File size: 11,799 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
"""Matplotlib based plotting of quantum circuits.

Todo:

* Optimize printing of large circuits.
* Get this to work with single gates.
* Do a better job checking the form of circuits to make sure it is a Mul of
  Gates.
* Get multi-target gates plotting.
* Get initial and final states to plot.
* Get measurements to plot. Might need to rethink measurement as a gate
  issue.
* Get scale and figsize to be handled in a better way.
* Write some tests/examples!
"""

from __future__ import annotations

from sympy.core.mul import Mul
from sympy.external import import_module
from sympy.physics.quantum.gate import Gate, OneQubitGate, CGate, CGateS


__all__ = [
    'CircuitPlot',
    'circuit_plot',
    'labeller',
    'Mz',
    'Mx',
    'CreateOneQubitGate',
    'CreateCGate',
]

np = import_module('numpy')
matplotlib = import_module(
    'matplotlib', import_kwargs={'fromlist': ['pyplot']},
    catch=(RuntimeError,))  # This is raised in environments that have no display.

if np and matplotlib:
    pyplot = matplotlib.pyplot
    Line2D = matplotlib.lines.Line2D
    Circle = matplotlib.patches.Circle

#from matplotlib import rc
#rc('text',usetex=True)

class CircuitPlot:
    """A class for managing a circuit plot."""

    scale = 1.0
    fontsize = 20.0
    linewidth = 1.0
    control_radius = 0.05
    not_radius = 0.15
    swap_delta = 0.05
    labels: list[str] = []
    inits: dict[str, str] = {}
    label_buffer = 0.5

    def __init__(self, c, nqubits, **kwargs):
        if not np or not matplotlib:
            raise ImportError('numpy or matplotlib not available.')
        self.circuit = c
        self.ngates = len(self.circuit.args)
        self.nqubits = nqubits
        self.update(kwargs)
        self._create_grid()
        self._create_figure()
        self._plot_wires()
        self._plot_gates()
        self._finish()

    def update(self, kwargs):
        """Load the kwargs into the instance dict."""
        self.__dict__.update(kwargs)

    def _create_grid(self):
        """Create the grid of wires."""
        scale = self.scale
        wire_grid = np.arange(0.0, self.nqubits*scale, scale, dtype=float)
        gate_grid = np.arange(0.0, self.ngates*scale, scale, dtype=float)
        self._wire_grid = wire_grid
        self._gate_grid = gate_grid

    def _create_figure(self):
        """Create the main matplotlib figure."""
        self._figure = pyplot.figure(
            figsize=(self.ngates*self.scale, self.nqubits*self.scale),
            facecolor='w',
            edgecolor='w'
        )
        ax = self._figure.add_subplot(
            1, 1, 1,
            frameon=True
        )
        ax.set_axis_off()
        offset = 0.5*self.scale
        ax.set_xlim(self._gate_grid[0] - offset, self._gate_grid[-1] + offset)
        ax.set_ylim(self._wire_grid[0] - offset, self._wire_grid[-1] + offset)
        ax.set_aspect('equal')
        self._axes = ax

    def _plot_wires(self):
        """Plot the wires of the circuit diagram."""
        xstart = self._gate_grid[0]
        xstop = self._gate_grid[-1]
        xdata = (xstart - self.scale, xstop + self.scale)
        for i in range(self.nqubits):
            ydata = (self._wire_grid[i], self._wire_grid[i])
            line = Line2D(
                xdata, ydata,
                color='k',
                lw=self.linewidth
            )
            self._axes.add_line(line)
            if self.labels:
                init_label_buffer = 0
                if self.inits.get(self.labels[i]): init_label_buffer = 0.25
                self._axes.text(
                    xdata[0]-self.label_buffer-init_label_buffer,ydata[0],
                    render_label(self.labels[i],self.inits),
                    size=self.fontsize,
                    color='k',ha='center',va='center')
        self._plot_measured_wires()

