Spaces:
Sleeping
Sleeping
File size: 42,588 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 |
"""An implementation of gates that act on qubits.
Gates are unitary operators that act on the space of qubits.
Medium Term Todo:
* Optimize Gate._apply_operators_Qubit to remove the creation of many
intermediate Qubit objects.
* Add commutation relationships to all operators and use this in gate_sort.
* Fix gate_sort and gate_simp.
* Get multi-target UGates plotting properly.
* Get UGate to work with either sympy/numpy matrices and output either
format. This should also use the matrix slots.
"""
from itertools import chain
import random
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Integer)
from sympy.core.power import Pow
from sympy.core.numbers import Number
from sympy.core.singleton import S as _S
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import _sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.physics.quantum.anticommutator import AntiCommutator
from sympy.physics.quantum.commutator import Commutator
from sympy.physics.quantum.qexpr import QuantumError
from sympy.physics.quantum.hilbert import ComplexSpace
from sympy.physics.quantum.operator import (UnitaryOperator, Operator,
HermitianOperator)
from sympy.physics.quantum.matrixutils import matrix_tensor_product, matrix_eye
from sympy.physics.quantum.matrixcache import matrix_cache
from sympy.matrices.matrixbase import MatrixBase
from sympy.utilities.iterables import is_sequence
__all__ = [
'Gate',
'CGate',
'UGate',
'OneQubitGate',
'TwoQubitGate',
'IdentityGate',
'HadamardGate',
'XGate',
'YGate',
'ZGate',
'TGate',
'PhaseGate',
'SwapGate',
'CNotGate',
# Aliased gate names
'CNOT',
'SWAP',
'H',
'X',
'Y',
'Z',
'T',
'S',
'Phase',
'normalized',
'gate_sort',
'gate_simp',
'random_circuit',
'CPHASE',
'CGateS',
]
#-----------------------------------------------------------------------------
# Gate Super-Classes
#-----------------------------------------------------------------------------
_normalized = True
def _max(*args, **kwargs):
if "key" not in kwargs:
kwargs["key"] = default_sort_key
return max(*args, **kwargs)
def _min(*args, **kwargs):
if "key" not in kwargs:
kwargs["key"] = default_sort_key
return min(*args, **kwargs)
def normalized(normalize):
r"""Set flag controlling normalization of Hadamard gates by `1/\sqrt{2}`.
This is a global setting that can be used to simplify the look of various
expressions, by leaving off the leading `1/\sqrt{2}` of the Hadamard gate.
Parameters
----------
normalize : bool
Should the Hadamard gate include the `1/\sqrt{2}` normalization factor?
When True, the Hadamard gate will have the `1/\sqrt{2}`. When False, the
Hadamard gate will not have this factor.
"""
global _normalized
_normalized = normalize
def _validate_targets_controls(tandc):
tandc = list(tandc)
# Check for integers
for bit in tandc:
if not bit.is_Integer and not bit.is_Symbol:
raise TypeError('Integer expected, got: %r' % tandc[bit])
# Detect duplicates
if len(set(tandc)) != len(tandc):
raise QuantumError(
'Target/control qubits in a gate cannot be duplicated'
)
class Gate(UnitaryOperator):
"""Non-controlled unitary gate operator that acts on qubits.
This is a general abstract gate that needs to be subclassed to do anything
useful.
Parameters
----------
label : tuple, int
A list of the target qubits (as ints) that the gate will apply to.
Examples
========
"""
_label_separator = ','
gate_name = 'G'
gate_name_latex = 'G'
#-------------------------------------------------------------------------
# Initialization/creation
#-------------------------------------------------------------------------
@classmethod
def _eval_args(cls, args):
args = Tuple(*UnitaryOperator._eval_args(args))
_validate_targets_controls(args)
return args
@classmethod
def _eval_hilbert_space(cls, args):
"""This returns the smallest possible Hilbert space."""
return ComplexSpace(2)**(_max(args) + 1)
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def nqubits(self):
"""The total number of qubits this gate acts on.
For controlled gate subclasses this includes both target and control
qubits, so that, for examples the CNOT gate acts on 2 qubits.
