy.physics.quantum.hilbert import HilbertSpace
    >>> hs = HilbertSpace()
    >>> hs
    H

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Hilbert_space
    """

    def __new__(cls):
        obj = Basic.__new__(cls)
        return obj

    @property
    def dimension(self):
        """Return the Hilbert dimension of the space."""
        raise NotImplementedError('This Hilbert space has no dimension.')

    def __add__(self, other):
        return DirectSumHilbertSpace(self, other)

    def __radd__(self, other):
        return DirectSumHilbertSpace(other, self)

    def __mul__(self, other):
        return TensorProductHilbertSpace(self, other)

    def __rmul__(self, other):
        return TensorProductHilbertSpace(other, self)

    def __pow__(self, other, mod=None):
        if mod is not None:
            raise ValueError('The third argument to __pow__ is not supported \
            for Hilbert spaces.')
        return TensorPowerHilbertSpace(self, other)

    def __contains__(self, other):
        """Is the operator or state in this Hilbert space.

        This is checked by comparing the classes of the Hilbert spaces, not
        the instances. This is to allow Hilbert Spaces with symbolic
        dimensions.
        """
        if other.hilbert_space.__class__ == self.__class__:
            return True
        else:
            return False

    def _sympystr(self, printer, *args):
        return 'H'

    def _pretty(self, printer, *args):
        ustr = '\N{LATIN CAPITAL LETTER H}'
        return prettyForm(ustr)

    def _latex(self, printer, *args):
        return r'\mathcal{H}'


class ComplexSpace(HilbertSpace):
    """Finite dimensional Hilbert space of complex vectors.

    The elements of this Hilbert space are n-dimensional complex valued
    vectors with the usual inner product that takes the complex conjugate
    of the vector on the right.

    A classic example of this type of Hilbert space is spin-1/2, which is
    ``ComplexSpace(2)``. Generalizing to spin-s, the space is
    ``ComplexSpace(2*s+1)``.  Quantum computing with N qubits is done with the
    direct product space ``ComplexSpace(2)**N``.

    Examples
    ========

    >>> from sympy import symbols
    >>> from sympy.physics.quantum.hilbert import ComplexSpace
    >>> c1 = ComplexSpace(2)
    >>> c1
    C(2)
    >>> c1.dimension
    2

    >>> n = symbols('n')
    >>> c2 = ComplexSpace(n)
    >>> c2
    C(n)
    >>> c2.dimension
    n

    """

    def __new__(cls, dimension):
        dimension = sympify(dimension)
        r = cls.eval(dimension)
        if isinstance(r, Basic):
            return r
        obj = Basic.__new__(cls, dimension)
        return obj

    @classmethod
    def eval(cls, dimension):
        if len(dimension.atoms()) == 1:
            if not (dimension.is_Integer and dimension > 0 or dimension is S.Infinity
            or dimension.is_Symbol):
                raise TypeError('The dimension of a ComplexSpace can only'
                                'be a positive integer, oo, or a Symbol: %r'
                                % dimension)
        else:
            for dim in dimension.atoms():
                if not (dim.is_Integer or dim is S.Infinity or dim.is_Symbol):
                    raise TypeError('The dimension of a ComplexSpace can only'
                                    ' contain integers, oo, or a Symbol: %r'
                                    % dim)

    @property
    def dimension(self):
        return self.args[0]

    def _sympyrepr(self, printer, *args):
        return "%s(%s)" % (self.__class__.__name__,
                           printer._print(self.dimension, *args))

    def _sympystr(self, printer, *args):
        return "C(%s)" % printer._print(self.dimension, *args)

    def _pretty(self, printer, *args):
        ustr = '\N{LATIN CAPITAL LETTER C}'
        pform_exp = printer._print(self.dimension, *args)
        pform_base = prettyForm(ustr)
        return pform_base**pform_exp

    def _latex(self, printer, *args):
        return r'\mathcal{C}^{%s}' % printer._print(self.dimension, *args)


class L2(HilbertSpace):
    """The Hilbert space of square integrable functions on an interval.

    An L2 object takes in a single SymPy Interval argument which represents
    the interval its functions (vectors) are defined on.

