Spaces:
Sleeping
Sleeping
File size: 23,319 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
#TODO:
# -Implement Clebsch-Gordan symmetries
# -Improve simplification method
# -Implement new simplifications
"""Clebsch-Gordon Coefficients."""
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.expr import Expr
from sympy.core.function import expand
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Wild, symbols)
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.physics.wigner import clebsch_gordan, wigner_3j, wigner_6j, wigner_9j
from sympy.printing.precedence import PRECEDENCE
__all__ = [
'CG',
'Wigner3j',
'Wigner6j',
'Wigner9j',
'cg_simp'
]
#-----------------------------------------------------------------------------
# CG Coefficients
#-----------------------------------------------------------------------------
class Wigner3j(Expr):
"""Class for the Wigner-3j symbols.
Explanation
===========
Wigner 3j-symbols are coefficients determined by the coupling of
two angular momenta. When created, they are expressed as symbolic
quantities that, for numerical parameters, can be evaluated using the
``.doit()`` method [1]_.
Parameters
==========
j1, m1, j2, m2, j3, m3 : Number, Symbol
Terms determining the angular momentum of coupled angular momentum
systems.
Examples
========
Declare a Wigner-3j coefficient and calculate its value
>>> from sympy.physics.quantum.cg import Wigner3j
>>> w3j = Wigner3j(6,0,4,0,2,0)
>>> w3j
Wigner3j(6, 0, 4, 0, 2, 0)
>>> w3j.doit()
sqrt(715)/143
See Also
========
CG: Clebsch-Gordan coefficients
References
==========
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
"""
is_commutative = True
def __new__(cls, j1, m1, j2, m2, j3, m3):
args = map(sympify, (j1, m1, j2, m2, j3, m3))
return Expr.__new__(cls, *args)
@property
def j1(self):
return self.args[0]
@property
def m1(self):
return self.args[1]
@property
def j2(self):
return self.args[2]
@property
def m2(self):
return self.args[3]
@property
def j3(self):
return self.args[4]
@property
def m3(self):
return self.args[5]
@property
def is_symbolic(self):
return not all(arg.is_number for arg in self.args)
# This is modified from the _print_Matrix method
def _pretty(self, printer, *args):
m = ((printer._print(self.j1), printer._print(self.m1)),
(printer._print(self.j2), printer._print(self.m2)),
(printer._print(self.j3), printer._print(self.m3)))
hsep = 2
vsep = 1
maxw = [-1]*3
for j in range(3):
maxw[j] = max(m[j][i].width() for i in range(2))
D = None
for i in range(2):
D_row = None
for j in range(3):
s = m[j][i]
wdelta = maxw[j] - s.width()
wleft = wdelta //2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
if D_row is None:
D_row = s
continue
D_row = prettyForm(*D_row.right(' '*hsep))
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row
continue
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens())
return D
def _latex(self, printer, *args):
label = map(printer._print, (self.j1, self.j2, self.j3,
self.m1, self.m2, self.m3))
return r'\left(\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right)' % \
tuple(label)
def doit(self, **hints):
if self.is_symbolic:
raise ValueError("Coefficients must be numerical")
return wigner_3j(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)
class CG(Wigner3j):
r"""Class for Clebsch-Gordan coefficient.
Explanation
===========
Clebsch-Gordan coefficients describe the angular momentum coupling between
two systems. The coefficients give the expansion of a coupled total angular
momentum state and an uncoupled tensor product state. The Clebsch-Gordan
coefficients are defined as [1]_:
.. math ::
C^{j_3,m_3}_{j_1,m_1,j_2,m_2} = \left\langle j_1,m_1;j_2,m_2 | j_3,m_3\right\rangle
Parameters
==========
j1, m1, j2, m2 : Number, Symbol
Angular momenta of states 1 and 2.
j3, m3: Number, Symbol
Total angular momentum of the coupled system.