"""
return len(self.targets)
@property
def min_qubits(self):
"""The minimum number of qubits this gate needs to act on."""
return _max(self.targets) + 1
@property
def targets(self):
"""A tuple of target qubits."""
return self.label
@property
def gate_name_plot(self):
return r'$%s$' % self.gate_name_latex
#-------------------------------------------------------------------------
# Gate methods
#-------------------------------------------------------------------------
def get_target_matrix(self, format='sympy'):
"""The matrix representation of the target part of the gate.
Parameters
----------
format : str
The format string ('sympy','numpy', etc.)
"""
raise NotImplementedError(
'get_target_matrix is not implemented in Gate.')
#-------------------------------------------------------------------------
# Apply
#-------------------------------------------------------------------------
def _apply_operator_IntQubit(self, qubits, **options):
"""Redirect an apply from IntQubit to Qubit"""
return self._apply_operator_Qubit(qubits, **options)
def _apply_operator_Qubit(self, qubits, **options):
"""Apply this gate to a Qubit."""
# Check number of qubits this gate acts on.
if qubits.nqubits < self.min_qubits:
raise QuantumError(
'Gate needs a minimum of %r qubits to act on, got: %r' %
(self.min_qubits, qubits.nqubits)
)
# If the controls are not met, just return
if isinstance(self, CGate):
if not self.eval_controls(qubits):
return qubits
targets = self.targets
target_matrix = self.get_target_matrix(format='sympy')
# Find which column of the target matrix this applies to.
column_index = 0
n = 1
for target in targets:
column_index += n*qubits[target]
n = n << 1
column = target_matrix[:, int(column_index)]
# Now apply each column element to the qubit.
result = 0
for index in range(column.rows):
# TODO: This can be optimized to reduce the number of Qubit
# creations. We should simply manipulate the raw list of qubit
# values and then build the new Qubit object once.
# Make a copy of the incoming qubits.
new_qubit = qubits.__class__(*qubits.args)
# Flip the bits that need to be flipped.
for bit, target in enumerate(targets):
if new_qubit[target] != (index >> bit) & 1:
new_qubit = new_qubit.flip(target)
# The value in that row and column times the flipped-bit qubit
# is the result for that part.
result += column[index]*new_qubit
return result
#-------------------------------------------------------------------------
# Represent
#-------------------------------------------------------------------------
def _represent_default_basis(self, **options):
return self._represent_ZGate(None, **options)
def _represent_ZGate(self, basis, **options):
format = options.get('format', 'sympy')
nqubits = options.get('nqubits', 0)
if nqubits == 0:
raise QuantumError(
'The number of qubits must be given as nqubits.')
# Make sure we have enough qubits for the gate.
if nqubits < self.min_qubits:
raise QuantumError(
'The number of qubits %r is too small for the gate.' % nqubits
)
target_matrix = self.get_target_matrix(format)
targets = self.targets
if isinstance(self, CGate):
controls = self.controls
else:
controls = []
m = represent_zbasis(
controls, targets, target_matrix, nqubits, format
)
return m
#-------------------------------------------------------------------------
# Print methods
#-------------------------------------------------------------------------
def _sympystr(self, printer, *args):
label = self._print_label(printer, *args)
return '%s(%s)' % (self.gate_name, label)
def _pretty(self, printer, *args):
a = stringPict(self.gate_name)
b = self._print_label_pretty(printer, *args)
return self._print_subscript_pretty(a, b)
def _latex(self, printer, *args):
label = self._print_label(printer, *args)
return '%s_{%s}' % (self.gate_name_latex, label)
def plot_gate(self, axes, gate_idx, gate_grid, wire_grid):
raise NotImplementedError('plot_gate is not implemented.')
class CGate(Gate):
"""A general unitary gate with control qubits.
A general control gate applies a target gate to a set of targets if all
of the control qubits have a particular values (set by
``CGate.control_value``).
Parameters
----------
label : tuple
The label in this case has the form (controls, gate), where controls
is a tuple/list of control qubits (as ints) and gate is a ``Gate``
instance that is the target operator.
Examples
========
"""
gate_name = 'C'
gate_name_latex = 'C'
# The values this class controls for.
control_value = _S.One
simplify_cgate = False
#-------------------------------------------------------------------------
# Initialization
#-------------------------------------------------------------------------
@classmethod
def _eval_args(cls, args):
# _eval_args has the right logic for the controls argument.
controls = args[0]
gate = args[1]
if not is_sequence(controls):
controls = (controls,)
controls = UnitaryOperator._eval_args(controls)
_validate_targets_controls(chain(controls, gate.targets))
return (Tuple(*controls), gate)
@classmethod
def _eval_hilbert_space(cls, args):
"""This returns the smallest possible Hilbert space."""
return ComplexSpace(2)**_max(_max(args[0]) + 1, args[1].min_qubits)
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def nqubits(self):
"""The total number of qubits this gate acts on.