    Examples
    ========

    >>> from sympy import Interval, oo
    >>> from sympy.physics.quantum.hilbert import L2
    >>> hs = L2(Interval(0,oo))
    >>> hs
    L2(Interval(0, oo))
    >>> hs.dimension
    oo
    >>> hs.interval
    Interval(0, oo)

    """

    def __new__(cls, interval):
        if not isinstance(interval, Interval):
            raise TypeError('L2 interval must be an Interval instance: %r'
            % interval)
        obj = Basic.__new__(cls, interval)
        return obj

    @property
    def dimension(self):
        return S.Infinity

    @property
    def interval(self):
        return self.args[0]

    def _sympyrepr(self, printer, *args):
        return "L2(%s)" % printer._print(self.interval, *args)

    def _sympystr(self, printer, *args):
        return "L2(%s)" % printer._print(self.interval, *args)

    def _pretty(self, printer, *args):
        pform_exp = prettyForm('2')
        pform_base = prettyForm('L')
        return pform_base**pform_exp

    def _latex(self, printer, *args):
        interval = printer._print(self.interval, *args)
        return r'{\mathcal{L}^2}\left( %s \right)' % interval


class FockSpace(HilbertSpace):
    """The Hilbert space for second quantization.

    Technically, this Hilbert space is a infinite direct sum of direct
    products of single particle Hilbert spaces [1]_. This is a mess, so we have
    a class to represent it directly.

    Examples
    ========

    >>> from sympy.physics.quantum.hilbert import FockSpace
    >>> hs = FockSpace()
    >>> hs
    F
    >>> hs.dimension
    oo

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Fock_space
    """

    def __new__(cls):
        obj = Basic.__new__(cls)
        return obj

    @property
    def dimension(self):
        return S.Infinity

    def _sympyrepr(self, printer, *args):
        return "FockSpace()"

    def _sympystr(self, printer, *args):
        return "F"

    def _pretty(self, printer, *args):
        ustr = '\N{LATIN CAPITAL LETTER F}'
        return prettyForm(ustr)

    def _latex(self, printer, *args):
        return r'\mathcal{F}'


class TensorProductHilbertSpace(HilbertSpace):
    """A tensor product of Hilbert spaces [1]_.

    The tensor product between Hilbert spaces is represented by the
    operator ``*`` Products of the same Hilbert space will be combined into
    tensor powers.

    A ``TensorProductHilbertSpace`` object takes in an arbitrary number of
    ``HilbertSpace`` objects as its arguments. In addition, multiplication of
    ``HilbertSpace`` objects will automatically return this tensor product
    object.

    Examples
    ========

    >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace
    >>> from sympy import symbols

    >>> c = ComplexSpace(2)
    >>> f = FockSpace()
    >>> hs = c*f
    >>> hs
    C(2)*F
    >>> hs.dimension
    oo
    >>> hs.spaces
    (C(2), F)

    >>> c1 = ComplexSpace(2)
    >>> n = symbols('n')
    >>> c2 = ComplexSpace(n)
    >>> hs = c1*c2
    >>> hs
    C(2)*C(n)
    >>> hs.dimension
    2*n

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Tensor_products
    """

    def __new__(cls, *args):
        r = cls.eval(args)
        if isinstance(r, Basic):
            return r
        obj = Basic.__new__(cls, *args)
        return obj

    @classmethod
    def eval(cls, args):
        """Evaluates the direct product."""
        new_args = []
        recall = False
        #flatten arguments
        for arg in args:
            if isinstance(arg, TensorProductHilbertSpace):
                new_args.extend(arg.args)
                recall = True
            elif isinstance(arg, (HilbertSpace, TensorPowerHilbertSpace)):
                new_args.append(arg)
            else:
                raise TypeError('Hilbert spaces can only be multiplied by \
                other Hilbert spaces: %r' % arg)
        #combine like arguments into direct powers
        comb_args = []
        prev_arg = None
        for new_arg in new_args:
            if prev_arg is not None:
                if isinstance(new_arg, TensorPowerHilbertSpace) and \
                    isinstance(prev_arg, TensorPowerHilbertSpace) and \
                        new_arg.base == prev_arg.base:
                    prev_arg = new_arg.base**(new_arg.exp + prev_arg.exp)
                elif isinstance(new_arg, TensorPowerHilbertSpace) and \
                        new_arg.base == prev_arg:
                    prev_arg = prev_arg**(new_arg.exp + 1)
                elif isinstance(prev_arg, TensorPowerHilbertSpace) and \
                        new_arg == prev_arg.base:
                    prev_arg = new_arg**(prev_arg.exp + 1)
                elif new_arg == prev_arg:
                    prev_arg = new_arg**2
                else:
                    comb_args.append(prev_arg)
                    prev_arg = new_arg
            elif prev_arg is None:
                prev_arg = new_arg
        comb_args.append(prev_arg)
        if recall:
            return TensorProductHilbertSpace(*comb_args)
        elif len(comb_args) == 1:
            return TensorPowerHilbertSpace(comb_args[0].base, comb_args[0].exp)
        else:
            return None