Examples
========
Define a Clebsch-Gordan coefficient and evaluate its value
>>> from sympy.physics.quantum.cg import CG
>>> from sympy import S
>>> cg = CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1)
>>> cg
CG(3/2, 3/2, 1/2, -1/2, 1, 1)
>>> cg.doit()
sqrt(3)/2
>>> CG(j1=S(1)/2, m1=-S(1)/2, j2=S(1)/2, m2=+S(1)/2, j3=1, m3=0).doit()
sqrt(2)/2
Compare [2]_.
See Also
========
Wigner3j: Wigner-3j symbols
References
==========
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
.. [2] `Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions
<https://pdg.lbl.gov/2020/reviews/rpp2020-rev-clebsch-gordan-coefs.pdf>`_
in P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys.
2020, 083C01 (2020).
"""
precedence = PRECEDENCE["Pow"] - 1
def doit(self, **hints):
if self.is_symbolic:
raise ValueError("Coefficients must be numerical")
return clebsch_gordan(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)
def _pretty(self, printer, *args):
bot = printer._print_seq(
(self.j1, self.m1, self.j2, self.m2), delimiter=',')
top = printer._print_seq((self.j3, self.m3), delimiter=',')
pad = max(top.width(), bot.width())
bot = prettyForm(*bot.left(' '))
top = prettyForm(*top.left(' '))
if not pad == bot.width():
bot = prettyForm(*bot.right(' '*(pad - bot.width())))
if not pad == top.width():
top = prettyForm(*top.right(' '*(pad - top.width())))
s = stringPict('C' + ' '*pad)
s = prettyForm(*s.below(bot))
s = prettyForm(*s.above(top))
return s
def _latex(self, printer, *args):
label = map(printer._print, (self.j3, self.m3, self.j1,
self.m1, self.j2, self.m2))
return r'C^{%s,%s}_{%s,%s,%s,%s}' % tuple(label)
class Wigner6j(Expr):
"""Class for the Wigner-6j symbols
See Also
========
Wigner3j: Wigner-3j symbols
"""
def __new__(cls, j1, j2, j12, j3, j, j23):
args = map(sympify, (j1, j2, j12, j3, j, j23))
return Expr.__new__(cls, *args)
@property
def j1(self):
return self.args[0]
@property
def j2(self):
return self.args[1]
@property
def j12(self):
return self.args[2]
@property
def j3(self):
return self.args[3]
@property
def j(self):
return self.args[4]
@property
def j23(self):
return self.args[5]
@property
def is_symbolic(self):
return not all(arg.is_number for arg in self.args)
# This is modified from the _print_Matrix method
def _pretty(self, printer, *args):
m = ((printer._print(self.j1), printer._print(self.j3)),
(printer._print(self.j2), printer._print(self.j)),
(printer._print(self.j12), printer._print(self.j23)))
hsep = 2
vsep = 1
maxw = [-1]*3
for j in range(3):
maxw[j] = max(m[j][i].width() for i in range(2))
D = None
for i in range(2):
D_row = None
for j in range(3):
s = m[j][i]
wdelta = maxw[j] - s.width()
wleft = wdelta //2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
if D_row is None:
D_row = s
continue
D_row = prettyForm(*D_row.right(' '*hsep))
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row
continue
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens(left='{', right='}'))
return D
def _latex(self, printer, *args):
label = map(printer._print, (self.j1, self.j2, self.j12,
self.j3, self.j, self.j23))
return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \
tuple(label)