For controlled gate subclasses this includes both target and control
qubits, so that, for examples the CNOT gate acts on 2 qubits.
"""
return len(self.targets) + len(self.controls)
@property
def min_qubits(self):
"""The minimum number of qubits this gate needs to act on."""
return _max(_max(self.controls), _max(self.targets)) + 1
@property
def targets(self):
"""A tuple of target qubits."""
return self.gate.targets
@property
def controls(self):
"""A tuple of control qubits."""
return tuple(self.label[0])
@property
def gate(self):
"""The non-controlled gate that will be applied to the targets."""
return self.label[1]
#-------------------------------------------------------------------------
# Gate methods
#-------------------------------------------------------------------------
def get_target_matrix(self, format='sympy'):
return self.gate.get_target_matrix(format)
def eval_controls(self, qubit):
"""Return True/False to indicate if the controls are satisfied."""
return all(qubit[bit] == self.control_value for bit in self.controls)
def decompose(self, **options):
"""Decompose the controlled gate into CNOT and single qubits gates."""
if len(self.controls) == 1:
c = self.controls[0]
t = self.gate.targets[0]
if isinstance(self.gate, YGate):
g1 = PhaseGate(t)
g2 = CNotGate(c, t)
g3 = PhaseGate(t)
g4 = ZGate(t)
return g1*g2*g3*g4
if isinstance(self.gate, ZGate):
g1 = HadamardGate(t)
g2 = CNotGate(c, t)
g3 = HadamardGate(t)
return g1*g2*g3
else:
return self
#-------------------------------------------------------------------------
# Print methods
#-------------------------------------------------------------------------
def _print_label(self, printer, *args):
controls = self._print_sequence(self.controls, ',', printer, *args)
gate = printer._print(self.gate, *args)
return '(%s),%s' % (controls, gate)
def _pretty(self, printer, *args):
controls = self._print_sequence_pretty(
self.controls, ',', printer, *args)
gate = printer._print(self.gate)
gate_name = stringPict(self.gate_name)
first = self._print_subscript_pretty(gate_name, controls)
gate = self._print_parens_pretty(gate)
final = prettyForm(*first.right(gate))
return final
def _latex(self, printer, *args):
controls = self._print_sequence(self.controls, ',', printer, *args)
gate = printer._print(self.gate, *args)
return r'%s_{%s}{\left(%s\right)}' % \
(self.gate_name_latex, controls, gate)
def plot_gate(self, circ_plot, gate_idx):
"""
Plot the controlled gate. If *simplify_cgate* is true, simplify
C-X and C-Z gates into their more familiar forms.
"""
min_wire = int(_min(chain(self.controls, self.targets)))
max_wire = int(_max(chain(self.controls, self.targets)))
circ_plot.control_line(gate_idx, min_wire, max_wire)
for c in self.controls:
circ_plot.control_point(gate_idx, int(c))
if self.simplify_cgate:
if self.gate.gate_name == 'X':
self.gate.plot_gate_plus(circ_plot, gate_idx)
elif self.gate.gate_name == 'Z':
circ_plot.control_point(gate_idx, self.targets[0])
else:
self.gate.plot_gate(circ_plot, gate_idx)
else:
self.gate.plot_gate(circ_plot, gate_idx)
#-------------------------------------------------------------------------
# Miscellaneous
#-------------------------------------------------------------------------
def _eval_dagger(self):
if isinstance(self.gate, HermitianOperator):
return self
else:
return Gate._eval_dagger(self)
def _eval_inverse(self):
if isinstance(self.gate, HermitianOperator):
return self
else:
return Gate._eval_inverse(self)
def _eval_power(self, exp):
if isinstance(self.gate, HermitianOperator):
if exp == -1:
return Gate._eval_power(self, exp)
elif abs(exp) % 2 == 0:
return self*(Gate._eval_inverse(self))
else:
return self
else:
return Gate._eval_power(self, exp)
class CGateS(CGate):
"""Version of CGate that allows gate simplifications.
I.e. cnot looks like an oplus, cphase has dots, etc.