    @property
    def dimension(self):
        arg_list = [arg.dimension for arg in self.args]
        if S.Infinity in arg_list:
            return S.Infinity
        else:
            return reduce(lambda x, y: x*y, arg_list)

    @property
    def spaces(self):
        """A tuple of the Hilbert spaces in this tensor product."""
        return self.args

    def _spaces_printer(self, printer, *args):
        spaces_strs = []
        for arg in self.args:
            s = printer._print(arg, *args)
            if isinstance(arg, DirectSumHilbertSpace):
                s = '(%s)' % s
            spaces_strs.append(s)
        return spaces_strs

    def _sympyrepr(self, printer, *args):
        spaces_reprs = self._spaces_printer(printer, *args)
        return "TensorProductHilbertSpace(%s)" % ','.join(spaces_reprs)

    def _sympystr(self, printer, *args):
        spaces_strs = self._spaces_printer(printer, *args)
        return '*'.join(spaces_strs)

    def _pretty(self, printer, *args):
        length = len(self.args)
        pform = printer._print('', *args)
        for i in range(length):
            next_pform = printer._print(self.args[i], *args)
            if isinstance(self.args[i], (DirectSumHilbertSpace,
                          TensorProductHilbertSpace)):
                next_pform = prettyForm(
                    *next_pform.parens(left='(', right=')')
                )
            pform = prettyForm(*pform.right(next_pform))
            if i != length - 1:
                if printer._use_unicode:
                    pform = prettyForm(*pform.right(' ' + '\N{N-ARY CIRCLED TIMES OPERATOR}' + ' '))
                else:
                    pform = prettyForm(*pform.right(' x '))
        return pform

    def _latex(self, printer, *args):
        length = len(self.args)
        s = ''
        for i in range(length):
            arg_s = printer._print(self.args[i], *args)
            if isinstance(self.args[i], (DirectSumHilbertSpace,
                 TensorProductHilbertSpace)):
                arg_s = r'\left(%s\right)' % arg_s
            s = s + arg_s
            if i != length - 1:
                s = s + r'\otimes '
        return s


class DirectSumHilbertSpace(HilbertSpace):
    """A direct sum of Hilbert spaces [1]_.

    This class uses the ``+`` operator to represent direct sums between
    different Hilbert spaces.

    A ``DirectSumHilbertSpace`` object takes in an arbitrary number of
    ``HilbertSpace`` objects as its arguments. Also, addition of
    ``HilbertSpace`` objects will automatically return a direct sum object.

    Examples
    ========

    >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace

    >>> c = ComplexSpace(2)
    >>> f = FockSpace()
    >>> hs = c+f
    >>> hs
    C(2)+F
    >>> hs.dimension
    oo
    >>> list(hs.spaces)
    [C(2), F]

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Direct_sums
    """
    def __new__(cls, *args):
        r = cls.eval(args)
        if isinstance(r, Basic):
            return r
        obj = Basic.__new__(cls, *args)
        return obj

    @classmethod
    def eval(cls, args):
        """Evaluates the direct product."""
        new_args = []
        recall = False
        #flatten arguments
        for arg in args:
            if isinstance(arg, DirectSumHilbertSpace):
                new_args.extend(arg.args)
                recall = True
            elif isinstance(arg, HilbertSpace):
                new_args.append(arg)
            else:
                raise TypeError('Hilbert spaces can only be summed with other \
                Hilbert spaces: %r' % arg)
        if recall:
            return DirectSumHilbertSpace(*new_args)
        else:
            return None

    @property
    def dimension(self):
        arg_list = [arg.dimension for arg in self.args]
        if S.Infinity in arg_list:
            return S.Infinity
        else:
            return reduce(lambda x, y: x + y, arg_list)