def doit(self, **hints):
if self.is_symbolic:
raise ValueError("Coefficients must be numerical")
return wigner_6j(self.j1, self.j2, self.j12, self.j3, self.j, self.j23)
class Wigner9j(Expr):
"""Class for the Wigner-9j symbols
See Also
========
Wigner3j: Wigner-3j symbols
"""
def __new__(cls, j1, j2, j12, j3, j4, j34, j13, j24, j):
args = map(sympify, (j1, j2, j12, j3, j4, j34, j13, j24, j))
return Expr.__new__(cls, *args)
@property
def j1(self):
return self.args[0]
@property
def j2(self):
return self.args[1]
@property
def j12(self):
return self.args[2]
@property
def j3(self):
return self.args[3]
@property
def j4(self):
return self.args[4]
@property
def j34(self):
return self.args[5]
@property
def j13(self):
return self.args[6]
@property
def j24(self):
return self.args[7]
@property
def j(self):
return self.args[8]
@property
def is_symbolic(self):
return not all(arg.is_number for arg in self.args)
# This is modified from the _print_Matrix method
def _pretty(self, printer, *args):
m = (
(printer._print(
self.j1), printer._print(self.j3), printer._print(self.j13)),
(printer._print(
self.j2), printer._print(self.j4), printer._print(self.j24)),
(printer._print(self.j12), printer._print(self.j34), printer._print(self.j)))
hsep = 2
vsep = 1
maxw = [-1]*3
for j in range(3):
maxw[j] = max(m[j][i].width() for i in range(3))
D = None
for i in range(3):
D_row = None
for j in range(3):
s = m[j][i]
wdelta = maxw[j] - s.width()
wleft = wdelta //2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
if D_row is None:
D_row = s
continue
D_row = prettyForm(*D_row.right(' '*hsep))
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row
continue
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens(left='{', right='}'))
return D
def _latex(self, printer, *args):
label = map(printer._print, (self.j1, self.j2, self.j12, self.j3,
self.j4, self.j34, self.j13, self.j24, self.j))
return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \
tuple(label)
def doit(self, **hints):
if self.is_symbolic:
raise ValueError("Coefficients must be numerical")
return wigner_9j(self.j1, self.j2, self.j12, self.j3, self.j4, self.j34, self.j13, self.j24, self.j)
def cg_simp(e):
"""Simplify and combine CG coefficients.
Explanation
===========
This function uses various symmetry and properties of sums and
products of Clebsch-Gordan coefficients to simplify statements
involving these terms [1]_.
Examples
========
Simplify the sum over CG(a,alpha,0,0,a,alpha) for all alpha to
2*a+1
>>> from sympy.physics.quantum.cg import CG, cg_simp
>>> a = CG(1,1,0,0,1,1)
>>> b = CG(1,0,0,0,1,0)
>>> c = CG(1,-1,0,0,1,-1)
>>> cg_simp(a+b+c)
3
See Also
========
CG: Clebsh-Gordan coefficients
References
==========
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
"""
if isinstance(e, Add):
return _cg_simp_add(e)
elif isinstance(e, Sum):
return _cg_simp_sum(e)
elif isinstance(e, Mul):
return Mul(*[cg_simp(arg) for arg in e.args])
elif isinstance(e, Pow):
return Pow(cg_simp(e.base), e.exp)
else:
return e
def _cg_simp_add(e):
#TODO: Improve simplification method
"""Takes a sum of terms involving Clebsch-Gordan coefficients and
simplifies the terms.