"""
simplify_cgate=True
class UGate(Gate):
"""General gate specified by a set of targets and a target matrix.
Parameters
----------
label : tuple
A tuple of the form (targets, U), where targets is a tuple of the
target qubits and U is a unitary matrix with dimension of
len(targets).
"""
gate_name = 'U'
gate_name_latex = 'U'
#-------------------------------------------------------------------------
# Initialization
#-------------------------------------------------------------------------
@classmethod
def _eval_args(cls, args):
targets = args[0]
if not is_sequence(targets):
targets = (targets,)
targets = Gate._eval_args(targets)
_validate_targets_controls(targets)
mat = args[1]
if not isinstance(mat, MatrixBase):
raise TypeError('Matrix expected, got: %r' % mat)
#make sure this matrix is of a Basic type
mat = _sympify(mat)
dim = 2**len(targets)
if not all(dim == shape for shape in mat.shape):
raise IndexError(
'Number of targets must match the matrix size: %r %r' %
(targets, mat)
)
return (targets, mat)
@classmethod
def _eval_hilbert_space(cls, args):
"""This returns the smallest possible Hilbert space."""
return ComplexSpace(2)**(_max(args[0]) + 1)
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def targets(self):
"""A tuple of target qubits."""
return tuple(self.label[0])
#-------------------------------------------------------------------------
# Gate methods
#-------------------------------------------------------------------------
def get_target_matrix(self, format='sympy'):
"""The matrix rep. of the target part of the gate.
Parameters
----------
format : str
The format string ('sympy','numpy', etc.)
"""
return self.label[1]
#-------------------------------------------------------------------------
# Print methods
#-------------------------------------------------------------------------
def _pretty(self, printer, *args):
targets = self._print_sequence_pretty(
self.targets, ',', printer, *args)
gate_name = stringPict(self.gate_name)
return self._print_subscript_pretty(gate_name, targets)
def _latex(self, printer, *args):
targets = self._print_sequence(self.targets, ',', printer, *args)
return r'%s_{%s}' % (self.gate_name_latex, targets)
def plot_gate(self, circ_plot, gate_idx):
circ_plot.one_qubit_box(
self.gate_name_plot,
gate_idx, int(self.targets[0])
)
class OneQubitGate(Gate):
"""A single qubit unitary gate base class."""
nqubits = _S.One
def plot_gate(self, circ_plot, gate_idx):
circ_plot.one_qubit_box(
self.gate_name_plot,
gate_idx, int(self.targets[0])
)
def _eval_commutator(self, other, **hints):
if isinstance(other, OneQubitGate):
if self.targets != other.targets or self.__class__ == other.__class__:
return _S.Zero
return Operator._eval_commutator(self, other, **hints)
def _eval_anticommutator(self, other, **hints):
if isinstance(other, OneQubitGate):
if self.targets != other.targets or self.__class__ == other.__class__:
return Integer(2)*self*other
return Operator._eval_anticommutator(self, other, **hints)
class TwoQubitGate(Gate):
"""A two qubit unitary gate base class."""
nqubits = Integer(2)
#-----------------------------------------------------------------------------
# Single Qubit Gates
#-----------------------------------------------------------------------------
class IdentityGate(OneQubitGate):
"""The single qubit identity gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
is_hermitian = True
gate_name = '1'
gate_name_latex = '1'
# Short cut version of gate._apply_operator_Qubit
def _apply_operator_Qubit(self, qubits, **options):
# Check number of qubits this gate acts on (see gate._apply_operator_Qubit)
if qubits.nqubits < self.min_qubits:
raise QuantumError(
'Gate needs a minimum of %r qubits to act on, got: %r' %
(self.min_qubits, qubits.nqubits)
)
return qubits # no computation required for IdentityGate
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('eye2', format)
def _eval_commutator(self, other, **hints):
return _S.Zero
def _eval_anticommutator(self, other, **hints):
return Integer(2)*other
class HadamardGate(HermitianOperator, OneQubitGate):
"""The single qubit Hadamard gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
>>> from sympy import sqrt
>>> from sympy.physics.quantum.qubit import Qubit
>>> from sympy.physics.quantum.gate import HadamardGate
>>> from sympy.physics.quantum.qapply import qapply
>>> qapply(HadamardGate(0)*Qubit('1'))
sqrt(2)*|0>/2 - sqrt(2)*|1>/2
>>> # Hadamard on bell state, applied on 2 qubits.
