File size: 6,313 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""Bosonic quantum operators."""

from sympy.core.mul import Mul
from sympy.core.numbers import Integer
from sympy.core.singleton import S
from sympy.functions.elementary.complexes import conjugate
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.physics.quantum import Operator
from sympy.physics.quantum import HilbertSpace, FockSpace, Ket, Bra, IdentityOperator
from sympy.functions.special.tensor_functions import KroneckerDelta


__all__ = [
    'BosonOp',
    'BosonFockKet',
    'BosonFockBra',
    'BosonCoherentKet',
    'BosonCoherentBra'
]


class BosonOp(Operator):
    """A bosonic operator that satisfies [a, Dagger(a)] == 1.

    Parameters
    ==========

    name : str
        A string that labels the bosonic mode.

    annihilation : bool
        A bool that indicates if the bosonic operator is an annihilation (True,
        default value) or creation operator (False)

    Examples
    ========

    >>> from sympy.physics.quantum import Dagger, Commutator
    >>> from sympy.physics.quantum.boson import BosonOp
    >>> a = BosonOp("a")
    >>> Commutator(a, Dagger(a)).doit()
    1
    """

    @property
    def name(self):
        return self.args[0]

    @property
    def is_annihilation(self):
        return bool(self.args[1])

    @classmethod
    def default_args(self):
        return ("a", True)

    def __new__(cls, *args, **hints):
        if not len(args) in [1, 2]:
            raise ValueError('1 or 2 parameters expected, got %s' % args)

        if len(args) == 1:
            args = (args[0], S.One)

        if len(args) == 2:
            args = (args[0], Integer(args[1]))

        return Operator.__new__(cls, *args)

    def _eval_commutator_BosonOp(self, other, **hints):
        if self.name == other.name:
            # [a^\dagger, a] = -1
            if not self.is_annihilation and other.is_annihilation:
                return S.NegativeOne

        elif 'independent' in hints and hints['independent']:
            # [a, b] = 0
            return S.Zero

        return None

    def _eval_commutator_FermionOp(self, other, **hints):
        return S.Zero

    def _eval_anticommutator_BosonOp(self, other, **hints):
        if 'independent' in hints and hints['independent']:
            # {a, b} = 2 * a * b, because [a, b] = 0
            return 2 * self * other

        return None

    def _eval_adjoint(self):
        return BosonOp(str(self.name), not self.is_annihilation)

    def __mul__(self, other):

        if other == IdentityOperator(2):
            return self

        if isinstance(other, Mul):
            args1 = tuple(arg for arg in other.args if arg.is_commutative)
            args2 = tuple(arg for arg in other.args if not arg.is_commutative)
            x = self
            for y in args2:
                x = x * y
            return Mul(*args1) * x

        return Mul(self, other)

    def _print_contents_latex(self, printer, *args):
        if self.is_annihilation:
            return r'{%s}' % str(self.name)
        else:
            return r'{{%s}^\dagger}' % str(self.name)

    def _print_contents(self, printer, *args):
        if self.is_annihilation:
            return r'%s' % str(self.name)
        else:
            return r'Dagger(%s)' % str(self.name)

    def _print_contents_pretty(self, printer, *args):
        from sympy.printing.pretty.stringpict import prettyForm
        pform = printer._print(self.args[0], *args)
        if self.is_annihilation:
            return pform
        else:
            return pform**prettyForm('\N{DAGGER}')


class BosonFockKet(Ket):
    """Fock state ket for a bosonic mode.

    Parameters
    ==========

    n : Number
        The Fock state number.

    """

    def __new__(cls, n):
        return Ket.__new__(cls, n)

    @property
    def n(self):
        return self.label[0]

    @classmethod
    def dual_class(self):
        return BosonFockBra

    @classmethod
    def _eval_hilbert_space(cls, label):
        return FockSpace()

    def _eval_innerproduct_BosonFockBra(self, bra, **hints):
        return KroneckerDelta(self.n, bra.n)

    def _apply_from_right_to_BosonOp(self, op, **options):
        if op.is_annihilation:
            return sqrt(self.n) * BosonFockKet(self.n - 1)
        else:
            return sqrt(self.n + 1) * BosonFockKet(self.n + 1)


class BosonFockBra(Bra):
    """Fock state bra for a bosonic mode.

    Parameters
    ==========

    n : Number
        The Fock state number.

    """

    def __new__(cls, n):
        return Bra.__new__(cls, n)

    @property
    def n(self):
        return self.label[0]

    @classmethod
    def dual_class(self):
        return BosonFockKet

    @classmethod
    def _eval_hilbert_space(cls, label):
        return FockSpace()


class BosonCoherentKet(Ket):
    """Coherent state ket for a bosonic mode.

    Parameters
    ==========

    alpha : Number, Symbol
        The complex amplitude of the coherent state.

    """

    def __new__(cls, alpha):
        return Ket.__new__(cls, alpha)

    @property
    def alpha(self):
        return self.label[0]

    @classmethod
    def dual_class(self):
        return BosonCoherentBra

    @classmethod
    def _eval_hilbert_space(cls, label):
        return HilbertSpace()

    def _eval_innerproduct_BosonCoherentBra(self, bra, **hints):
        if self.alpha == bra.alpha:
            return S.One
        else:
            return exp(-(abs(self.alpha)**2 + abs(bra.alpha)**2 - 2 * conjugate(bra.alpha) * self.alpha)/2)

    def _apply_from_right_to_BosonOp(self, op, **options):
        if op.is_annihilation:
            return self.alpha * self
        else:
            return None


class BosonCoherentBra(Bra):
    """Coherent state bra for a bosonic mode.

    Parameters
    ==========

    alpha : Number, Symbol
        The complex amplitude of the coherent state.

    """

    def __new__(cls, alpha):
        return Bra.__new__(cls, alpha)

    @property
    def alpha(self):
        return self.label[0]

    @classmethod
    def dual_class(self):
        return BosonCoherentKet

    def _apply_operator_BosonOp(self, op, **options):
        if not op.is_annihilation:
            return self.alpha * self
        else:
            return None