File size: 22,172 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
"""
**Contains**

* refraction_angle
* fresnel_coefficients
* deviation
* brewster_angle
* critical_angle
* lens_makers_formula
* mirror_formula
* lens_formula
* hyperfocal_distance
* transverse_magnification
"""

__all__ = ['refraction_angle',
           'deviation',
           'fresnel_coefficients',
           'brewster_angle',
           'critical_angle',
           'lens_makers_formula',
           'mirror_formula',
           'lens_formula',
           'hyperfocal_distance',
           'transverse_magnification'
           ]

from sympy.core.numbers import (Float, I, oo, pi, zoo)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, asin, atan2, cos, sin, tan)
from sympy.matrices.dense import Matrix
from sympy.polys.polytools import cancel
from sympy.series.limits import Limit
from sympy.geometry.line import Ray3D
from sympy.geometry.util import intersection
from sympy.geometry.plane import Plane
from sympy.utilities.iterables import is_sequence
from .medium import Medium


def refractive_index_of_medium(medium):
    """
    Helper function that returns refractive index, given a medium
    """
    if isinstance(medium, Medium):
        n = medium.refractive_index
    else:
        n = sympify(medium)
    return n


def refraction_angle(incident, medium1, medium2, normal=None, plane=None):
    """
    This function calculates transmitted vector after refraction at planar
    surface. ``medium1`` and ``medium2`` can be ``Medium`` or any sympifiable object.
    If ``incident`` is a number then treated as angle of incidence (in radians)
    in which case refraction angle is returned.

    If ``incident`` is an object of `Ray3D`, `normal` also has to be an instance
    of `Ray3D` in order to get the output as a `Ray3D`. Please note that if
    plane of separation is not provided and normal is an instance of `Ray3D`,
    ``normal`` will be assumed to be intersecting incident ray at the plane of
    separation. This will not be the case when `normal` is a `Matrix` or
    any other sequence.
    If ``incident`` is an instance of `Ray3D` and `plane` has not been provided
    and ``normal`` is not `Ray3D`, output will be a `Matrix`.

    Parameters
    ==========

    incident : Matrix, Ray3D, sequence or a number
        Incident vector or angle of incidence
    medium1 : sympy.physics.optics.medium.Medium or sympifiable
        Medium 1 or its refractive index
    medium2 : sympy.physics.optics.medium.Medium or sympifiable
        Medium 2 or its refractive index
    normal : Matrix, Ray3D, or sequence
        Normal vector
    plane : Plane
        Plane of separation of the two media.

    Returns
    =======

    Returns an angle of refraction or a refracted ray depending on inputs.

    Examples
    ========

    >>> from sympy.physics.optics import refraction_angle
    >>> from sympy.geometry import Point3D, Ray3D, Plane
    >>> from sympy.matrices import Matrix
    >>> from sympy import symbols, pi
    >>> n = Matrix([0, 0, 1])
    >>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
    >>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
    >>> refraction_angle(r1, 1, 1, n)
    Matrix([
    [ 1],
    [ 1],
    [-1]])
    >>> refraction_angle(r1, 1, 1, plane=P)
    Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1))

    With different index of refraction of the two media

    >>> n1, n2 = symbols('n1, n2')
    >>> refraction_angle(r1, n1, n2, n)
    Matrix([
    [                                n1/n2],
    [                                n1/n2],
    [-sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)]])
    >>> refraction_angle(r1, n1, n2, plane=P)
    Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)))
    >>> round(refraction_angle(pi/6, 1.2, 1.5), 5)
    0.41152
    """

    n1 = refractive_index_of_medium(medium1)
    n2 = refractive_index_of_medium(medium2)

    # check if an incidence angle was supplied instead of a ray
    try:
        angle_of_incidence = float(incident)
    except TypeError:
        angle_of_incidence = None

    try:
        critical_angle_ = critical_angle(medium1, medium2)
    except (ValueError, TypeError):
        critical_angle_ = None

    if angle_of_incidence is not None:
        if normal is not None or plane is not None:
            raise ValueError('Normal/plane not allowed if incident is an angle')

        if not 0.0 <= angle_of_incidence < pi*0.5:
            raise ValueError('Angle of incidence not in range [0:pi/2)')

        if critical_angle_ and angle_of_incidence > critical_angle_:
            raise ValueError('Ray undergoes total internal reflection')
        return asin(n1*sin(angle_of_incidence)/n2)