>>> psi = 1/sqrt(2)*(Qubit('00')+Qubit('11'))
>>> qapply(HadamardGate(0)*HadamardGate(1)*psi)
sqrt(2)*|00>/2 + sqrt(2)*|11>/2
"""
gate_name = 'H'
gate_name_latex = 'H'
def get_target_matrix(self, format='sympy'):
if _normalized:
return matrix_cache.get_matrix('H', format)
else:
return matrix_cache.get_matrix('Hsqrt2', format)
def _eval_commutator_XGate(self, other, **hints):
return I*sqrt(2)*YGate(self.targets[0])
def _eval_commutator_YGate(self, other, **hints):
return I*sqrt(2)*(ZGate(self.targets[0]) - XGate(self.targets[0]))
def _eval_commutator_ZGate(self, other, **hints):
return -I*sqrt(2)*YGate(self.targets[0])
def _eval_anticommutator_XGate(self, other, **hints):
return sqrt(2)*IdentityGate(self.targets[0])
def _eval_anticommutator_YGate(self, other, **hints):
return _S.Zero
def _eval_anticommutator_ZGate(self, other, **hints):
return sqrt(2)*IdentityGate(self.targets[0])
class XGate(HermitianOperator, OneQubitGate):
"""The single qubit X, or NOT, gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'X'
gate_name_latex = 'X'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('X', format)
def plot_gate(self, circ_plot, gate_idx):
OneQubitGate.plot_gate(self,circ_plot,gate_idx)
def plot_gate_plus(self, circ_plot, gate_idx):
circ_plot.not_point(
gate_idx, int(self.label[0])
)
def _eval_commutator_YGate(self, other, **hints):
return Integer(2)*I*ZGate(self.targets[0])
def _eval_anticommutator_XGate(self, other, **hints):
return Integer(2)*IdentityGate(self.targets[0])
def _eval_anticommutator_YGate(self, other, **hints):
return _S.Zero
def _eval_anticommutator_ZGate(self, other, **hints):
return _S.Zero
class YGate(HermitianOperator, OneQubitGate):
"""The single qubit Y gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'Y'
gate_name_latex = 'Y'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('Y', format)
def _eval_commutator_ZGate(self, other, **hints):
return Integer(2)*I*XGate(self.targets[0])
def _eval_anticommutator_YGate(self, other, **hints):
return Integer(2)*IdentityGate(self.targets[0])
def _eval_anticommutator_ZGate(self, other, **hints):
return _S.Zero
class ZGate(HermitianOperator, OneQubitGate):
"""The single qubit Z gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'Z'
gate_name_latex = 'Z'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('Z', format)
def _eval_commutator_XGate(self, other, **hints):
return Integer(2)*I*YGate(self.targets[0])
def _eval_anticommutator_YGate(self, other, **hints):
return _S.Zero
class PhaseGate(OneQubitGate):
"""The single qubit phase, or S, gate.
This gate rotates the phase of the state by pi/2 if the state is ``|1>`` and
does nothing if the state is ``|0>``.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
is_hermitian = False
gate_name = 'S'
gate_name_latex = 'S'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('S', format)
def _eval_commutator_ZGate(self, other, **hints):
return _S.Zero
def _eval_commutator_TGate(self, other, **hints):
return _S.Zero
class TGate(OneQubitGate):
"""The single qubit pi/8 gate.
This gate rotates the phase of the state by pi/4 if the state is ``|1>`` and
does nothing if the state is ``|0>``.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
is_hermitian = False
gate_name = 'T'
gate_name_latex = 'T'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('T', format)
def _eval_commutator_ZGate(self, other, **hints):
return _S.Zero
def _eval_commutator_PhaseGate(self, other, **hints):
return _S.Zero
# Aliases for gate names.
H = HadamardGate
X = XGate
Y = YGate
Z = ZGate
T = TGate
Phase = S = PhaseGate
#-----------------------------------------------------------------------------
# 2 Qubit Gates
#-----------------------------------------------------------------------------
class CNotGate(HermitianOperator, CGate, TwoQubitGate):
"""Two qubit controlled-NOT.
This gate performs the NOT or X gate on the target qubit if the control
qubits all have the value 1.
Parameters
----------
label : tuple
A tuple of the form (control, target).
