File size: 10,042 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
"""
This module has all the classes and functions related to waves in optics.

**Contains**

* TWave
"""

__all__ = ['TWave']

from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.function import Derivative, Function
from sympy.core.numbers import (Number, pi, I)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.core.sympify import _sympify, sympify
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (atan2, cos, sin)
from sympy.physics.units import speed_of_light, meter, second


c = speed_of_light.convert_to(meter/second)


class TWave(Expr):

    r"""
    This is a simple transverse sine wave travelling in a one-dimensional space.
    Basic properties are required at the time of creation of the object,
    but they can be changed later with respective methods provided.

    Explanation
    ===========

    It is represented as :math:`A \times cos(k*x - \omega \times t + \phi )`,
    where :math:`A` is the amplitude, :math:`\omega` is the angular frequency,
    :math:`k` is the wavenumber (spatial frequency), :math:`x` is a spatial variable
    to represent the position on the dimension on which the wave propagates,
    and :math:`\phi` is the phase angle of the wave.


    Arguments
    =========

    amplitude : Sympifyable
        Amplitude of the wave.
    frequency : Sympifyable
        Frequency of the wave.
    phase : Sympifyable
        Phase angle of the wave.
    time_period : Sympifyable
        Time period of the wave.
    n : Sympifyable
        Refractive index of the medium.

    Raises
    =======

    ValueError : When neither frequency nor time period is provided
        or they are not consistent.
    TypeError : When anything other than TWave objects is added.


    Examples
    ========

    >>> from sympy import symbols
    >>> from sympy.physics.optics import TWave
    >>> A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f')
    >>> w1 = TWave(A1, f, phi1)
    >>> w2 = TWave(A2, f, phi2)
    >>> w3 = w1 + w2  # Superposition of two waves
    >>> w3
    TWave(sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2), f,
        atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2)), 1/f, n)
    >>> w3.amplitude
    sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)
    >>> w3.phase
    atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2))
    >>> w3.speed
    299792458*meter/(second*n)
    >>> w3.angular_velocity
    2*pi*f

    """

    def __new__(
            cls,
            amplitude,
            frequency=None,
            phase=S.Zero,
            time_period=None,
            n=Symbol('n')):
        if time_period is not None:
            time_period = _sympify(time_period)
            _frequency = S.One/time_period
        if frequency is not None:
            frequency = _sympify(frequency)
            _time_period = S.One/frequency
            if time_period is not None:
                if frequency != S.One/time_period:
                    raise ValueError("frequency and time_period should be consistent.")
        if frequency is None and time_period is None:
            raise ValueError("Either frequency or time period is needed.")
        if frequency is None:
            frequency = _frequency
        if time_period is None:
            time_period = _time_period

        amplitude = _sympify(amplitude)
        phase = _sympify(phase)
        n = sympify(n)
        obj = Basic.__new__(cls, amplitude, frequency, phase, time_period, n)
        return obj

    @property
    def amplitude(self):
        """
        Returns the amplitude of the wave.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.optics import TWave
        >>> A, phi, f = symbols('A, phi, f')
        >>> w = TWave(A, f, phi)
        >>> w.amplitude
        A
        """
        return self.args[0]

    @property
    def frequency(self):
        """
        Returns the frequency of the wave,
        in cycles per second.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.optics import TWave
        >>> A, phi, f = symbols('A, phi, f')
        >>> w = TWave(A, f, phi)
        >>> w.frequency
        f
        """
        return self.args[1]

    @property
    def phase(self):
        """
        Returns the phase angle of the wave,
        in radians.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.optics import TWave
        >>> A, phi, f = symbols('A, phi, f')
        >>> w = TWave(A, f, phi)
        >>> w.phase
        phi
        """
        return self.args[2]

    @property
    def time_period(self):
        """
        Returns the temporal period of the wave,
        in seconds per cycle.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.optics import TWave
        >>> A, phi, f = symbols('A, phi, f')
        >>> w = TWave(A, f, phi)
        >>> w.time_period
        1/f
        """
        return self.args[3]