    def _plot_measured_wires(self):
        ismeasured = self._measurements()
        xstop = self._gate_grid[-1]
        dy = 0.04 # amount to shift wires when doubled
        # Plot doubled wires after they are measured
        for im in ismeasured:
            xdata = (self._gate_grid[ismeasured[im]],xstop+self.scale)
            ydata = (self._wire_grid[im]+dy,self._wire_grid[im]+dy)
            line = Line2D(
                xdata, ydata,
                color='k',
                lw=self.linewidth
            )
            self._axes.add_line(line)
        # Also double any controlled lines off these wires
        for i,g in enumerate(self._gates()):
            if isinstance(g, (CGate, CGateS)):
                wires = g.controls + g.targets
                for wire in wires:
                    if wire in ismeasured and \
                           self._gate_grid[i] > self._gate_grid[ismeasured[wire]]:
                        ydata = min(wires), max(wires)
                        xdata = self._gate_grid[i]-dy, self._gate_grid[i]-dy
                        line = Line2D(
                            xdata, ydata,
                            color='k',
                            lw=self.linewidth
                            )
                        self._axes.add_line(line)
    def _gates(self):
        """Create a list of all gates in the circuit plot."""
        gates = []
        if isinstance(self.circuit, Mul):
            for g in reversed(self.circuit.args):
                if isinstance(g, Gate):
                    gates.append(g)
        elif isinstance(self.circuit, Gate):
            gates.append(self.circuit)
        return gates

    def _plot_gates(self):
        """Iterate through the gates and plot each of them."""
        for i, gate in enumerate(self._gates()):
            gate.plot_gate(self, i)

    def _measurements(self):
        """Return a dict ``{i:j}`` where i is the index of the wire that has
        been measured, and j is the gate where the wire is measured.
        """
        ismeasured = {}
        for i,g in enumerate(self._gates()):
            if getattr(g,'measurement',False):
                for target in g.targets:
                    if target in ismeasured:
                        if ismeasured[target] > i:
                            ismeasured[target] = i
                    else:
                        ismeasured[target] = i
        return ismeasured

    def _finish(self):
        # Disable clipping to make panning work well for large circuits.
        for o in self._figure.findobj():
            o.set_clip_on(False)

    def one_qubit_box(self, t, gate_idx, wire_idx):
        """Draw a box for a single qubit gate."""
        x = self._gate_grid[gate_idx]
        y = self._wire_grid[wire_idx]
        self._axes.text(
            x, y, t,
            color='k',
            ha='center',
            va='center',
            bbox={"ec": 'k', "fc": 'w', "fill": True, "lw": self.linewidth},
            size=self.fontsize
        )

    def two_qubit_box(self, t, gate_idx, wire_idx):
        """Draw a box for a two qubit gate. Does not work yet.
        """
        # x = self._gate_grid[gate_idx]
        # y = self._wire_grid[wire_idx]+0.5
        print(self._gate_grid)
        print(self._wire_grid)
        # unused:
        # obj = self._axes.text(
        #     x, y, t,
        #     color='k',
        #     ha='center',
        #     va='center',
        #     bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth),
        #     size=self.fontsize
        # )

    def control_line(self, gate_idx, min_wire, max_wire):
        """Draw a vertical control line."""
        xdata = (self._gate_grid[gate_idx], self._gate_grid[gate_idx])
        ydata = (self._wire_grid[min_wire], self._wire_grid[max_wire])
        line = Line2D(
            xdata, ydata,
            color='k',
            lw=self.linewidth
        )
        self._axes.add_line(line)

    def control_point(self, gate_idx, wire_idx):
        """Draw a control point."""
        x = self._gate_grid[gate_idx]
        y = self._wire_grid[wire_idx]
        radius = self.control_radius
        c = Circle(
            (x, y),
            radius*self.scale,
            ec='k',
            fc='k',
            fill=True,
            lw=self.linewidth
        )
        self._axes.add_patch(c)