Examples
========
>>> from sympy.physics.quantum.gate import CNOT
>>> from sympy.physics.quantum.qapply import qapply
>>> from sympy.physics.quantum.qubit import Qubit
>>> c = CNOT(1,0)
>>> qapply(c*Qubit('10')) # note that qubits are indexed from right to left
|11>
"""
gate_name = 'CNOT'
gate_name_latex = r'\text{CNOT}'
simplify_cgate = True
#-------------------------------------------------------------------------
# Initialization
#-------------------------------------------------------------------------
@classmethod
def _eval_args(cls, args):
args = Gate._eval_args(args)
return args
@classmethod
def _eval_hilbert_space(cls, args):
"""This returns the smallest possible Hilbert space."""
return ComplexSpace(2)**(_max(args) + 1)
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def min_qubits(self):
"""The minimum number of qubits this gate needs to act on."""
return _max(self.label) + 1
@property
def targets(self):
"""A tuple of target qubits."""
return (self.label[1],)
@property
def controls(self):
"""A tuple of control qubits."""
return (self.label[0],)
@property
def gate(self):
"""The non-controlled gate that will be applied to the targets."""
return XGate(self.label[1])
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
# The default printing of Gate works better than those of CGate, so we
# go around the overridden methods in CGate.
def _print_label(self, printer, *args):
return Gate._print_label(self, printer, *args)
def _pretty(self, printer, *args):
return Gate._pretty(self, printer, *args)
def _latex(self, printer, *args):
return Gate._latex(self, printer, *args)
#-------------------------------------------------------------------------
# Commutator/AntiCommutator
#-------------------------------------------------------------------------
def _eval_commutator_ZGate(self, other, **hints):
"""[CNOT(i, j), Z(i)] == 0."""
if self.controls[0] == other.targets[0]:
return _S.Zero
else:
raise NotImplementedError('Commutator not implemented: %r' % other)
def _eval_commutator_TGate(self, other, **hints):
"""[CNOT(i, j), T(i)] == 0."""
return self._eval_commutator_ZGate(other, **hints)
def _eval_commutator_PhaseGate(self, other, **hints):
"""[CNOT(i, j), S(i)] == 0."""
return self._eval_commutator_ZGate(other, **hints)
def _eval_commutator_XGate(self, other, **hints):
"""[CNOT(i, j), X(j)] == 0."""
if self.targets[0] == other.targets[0]:
return _S.Zero
else:
raise NotImplementedError('Commutator not implemented: %r' % other)
def _eval_commutator_CNotGate(self, other, **hints):
"""[CNOT(i, j), CNOT(i,k)] == 0."""
if self.controls[0] == other.controls[0]:
return _S.Zero
else:
raise NotImplementedError('Commutator not implemented: %r' % other)
class SwapGate(TwoQubitGate):
"""Two qubit SWAP gate.
This gate swap the values of the two qubits.
Parameters
----------
label : tuple
A tuple of the form (target1, target2).
Examples
========
"""
is_hermitian = True
gate_name = 'SWAP'
gate_name_latex = r'\text{SWAP}'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('SWAP', format)
def decompose(self, **options):
"""Decompose the SWAP gate into CNOT gates."""
i, j = self.targets[0], self.targets[1]
g1 = CNotGate(i, j)
g2 = CNotGate(j, i)
return g1*g2*g1
def plot_gate(self, circ_plot, gate_idx):
min_wire = int(_min(self.targets))
max_wire = int(_max(self.targets))
circ_plot.control_line(gate_idx, min_wire, max_wire)
circ_plot.swap_point(gate_idx, min_wire)
circ_plot.swap_point(gate_idx, max_wire)
def _represent_ZGate(self, basis, **options):
"""Represent the SWAP gate in the computational basis.