    # Treat the incident as ray below
    # A flag to check whether to return Ray3D or not
    return_ray = False

    if plane is not None and normal is not None:
        raise ValueError("Either plane or normal is acceptable.")

    if not isinstance(incident, Matrix):
        if is_sequence(incident):
            _incident = Matrix(incident)
        elif isinstance(incident, Ray3D):
            _incident = Matrix(incident.direction_ratio)
        else:
            raise TypeError(
                "incident should be a Matrix, Ray3D, or sequence")
    else:
        _incident = incident

    # If plane is provided, get direction ratios of the normal
    # to the plane from the plane else go with `normal` param.
    if plane is not None:
        if not isinstance(plane, Plane):
            raise TypeError("plane should be an instance of geometry.plane.Plane")
        # If we have the plane, we can get the intersection
        # point of incident ray and the plane and thus return
        # an instance of Ray3D.
        if isinstance(incident, Ray3D):
            return_ray = True
            intersection_pt = plane.intersection(incident)[0]
        _normal = Matrix(plane.normal_vector)
    else:
        if not isinstance(normal, Matrix):
            if is_sequence(normal):
                _normal = Matrix(normal)
            elif isinstance(normal, Ray3D):
                _normal = Matrix(normal.direction_ratio)
                if isinstance(incident, Ray3D):
                    intersection_pt = intersection(incident, normal)
                    if len(intersection_pt) == 0:
                        raise ValueError(
                            "Normal isn't concurrent with the incident ray.")
                    else:
                        return_ray = True
                        intersection_pt = intersection_pt[0]
            else:
                raise TypeError(
                    "Normal should be a Matrix, Ray3D, or sequence")
        else:
            _normal = normal

    eta = n1/n2  # Relative index of refraction
    # Calculating magnitude of the vectors
    mag_incident = sqrt(sum(i**2 for i in _incident))
    mag_normal = sqrt(sum(i**2 for i in _normal))
    # Converting vectors to unit vectors by dividing
    # them with their magnitudes
    _incident /= mag_incident
    _normal /= mag_normal
    c1 = -_incident.dot(_normal)  # cos(angle_of_incidence)
    cs2 = 1 - eta**2*(1 - c1**2)  # cos(angle_of_refraction)**2
    if cs2.is_negative:  # This is the case of total internal reflection(TIR).
        return S.Zero
    drs = eta*_incident + (eta*c1 - sqrt(cs2))*_normal
    # Multiplying unit vector by its magnitude
    drs = drs*mag_incident
    if not return_ray:
        return drs
    else:
        return Ray3D(intersection_pt, direction_ratio=drs)


def fresnel_coefficients(angle_of_incidence, medium1, medium2):
    """
    This function uses Fresnel equations to calculate reflection and
    transmission coefficients. Those are obtained for both polarisations
    when the electric field vector is in the plane of incidence (labelled 'p')
    and when the electric field vector is perpendicular to the plane of
    incidence (labelled 's'). There are four real coefficients unless the
    incident ray reflects in total internal in which case there are two complex
    ones. Angle of incidence is the angle between the incident ray and the
    surface normal. ``medium1`` and ``medium2`` can be ``Medium`` or any
    sympifiable object.

    Parameters
    ==========

    angle_of_incidence : sympifiable

    medium1 : Medium or sympifiable
        Medium 1 or its refractive index

    medium2 : Medium or sympifiable
        Medium 2 or its refractive index

    Returns
    =======

    Returns a list with four real Fresnel coefficients:
    [reflection p (TM), reflection s (TE),
    transmission p (TM), transmission s (TE)]
    If the ray is undergoes total internal reflection then returns a
    list of two complex Fresnel coefficients:
    [reflection p (TM), reflection s (TE)]

    Examples
    ========

    >>> from sympy.physics.optics import fresnel_coefficients
    >>> fresnel_coefficients(0.3, 1, 2)
    [0.317843553417859, -0.348645229818821,
            0.658921776708929, 0.651354770181179]
    >>> fresnel_coefficients(0.6, 2, 1)
    [-0.235625382192159 - 0.971843958291041*I,
             0.816477005968898 - 0.577377951366403*I]