    @property
    def n(self):
        """
        Returns the refractive index of the medium
        """
        return self.args[4]

    @property
    def wavelength(self):
        """
        Returns the wavelength (spatial period) of the wave,
        in meters per cycle.
        It depends on the medium of the wave.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.optics import TWave
        >>> A, phi, f = symbols('A, phi, f')
        >>> w = TWave(A, f, phi)
        >>> w.wavelength
        299792458*meter/(second*f*n)
        """
        return c/(self.frequency*self.n)


    @property
    def speed(self):
        """
        Returns the propagation speed of the wave,
        in meters per second.
        It is dependent on the propagation medium.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.optics import TWave
        >>> A, phi, f = symbols('A, phi, f')
        >>> w = TWave(A, f, phi)
        >>> w.speed
        299792458*meter/(second*n)
        """
        return self.wavelength*self.frequency

    @property
    def angular_velocity(self):
        """
        Returns the angular velocity of the wave,
        in radians per second.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.optics import TWave
        >>> A, phi, f = symbols('A, phi, f')
        >>> w = TWave(A, f, phi)
        >>> w.angular_velocity
        2*pi*f
        """
        return 2*pi*self.frequency

    @property
    def wavenumber(self):
        """
        Returns the wavenumber of the wave,
        in radians per meter.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.optics import TWave
        >>> A, phi, f = symbols('A, phi, f')
        >>> w = TWave(A, f, phi)
        >>> w.wavenumber
        pi*second*f*n/(149896229*meter)
        """
        return 2*pi/self.wavelength

    def __str__(self):
        """String representation of a TWave."""
        from sympy.printing import sstr
        return type(self).__name__ + sstr(self.args)

    __repr__ = __str__

    def __add__(self, other):
        """
        Addition of two waves will result in their superposition.
        The type of interference will depend on their phase angles.
        """
        if isinstance(other, TWave):
            if self.frequency == other.frequency and self.wavelength == other.wavelength:
                return TWave(sqrt(self.amplitude**2 + other.amplitude**2 + 2 *
                                  self.amplitude*other.amplitude*cos(
                                      self.phase - other.phase)),
                             self.frequency,
                             atan2(self.amplitude*sin(self.phase)
                             + other.amplitude*sin(other.phase),
                             self.amplitude*cos(self.phase)
                             + other.amplitude*cos(other.phase))
                             )
            else:
                raise NotImplementedError("Interference of waves with different frequencies"
                    " has not been implemented.")
        else:
            raise TypeError(type(other).__name__ + " and TWave objects cannot be added.")

    def __mul__(self, other):
        """
        Multiplying a wave by a scalar rescales the amplitude of the wave.
        """
        other = sympify(other)
        if isinstance(other, Number):
            return TWave(self.amplitude*other, *self.args[1:])
        else:
            raise TypeError(type(other).__name__ + " and TWave objects cannot be multiplied.")

    def __sub__(self, other):
        return self.__add__(-1*other)

    def __neg__(self):
        return self.__mul__(-1)

    def __radd__(self, other):
        return self.__add__(other)

    def __rmul__(self, other):
        return self.__mul__(other)

    def __rsub__(self, other):
        return (-self).__radd__(other)

    def _eval_rewrite_as_sin(self, *args, **kwargs):
        return self.amplitude*sin(self.wavenumber*Symbol('x')
            - self.angular_velocity*Symbol('t') + self.phase + pi/2, evaluate=False)

    def _eval_rewrite_as_cos(self, *args, **kwargs):
        return self.amplitude*cos(self.wavenumber*Symbol('x')
            - self.angular_velocity*Symbol('t') + self.phase)

    def _eval_rewrite_as_pde(self, *args, **kwargs):
        mu, epsilon, x, t = symbols('mu, epsilon, x, t')
        E = Function('E')
        return Derivative(E(x, t), x, 2) + mu*epsilon*Derivative(E(x, t), t, 2)

    def _eval_rewrite_as_exp(self, *args, **kwargs):
        return self.amplitude*exp(I*(self.wavenumber*Symbol('x')
            - self.angular_velocity*Symbol('t') + self.phase))