The following representation is used to compute this:
SWAP = |1><1|x|1><1| + |0><0|x|0><0| + |1><0|x|0><1| + |0><1|x|1><0|
"""
format = options.get('format', 'sympy')
targets = [int(t) for t in self.targets]
min_target = _min(targets)
max_target = _max(targets)
nqubits = options.get('nqubits', self.min_qubits)
op01 = matrix_cache.get_matrix('op01', format)
op10 = matrix_cache.get_matrix('op10', format)
op11 = matrix_cache.get_matrix('op11', format)
op00 = matrix_cache.get_matrix('op00', format)
eye2 = matrix_cache.get_matrix('eye2', format)
result = None
for i, j in ((op01, op10), (op10, op01), (op00, op00), (op11, op11)):
product = nqubits*[eye2]
product[nqubits - min_target - 1] = i
product[nqubits - max_target - 1] = j
new_result = matrix_tensor_product(*product)
if result is None:
result = new_result
else:
result = result + new_result
return result
# Aliases for gate names.
CNOT = CNotGate
SWAP = SwapGate
def CPHASE(a,b): return CGateS((a,),Z(b))
#-----------------------------------------------------------------------------
# Represent
#-----------------------------------------------------------------------------
def represent_zbasis(controls, targets, target_matrix, nqubits, format='sympy'):
"""Represent a gate with controls, targets and target_matrix.
This function does the low-level work of representing gates as matrices
in the standard computational basis (ZGate). Currently, we support two
main cases:
1. One target qubit and no control qubits.
2. One target qubits and multiple control qubits.
For the base of multiple controls, we use the following expression [1]:
1_{2**n} + (|1><1|)^{(n-1)} x (target-matrix - 1_{2})
Parameters
----------
controls : list, tuple
A sequence of control qubits.
targets : list, tuple
A sequence of target qubits.
target_matrix : sympy.Matrix, numpy.matrix, scipy.sparse
The matrix form of the transformation to be performed on the target
qubits. The format of this matrix must match that passed into
the `format` argument.
nqubits : int
The total number of qubits used for the representation.
format : str
The format of the final matrix ('sympy', 'numpy', 'scipy.sparse').
Examples
========
References
----------
[1] http://www.johnlapeyre.com/qinf/qinf_html/node6.html.
"""
controls = [int(x) for x in controls]
targets = [int(x) for x in targets]
nqubits = int(nqubits)
# This checks for the format as well.
op11 = matrix_cache.get_matrix('op11', format)
eye2 = matrix_cache.get_matrix('eye2', format)
# Plain single qubit case
if len(controls) == 0 and len(targets) == 1:
product = []
bit = targets[0]
# Fill product with [I1,Gate,I2] such that the unitaries,
# I, cause the gate to be applied to the correct Qubit
if bit != nqubits - 1:
product.append(matrix_eye(2**(nqubits - bit - 1), format=format))
product.append(target_matrix)
if bit != 0:
product.append(matrix_eye(2**bit, format=format))
return matrix_tensor_product(*product)
# Single target, multiple controls.
elif len(targets) == 1 and len(controls) >= 1:
target = targets[0]
# Build the non-trivial part.
product2 = []
for i in range(nqubits):
product2.append(matrix_eye(2, format=format))
for control in controls:
product2[nqubits - 1 - control] = op11
product2[nqubits - 1 - target] = target_matrix - eye2
return matrix_eye(2**nqubits, format=format) + \
matrix_tensor_product(*product2)
# Multi-target, multi-control is not yet implemented.
else:
raise NotImplementedError(
'The representation of multi-target, multi-control gates '
'is not implemented.'
)
#-----------------------------------------------------------------------------
# Gate manipulation functions.
#-----------------------------------------------------------------------------
def gate_simp(circuit):
"""Simplifies gates symbolically
It first sorts gates using gate_sort. It then applies basic
simplification rules to the circuit, e.g., XGate**2 = Identity
"""
# Bubble sort out gates that commute.
circuit = gate_sort(circuit)
# Do simplifications by subing a simplification into the first element
# which can be simplified. We recursively call gate_simp with new circuit
# as input more simplifications exist.
if isinstance(circuit, Add):
return sum(gate_simp(t) for t in circuit.args)
elif isinstance(circuit, Mul):
circuit_args = circuit.args
elif isinstance(circuit, Pow):
b, e = circuit.as_base_exp()
circuit_args = (gate_simp(b)**e,)
else:
return circuit
# Iterate through each element in circuit, simplify if possible.
for i in range(len(circuit_args)):