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Fresnel_equations
    """
    if not 0 <= 2*angle_of_incidence < pi:
        raise ValueError('Angle of incidence not in range [0:pi/2)')

    n1 = refractive_index_of_medium(medium1)
    n2 = refractive_index_of_medium(medium2)

    angle_of_refraction = asin(n1*sin(angle_of_incidence)/n2)
    try:
        angle_of_total_internal_reflection_onset = critical_angle(n1, n2)
    except ValueError:
        angle_of_total_internal_reflection_onset = None

    if angle_of_total_internal_reflection_onset is None or\
    angle_of_total_internal_reflection_onset > angle_of_incidence:
        R_s = -sin(angle_of_incidence - angle_of_refraction)\
                /sin(angle_of_incidence + angle_of_refraction)
        R_p = tan(angle_of_incidence - angle_of_refraction)\
                /tan(angle_of_incidence + angle_of_refraction)
        T_s = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\
                /sin(angle_of_incidence + angle_of_refraction)
        T_p = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\
                /(sin(angle_of_incidence + angle_of_refraction)\
                *cos(angle_of_incidence - angle_of_refraction))
        return [R_p, R_s, T_p, T_s]
    else:
        n = n2/n1
        R_s = cancel((cos(angle_of_incidence)-\
                I*sqrt(sin(angle_of_incidence)**2 - n**2))\
                /(cos(angle_of_incidence)+\
                I*sqrt(sin(angle_of_incidence)**2 - n**2)))
        R_p = cancel((n**2*cos(angle_of_incidence)-\
                I*sqrt(sin(angle_of_incidence)**2 - n**2))\
                /(n**2*cos(angle_of_incidence)+\
                I*sqrt(sin(angle_of_incidence)**2 - n**2)))
        return [R_p, R_s]


def deviation(incident, medium1, medium2, normal=None, plane=None):
    """
    This function calculates the angle of deviation of a ray
    due to refraction at planar surface.

    Parameters
    ==========

    incident : Matrix, Ray3D, sequence or float
        Incident vector or angle of incidence
    medium1 : sympy.physics.optics.medium.Medium or sympifiable
        Medium 1 or its refractive index
    medium2 : sympy.physics.optics.medium.Medium or sympifiable
        Medium 2 or its refractive index
    normal : Matrix, Ray3D, or sequence
        Normal vector
    plane : Plane
        Plane of separation of the two media.

    Returns angular deviation between incident and refracted rays

    Examples
    ========

    >>> from sympy.physics.optics import deviation
    >>> from sympy.geometry import Point3D, Ray3D, Plane
    >>> from sympy.matrices import Matrix
    >>> from sympy import symbols
    >>> n1, n2 = symbols('n1, n2')
    >>> n = Matrix([0, 0, 1])
    >>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1])
    >>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0))
    >>> deviation(r1, 1, 1, n)
    0
    >>> deviation(r1, n1, n2, plane=P)
    -acos(-sqrt(-2*n1**2/(3*n2**2) + 1)) + acos(-sqrt(3)/3)
    >>> round(deviation(0.1, 1.2, 1.5), 5)
    -0.02005
    """
    refracted = refraction_angle(incident,
                                 medium1,
                                 medium2,
                                 normal=normal,
                                 plane=plane)
    try:
        angle_of_incidence = Float(incident)
    except TypeError:
        angle_of_incidence = None

    if angle_of_incidence is not None:
        return float(refracted) - angle_of_incidence

    if refracted != 0:
        if isinstance(refracted, Ray3D):
            refracted = Matrix(refracted.direction_ratio)

        if not isinstance(incident, Matrix):
            if is_sequence(incident):
                _incident = Matrix(incident)
            elif isinstance(incident, Ray3D):
                _incident = Matrix(incident.direction_ratio)
            else:
                raise TypeError(
                    "incident should be a Matrix, Ray3D, or sequence")
        else:
            _incident = incident

        if plane is None:
            if not isinstance(normal, Matrix):
                if is_sequence(normal):
                    _normal = Matrix(normal)
                elif isinstance(normal, Ray3D):
                    _normal = Matrix(normal.direction_ratio)
                else:
                    raise TypeError(
                        "normal should be a Matrix, Ray3D, or sequence")
            else:
                _normal = normal
        else:
            _normal = Matrix(plane.normal_vector)

        mag_incident = sqrt(sum(i**2 for i in _incident))
        mag_normal = sqrt(sum(i**2 for i in _normal))
        mag_refracted = sqrt(sum(i**2 for i in refracted))
        _incident /= mag_incident
        _normal /= mag_normal
        refracted /= mag_refracted
        i = acos(_incident.dot(_normal))
        r = acos(refracted.dot(_normal))
        return i - r


def brewster_angle(medium1, medium2):
    """
    This function calculates the Brewster's angle of incidence to Medium 2 from
    Medium 1 in radians.