    @property
    def spaces(self):
        """A tuple of the Hilbert spaces in this direct sum."""
        return self.args

    def _sympyrepr(self, printer, *args):
        spaces_reprs = [printer._print(arg, *args) for arg in self.args]
        return "DirectSumHilbertSpace(%s)" % ','.join(spaces_reprs)

    def _sympystr(self, printer, *args):
        spaces_strs = [printer._print(arg, *args) for arg in self.args]
        return '+'.join(spaces_strs)

    def _pretty(self, printer, *args):
        length = len(self.args)
        pform = printer._print('', *args)
        for i in range(length):
            next_pform = printer._print(self.args[i], *args)
            if isinstance(self.args[i], (DirectSumHilbertSpace,
                          TensorProductHilbertSpace)):
                next_pform = prettyForm(
                    *next_pform.parens(left='(', right=')')
                )
            pform = prettyForm(*pform.right(next_pform))
            if i != length - 1:
                if printer._use_unicode:
                    pform = prettyForm(*pform.right(' \N{CIRCLED PLUS} '))
                else:
                    pform = prettyForm(*pform.right(' + '))
        return pform

    def _latex(self, printer, *args):
        length = len(self.args)
        s = ''
        for i in range(length):
            arg_s = printer._print(self.args[i], *args)
            if isinstance(self.args[i], (DirectSumHilbertSpace,
                 TensorProductHilbertSpace)):
                arg_s = r'\left(%s\right)' % arg_s
            s = s + arg_s
            if i != length - 1:
                s = s + r'\oplus '
        return s


class TensorPowerHilbertSpace(HilbertSpace):
    """An exponentiated Hilbert space [1]_.

    Tensor powers (repeated tensor products) are represented by the
    operator ``**`` Identical Hilbert spaces that are multiplied together
    will be automatically combined into a single tensor power object.

    Any Hilbert space, product, or sum may be raised to a tensor power. The
    ``TensorPowerHilbertSpace`` takes two arguments: the Hilbert space; and the
    tensor power (number).

    Examples
    ========

    >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace
    >>> from sympy import symbols

    >>> n = symbols('n')
    >>> c = ComplexSpace(2)
    >>> hs = c**n
    >>> hs
    C(2)**n
    >>> hs.dimension
    2**n

    >>> c = ComplexSpace(2)
    >>> c*c
    C(2)**2
    >>> f = FockSpace()
    >>> c*f*f
    C(2)*F**2

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Tensor_products
    """

    def __new__(cls, *args):
        r = cls.eval(args)
        if isinstance(r, Basic):
            return r
        return Basic.__new__(cls, *r)

    @classmethod
    def eval(cls, args):
        new_args = args[0], sympify(args[1])
        exp = new_args[1]
        #simplify hs**1 -> hs
        if exp is S.One:
            return args[0]
        #simplify hs**0 -> 1
        if exp is S.Zero:
            return S.One
        #check (and allow) for hs**(x+42+y...) case
        if len(exp.atoms()) == 1:
            if not (exp.is_Integer and exp >= 0 or exp.is_Symbol):
                raise ValueError('Hilbert spaces can only be raised to \
                positive integers or Symbols: %r' % exp)
        else:
            for power in exp.atoms():
                if not (power.is_Integer or power.is_Symbol):
                    raise ValueError('Tensor powers can only contain integers \
                    or Symbols: %r' % power)
        return new_args

    @property
    def base(self):
        return self.args[0]

    @property
    def exp(self):
        return self.args[1]

    @property
    def dimension(self):
        if self.base.dimension is S.Infinity:
            return S.Infinity
        else:
            return self.base.dimension**self.exp

    def _sympyrepr(self, printer, *args):
        return "TensorPowerHilbertSpace(%s,%s)" % (printer._print(self.base,
        *args), printer._print(self.exp, *args))

    def _sympystr(self, printer, *args):
        return "%s**%s" % (printer._print(self.base, *args),
        printer._print(self.exp, *args))

    def _pretty(self, printer, *args):
        pform_exp = printer._print(self.exp, *args)
        if printer._use_unicode:
            pform_exp = prettyForm(*pform_exp.left(prettyForm('\N{N-ARY CIRCLED TIMES OPERATOR}')))
        else:
            pform_exp = prettyForm(*pform_exp.left(prettyForm('x')))
        pform_base = printer._print(self.base, *args)
        return pform_base**pform_exp

    def _latex(self, printer, *args):
        base = printer._print(self.base, *args)
        exp = printer._print(self.exp, *args)
        return r'{%s}^{\otimes %s}' % (base, exp)