# H,X,Y or Z squared is 1.
# T**2 = S, S**2 = Z
if isinstance(circuit_args[i], Pow):
if isinstance(circuit_args[i].base,
(HadamardGate, XGate, YGate, ZGate)) \
and isinstance(circuit_args[i].exp, Number):
# Build a new circuit taking replacing the
# H,X,Y,Z squared with one.
newargs = (circuit_args[:i] +
(circuit_args[i].base**(circuit_args[i].exp % 2),) +
circuit_args[i + 1:])
# Recursively simplify the new circuit.
circuit = gate_simp(Mul(*newargs))
break
elif isinstance(circuit_args[i].base, PhaseGate):
# Build a new circuit taking old circuit but splicing
# in simplification.
newargs = circuit_args[:i]
# Replace PhaseGate**2 with ZGate.
newargs = newargs + (ZGate(circuit_args[i].base.args[0])**
(Integer(circuit_args[i].exp/2)), circuit_args[i].base**
(circuit_args[i].exp % 2))
# Append the last elements.
newargs = newargs + circuit_args[i + 1:]
# Recursively simplify the new circuit.
circuit = gate_simp(Mul(*newargs))
break
elif isinstance(circuit_args[i].base, TGate):
# Build a new circuit taking all the old elements.
newargs = circuit_args[:i]
# Put an Phasegate in place of any TGate**2.
newargs = newargs + (PhaseGate(circuit_args[i].base.args[0])**
Integer(circuit_args[i].exp/2), circuit_args[i].base**
(circuit_args[i].exp % 2))
# Append the last elements.
newargs = newargs + circuit_args[i + 1:]
# Recursively simplify the new circuit.
circuit = gate_simp(Mul(*newargs))
break
return circuit
def gate_sort(circuit):
"""Sorts the gates while keeping track of commutation relations
This function uses a bubble sort to rearrange the order of gate
application. Keeps track of Quantum computations special commutation
relations (e.g. things that apply to the same Qubit do not commute with
each other)
circuit is the Mul of gates that are to be sorted.
"""
# Make sure we have an Add or Mul.
if isinstance(circuit, Add):
return sum(gate_sort(t) for t in circuit.args)
if isinstance(circuit, Pow):
return gate_sort(circuit.base)**circuit.exp
elif isinstance(circuit, Gate):
return circuit
if not isinstance(circuit, Mul):
return circuit
changes = True
while changes:
changes = False
circ_array = circuit.args
for i in range(len(circ_array) - 1):
# Go through each element and switch ones that are in wrong order
if isinstance(circ_array[i], (Gate, Pow)) and \
isinstance(circ_array[i + 1], (Gate, Pow)):
# If we have a Pow object, look at only the base
first_base, first_exp = circ_array[i].as_base_exp()
second_base, second_exp = circ_array[i + 1].as_base_exp()
# Use SymPy's hash based sorting. This is not mathematical
# sorting, but is rather based on comparing hashes of objects.
# See Basic.compare for details.
if first_base.compare(second_base) > 0:
if Commutator(first_base, second_base).doit() == 0:
new_args = (circuit.args[:i] + (circuit.args[i + 1],) +
(circuit.args[i],) + circuit.args[i + 2:])
circuit = Mul(*new_args)
changes = True
break
if AntiCommutator(first_base, second_base).doit() == 0:
new_args = (circuit.args[:i] + (circuit.args[i + 1],) +
(circuit.args[i],) + circuit.args[i + 2:])
sign = _S.NegativeOne**(first_exp*second_exp)
circuit = sign*Mul(*new_args)
changes = True
break
return circuit
#-----------------------------------------------------------------------------
# Utility functions
#-----------------------------------------------------------------------------
def random_circuit(ngates, nqubits, gate_space=(X, Y, Z, S, T, H, CNOT, SWAP)):
"""Return a random circuit of ngates and nqubits.
This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP)
gates.
Parameters
----------
ngates : int
The number of gates in the circuit.
nqubits : int
The number of qubits in the circuit.
gate_space : tuple
A tuple of the gate classes that will be used in the circuit.
Repeating gate classes multiple times in this tuple will increase
the frequency they appear in the random circuit.
"""
qubit_space = range(nqubits)
result = []
for i in range(ngates):
g = random.choice(gate_space)
if g == CNotGate or g == SwapGate:
qubits = random.sample(qubit_space, 2)
g = g(*qubits)
else:
qubit = random.choice(qubit_space)
g = g(qubit)
result.append(g)
return Mul(*result)
def zx_basis_transform(self, format='sympy'):
"""Transformation matrix from Z to X basis."""
return matrix_cache.get_matrix('ZX', format)
def zy_basis_transform(self, format='sympy'):
"""Transformation matrix from Z to Y basis."""
return matrix_cache.get_matrix('ZY', format)
|