    Parameters
    ==========

    medium 1 : Medium or sympifiable
        Refractive index of Medium 1
    medium 2 : Medium or sympifiable
        Refractive index of Medium 1

    Examples
    ========

    >>> from sympy.physics.optics import brewster_angle
    >>> brewster_angle(1, 1.33)
    0.926093295503462

    """

    n1 = refractive_index_of_medium(medium1)
    n2 = refractive_index_of_medium(medium2)

    return atan2(n2, n1)

def critical_angle(medium1, medium2):
    """
    This function calculates the critical angle of incidence (marking the onset
    of total internal) to Medium 2 from Medium 1 in radians.

    Parameters
    ==========

    medium 1 : Medium or sympifiable
        Refractive index of Medium 1.
    medium 2 : Medium or sympifiable
        Refractive index of Medium 1.

    Examples
    ========

    >>> from sympy.physics.optics import critical_angle
    >>> critical_angle(1.33, 1)
    0.850908514477849

    """

    n1 = refractive_index_of_medium(medium1)
    n2 = refractive_index_of_medium(medium2)

    if n2 > n1:
        raise ValueError('Total internal reflection impossible for n1 < n2')
    else:
        return asin(n2/n1)



def lens_makers_formula(n_lens, n_surr, r1, r2, d=0):
    """
    This function calculates focal length of a lens.
    It follows cartesian sign convention.

    Parameters
    ==========

    n_lens : Medium or sympifiable
        Index of refraction of lens.
    n_surr : Medium or sympifiable
        Index of reflection of surrounding.
    r1 : sympifiable
        Radius of curvature of first surface.
    r2 : sympifiable
        Radius of curvature of second surface.
    d : sympifiable, optional
        Thickness of lens, default value is 0.

    Examples
    ========

    >>> from sympy.physics.optics import lens_makers_formula
    >>> from sympy import S
    >>> lens_makers_formula(1.33, 1, 10, -10)
    15.1515151515151
    >>> lens_makers_formula(1.2, 1, 10, S.Infinity)
    50.0000000000000
    >>> lens_makers_formula(1.33, 1, 10, -10, d=1)
    15.3418463277618

    """

    if isinstance(n_lens, Medium):
        n_lens = n_lens.refractive_index
    else:
        n_lens = sympify(n_lens)
    if isinstance(n_surr, Medium):
        n_surr = n_surr.refractive_index
    else:
        n_surr = sympify(n_surr)
    d = sympify(d)

    focal_length = 1/((n_lens - n_surr) / n_surr*(1/r1 - 1/r2 + (((n_lens - n_surr) * d) / (n_lens * r1 * r2))))

    if focal_length == zoo:
        return S.Infinity
    return focal_length


def mirror_formula(focal_length=None, u=None, v=None):
    """
    This function provides one of the three parameters
    when two of them are supplied.
    This is valid only for paraxial rays.

    Parameters
    ==========

    focal_length : sympifiable
        Focal length of the mirror.
    u : sympifiable
        Distance of object from the pole on
        the principal axis.
    v : sympifiable
        Distance of the image from the pole
        on the principal axis.

    Examples
    ========

    >>> from sympy.physics.optics import mirror_formula
    >>> from sympy.abc import f, u, v
    >>> mirror_formula(focal_length=f, u=u)
    f*u/(-f + u)
    >>> mirror_formula(focal_length=f, v=v)
    f*v/(-f + v)
    >>> mirror_formula(u=u, v=v)
    u*v/(u + v)