Explanation
===========
First, we create two lists, cg_part, which is all the terms involving CG
coefficients, and other_part, which is all other terms. The cg_part list
is then passed to the simplification methods, which return the new cg_part
and any additional terms that are added to other_part
"""
cg_part = []
other_part = []
e = expand(e)
for arg in e.args:
if arg.has(CG):
if isinstance(arg, Sum):
other_part.append(_cg_simp_sum(arg))
elif isinstance(arg, Mul):
terms = 1
for term in arg.args:
if isinstance(term, Sum):
terms *= _cg_simp_sum(term)
else:
terms *= term
if terms.has(CG):
cg_part.append(terms)
else:
other_part.append(terms)
else:
cg_part.append(arg)
else:
other_part.append(arg)
cg_part, other = _check_varsh_871_1(cg_part)
other_part.append(other)
cg_part, other = _check_varsh_871_2(cg_part)
other_part.append(other)
cg_part, other = _check_varsh_872_9(cg_part)
other_part.append(other)
return Add(*cg_part) + Add(*other_part)
def _check_varsh_871_1(term_list):
# Sum( CG(a,alpha,b,0,a,alpha), (alpha, -a, a)) == KroneckerDelta(b,0)
a, alpha, b, lt = map(Wild, ('a', 'alpha', 'b', 'lt'))
expr = lt*CG(a, alpha, b, 0, a, alpha)
simp = (2*a + 1)*KroneckerDelta(b, 0)
sign = lt/abs(lt)
build_expr = 2*a + 1
index_expr = a + alpha
return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, lt), (a, b), build_expr, index_expr)
def _check_varsh_871_2(term_list):
# Sum((-1)**(a-alpha)*CG(a,alpha,a,-alpha,c,0),(alpha,-a,a))
a, alpha, c, lt = map(Wild, ('a', 'alpha', 'c', 'lt'))
expr = lt*CG(a, alpha, a, -alpha, c, 0)
simp = sqrt(2*a + 1)*KroneckerDelta(c, 0)
sign = (-1)**(a - alpha)*lt/abs(lt)
build_expr = 2*a + 1
index_expr = a + alpha
return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, c, lt), (a, c), build_expr, index_expr)
def _check_varsh_872_9(term_list):
# Sum( CG(a,alpha,b,beta,c,gamma)*CG(a,alpha',b,beta',c,gamma), (gamma, -c, c), (c, abs(a-b), a+b))
a, alpha, alphap, b, beta, betap, c, gamma, lt = map(Wild, (
'a', 'alpha', 'alphap', 'b', 'beta', 'betap', 'c', 'gamma', 'lt'))
# Case alpha==alphap, beta==betap
# For numerical alpha,beta
expr = lt*CG(a, alpha, b, beta, c, gamma)**2
simp = S.One
sign = lt/abs(lt)
x = abs(a - b)
y = abs(alpha + beta)
build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x))
index_expr = a + b - c
term_list, other1 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr)
# For symbolic alpha,beta
x = abs(a - b)
y = a + b
build_expr = (y + 1 - x)*(x + y + 1)
index_expr = (c - x)*(x + c) + c + gamma
term_list, other2 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr)
# Case alpha!=alphap or beta!=betap
# Note: this only works with leading term of 1, pattern matching is unable to match when there is a Wild leading term
# For numerical alpha,alphap,beta,betap
expr = CG(a, alpha, b, beta, c, gamma)*CG(a, alphap, b, betap, c, gamma)
simp = KroneckerDelta(alpha, alphap)*KroneckerDelta(beta, betap)
sign = S.One
x = abs(a - b)
y = abs(alpha + beta)
build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x))
index_expr = a + b - c
term_list, other3 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr)
# For symbolic alpha,alphap,beta,betap
x = abs(a - b)
y = a + b
build_expr = (y + 1 - x)*(x + y + 1)
index_expr = (c - x)*(x + c) + c + gamma
term_list, other4 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr)
return term_list, other1 + other2 + other4
def _check_cg_simp(expr, simp, sign, lt, term_list, variables, dep_variables, build_index_expr, index_expr):
""" Checks for simplifications that can be made, returning a tuple of the
simplified list of terms and any terms generated by simplification.