    def not_point(self, gate_idx, wire_idx):
        """Draw a NOT gates as the circle with plus in the middle."""
        x = self._gate_grid[gate_idx]
        y = self._wire_grid[wire_idx]
        radius = self.not_radius
        c = Circle(
            (x, y),
            radius,
            ec='k',
            fc='w',
            fill=False,
            lw=self.linewidth
        )
        self._axes.add_patch(c)
        l = Line2D(
            (x, x), (y - radius, y + radius),
            color='k',
            lw=self.linewidth
        )
        self._axes.add_line(l)

    def swap_point(self, gate_idx, wire_idx):
        """Draw a swap point as a cross."""
        x = self._gate_grid[gate_idx]
        y = self._wire_grid[wire_idx]
        d = self.swap_delta
        l1 = Line2D(
            (x - d, x + d),
            (y - d, y + d),
            color='k',
            lw=self.linewidth
        )
        l2 = Line2D(
            (x - d, x + d),
            (y + d, y - d),
            color='k',
            lw=self.linewidth
        )
        self._axes.add_line(l1)
        self._axes.add_line(l2)

def circuit_plot(c, nqubits, **kwargs):
    """Draw the circuit diagram for the circuit with nqubits.

    Parameters
    ==========

    c : circuit
        The circuit to plot. Should be a product of Gate instances.
    nqubits : int
        The number of qubits to include in the circuit. Must be at least
        as big as the largest ``min_qubits`` of the gates.
    """
    return CircuitPlot(c, nqubits, **kwargs)

def render_label(label, inits={}):
    """Slightly more flexible way to render labels.

    >>> from sympy.physics.quantum.circuitplot import render_label
    >>> render_label('q0')
    '$\\\\left|q0\\\\right\\\\rangle$'
    >>> render_label('q0', {'q0':'0'})
    '$\\\\left|q0\\\\right\\\\rangle=\\\\left|0\\\\right\\\\rangle$'
    """
    init = inits.get(label)
    if init:
        return r'$\left|%s\right\rangle=\left|%s\right\rangle$' % (label, init)
    return r'$\left|%s\right\rangle$' % label

def labeller(n, symbol='q'):
    """Autogenerate labels for wires of quantum circuits.

    Parameters
    ==========

    n : int
        number of qubits in the circuit.
    symbol : string
        A character string to precede all gate labels. E.g. 'q_0', 'q_1', etc.

    >>> from sympy.physics.quantum.circuitplot import labeller
    >>> labeller(2)
    ['q_1', 'q_0']
    >>> labeller(3,'j')
    ['j_2', 'j_1', 'j_0']
    """
    return ['%s_%d' % (symbol,n-i-1) for i in range(n)]

class Mz(OneQubitGate):
    """Mock-up of a z measurement gate.

    This is in circuitplot rather than gate.py because it's not a real
    gate, it just draws one.
    """
    measurement = True
    gate_name='Mz'
    gate_name_latex='M_z'

class Mx(OneQubitGate):
    """Mock-up of an x measurement gate.

    This is in circuitplot rather than gate.py because it's not a real
    gate, it just draws one.
    """
    measurement = True
    gate_name='Mx'
    gate_name_latex='M_x'

class CreateOneQubitGate(type):
    def __new__(mcl, name, latexname=None):
        if not latexname:
            latexname = name
        return type(name + "Gate", (OneQubitGate,),
            {'gate_name': name, 'gate_name_latex': latexname})

def CreateCGate(name, latexname=None):
    """Use a lexical closure to make a controlled gate.
    """
    if not latexname:
        latexname = name
    onequbitgate = CreateOneQubitGate(name, latexname)
    def ControlledGate(ctrls,target):
        return CGate(tuple(ctrls),onequbitgate(target))
    return ControlledGate