    """
    if focal_length and u and v:
        raise ValueError("Please provide only two parameters")

    focal_length = sympify(focal_length)
    u = sympify(u)
    v = sympify(v)
    if u is oo:
        _u = Symbol('u')
    if v is oo:
        _v = Symbol('v')
    if focal_length is oo:
        _f = Symbol('f')
    if focal_length is None:
        if u is oo and v is oo:
            return Limit(Limit(_v*_u/(_v + _u), _u, oo), _v, oo).doit()
        if u is oo:
            return Limit(v*_u/(v + _u), _u, oo).doit()
        if v is oo:
            return Limit(_v*u/(_v + u), _v, oo).doit()
        return v*u/(v + u)
    if u is None:
        if v is oo and focal_length is oo:
            return Limit(Limit(_v*_f/(_v - _f), _v, oo), _f, oo).doit()
        if v is oo:
            return Limit(_v*focal_length/(_v - focal_length), _v, oo).doit()
        if focal_length is oo:
            return Limit(v*_f/(v - _f), _f, oo).doit()
        return v*focal_length/(v - focal_length)
    if v is None:
        if u is oo and focal_length is oo:
            return Limit(Limit(_u*_f/(_u - _f), _u, oo), _f, oo).doit()
        if u is oo:
            return Limit(_u*focal_length/(_u - focal_length), _u, oo).doit()
        if focal_length is oo:
            return Limit(u*_f/(u - _f), _f, oo).doit()
        return u*focal_length/(u - focal_length)


def lens_formula(focal_length=None, u=None, v=None):
    """
    This function provides one of the three parameters
    when two of them are supplied.
    This is valid only for paraxial rays.

    Parameters
    ==========

    focal_length : sympifiable
        Focal length of the mirror.
    u : sympifiable
        Distance of object from the optical center on
        the principal axis.
    v : sympifiable
        Distance of the image from the optical center
        on the principal axis.

    Examples
    ========

    >>> from sympy.physics.optics import lens_formula
    >>> from sympy.abc import f, u, v
    >>> lens_formula(focal_length=f, u=u)
    f*u/(f + u)
    >>> lens_formula(focal_length=f, v=v)
    f*v/(f - v)
    >>> lens_formula(u=u, v=v)
    u*v/(u - v)

    """
    if focal_length and u and v:
        raise ValueError("Please provide only two parameters")

    focal_length = sympify(focal_length)
    u = sympify(u)
    v = sympify(v)
    if u is oo:
        _u = Symbol('u')
    if v is oo:
        _v = Symbol('v')
    if focal_length is oo:
        _f = Symbol('f')
    if focal_length is None:
        if u is oo and v is oo:
            return Limit(Limit(_v*_u/(_u - _v), _u, oo), _v, oo).doit()
        if u is oo:
            return Limit(v*_u/(_u - v), _u, oo).doit()
        if v is oo:
            return Limit(_v*u/(u - _v), _v, oo).doit()
        return v*u/(u - v)
    if u is None:
        if v is oo and focal_length is oo:
            return Limit(Limit(_v*_f/(_f - _v), _v, oo), _f, oo).doit()
        if v is oo:
            return Limit(_v*focal_length/(focal_length - _v), _v, oo).doit()
        if focal_length is oo:
            return Limit(v*_f/(_f - v), _f, oo).doit()
        return v*focal_length/(focal_length - v)
    if v is None:
        if u is oo and focal_length is oo:
            return Limit(Limit(_u*_f/(_u + _f), _u, oo), _f, oo).doit()
        if u is oo:
            return Limit(_u*focal_length/(_u + focal_length), _u, oo).doit()
        if focal_length is oo:
            return Limit(u*_f/(u + _f), _f, oo).doit()
        return u*focal_length/(u + focal_length)

def hyperfocal_distance(f, N, c):
    """

    Parameters
    ==========

    f: sympifiable
        Focal length of a given lens.

    N: sympifiable
        F-number of a given lens.

    c: sympifiable
        Circle of Confusion (CoC) of a given image format.

    Example
    =======

    >>> from sympy.physics.optics import hyperfocal_distance
    >>> round(hyperfocal_distance(f = 0.5, N = 8, c = 0.0033), 2)
    9.47
    """

    f = sympify(f)
    N = sympify(N)
    c = sympify(c)

    return (1/(N * c))*(f**2)

def transverse_magnification(si, so):
    """

    Calculates the transverse magnification upon reflection in a mirror,
    which is the ratio of the image size to the object size.

    Parameters
    ==========

    so: sympifiable
        Lens-object distance.

    si: sympifiable
        Lens-image distance.

    Example
    =======

    >>> from sympy.physics.optics import transverse_magnification
    >>> transverse_magnification(30, 15)
    -2

    """

    si = sympify(si)
    so = sympify(so)

    return (-(si/so))