Parameters
==========
expr: expression
The expression with Wild terms that will be matched to the terms in
the sum
simp: expression
The expression with Wild terms that is substituted in place of the CG
terms in the case of simplification
sign: expression
The expression with Wild terms denoting the sign that is on expr that
must match
lt: expression
The expression with Wild terms that gives the leading term of the
matched expr
term_list: list
A list of all of the terms is the sum to be simplified
variables: list
A list of all the variables that appears in expr
dep_variables: list
A list of the variables that must match for all the terms in the sum,
i.e. the dependent variables
build_index_expr: expression
Expression with Wild terms giving the number of elements in cg_index
index_expr: expression
Expression with Wild terms giving the index terms have when storing
them to cg_index
"""
other_part = 0
i = 0
while i < len(term_list):
sub_1 = _check_cg(term_list[i], expr, len(variables))
if sub_1 is None:
i += 1
continue
if not build_index_expr.subs(sub_1).is_number:
i += 1
continue
sub_dep = [(x, sub_1[x]) for x in dep_variables]
cg_index = [None]*build_index_expr.subs(sub_1)
for j in range(i, len(term_list)):
sub_2 = _check_cg(term_list[j], expr.subs(sub_dep), len(variables) - len(dep_variables), sign=(sign.subs(sub_1), sign.subs(sub_dep)))
if sub_2 is None:
continue
if not index_expr.subs(sub_dep).subs(sub_2).is_number:
continue
cg_index[index_expr.subs(sub_dep).subs(sub_2)] = j, expr.subs(lt, 1).subs(sub_dep).subs(sub_2), lt.subs(sub_2), sign.subs(sub_dep).subs(sub_2)
if not any(i is None for i in cg_index):
min_lt = min(*[ abs(term[2]) for term in cg_index ])
indices = [ term[0] for term in cg_index]
indices.sort()
indices.reverse()
[ term_list.pop(j) for j in indices ]
for term in cg_index:
if abs(term[2]) > min_lt:
term_list.append( (term[2] - min_lt*term[3])*term[1] )
other_part += min_lt*(sign*simp).subs(sub_1)
else:
i += 1
return term_list, other_part
def _check_cg(cg_term, expr, length, sign=None):
"""Checks whether a term matches the given expression"""
# TODO: Check for symmetries
matches = cg_term.match(expr)
if matches is None:
return
if sign is not None:
if not isinstance(sign, tuple):
raise TypeError('sign must be a tuple')
if not sign[0] == (sign[1]).subs(matches):
return
if len(matches) == length:
return matches
def _cg_simp_sum(e):
e = _check_varsh_sum_871_1(e)
e = _check_varsh_sum_871_2(e)
e = _check_varsh_sum_872_4(e)
return e
def _check_varsh_sum_871_1(e):
a = Wild('a')
alpha = symbols('alpha')
b = Wild('b')
match = e.match(Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)))
if match is not None and len(match) == 2:
return ((2*a + 1)*KroneckerDelta(b, 0)).subs(match)
return e
def _check_varsh_sum_871_2(e):
a = Wild('a')
alpha = symbols('alpha')
c = Wild('c')
match = e.match(
Sum((-1)**(a - alpha)*CG(a, alpha, a, -alpha, c, 0), (alpha, -a, a)))
if match is not None and len(match) == 2:
return (sqrt(2*a + 1)*KroneckerDelta(c, 0)).subs(match)
return e
def _check_varsh_sum_872_4(e):
alpha = symbols('alpha')
beta = symbols('beta')
a = Wild('a')
b = Wild('b')
c = Wild('c')
cp = Wild('cp')
gamma = Wild('gamma')
gammap = Wild('gammap')
cg1 = CG(a, alpha, b, beta, c, gamma)
cg2 = CG(a, alpha, b, beta, cp, gammap)
match1 = e.match(Sum(cg1*cg2, (alpha, -a, a), (beta, -b, b)))
if match1 is not None and len(match1) == 6:
return (KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)).subs(match1)
match2 = e.match(Sum(cg1**2, (alpha, -a, a), (beta, -b, b)))
if match2 is not None and len(match2) == 4:
return S.One
return e
def _cg_list(term):
if isinstance(term, CG):
return (term,), 1, 1
cg = []
coeff = 1
if not isinstance(term, (Mul, Pow)):
raise NotImplementedError('term must be CG, Add, Mul or Pow')
if isinstance(term, Pow) and term.exp.is_number:
if term.exp.is_number:
[ cg.append(term.base) for _ in range(term.exp) ]
else:
return (term,), 1, 1
if isinstance(term, Mul):
for arg in term.args:
if isinstance(arg, CG):
cg.append(arg)
else:
coeff *= arg
return cg, coeff, coeff/abs(coeff)
|