Spaces:
Sleeping
Sleeping
File size: 20,898 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 |
"""
Gaussian optics.
The module implements:
- Ray transfer matrices for geometrical and gaussian optics.
See RayTransferMatrix, GeometricRay and BeamParameter
- Conjugation relations for geometrical and gaussian optics.
See geometric_conj*, gauss_conj and conjugate_gauss_beams
The conventions for the distances are as follows:
focal distance
positive for convergent lenses
object distance
positive for real objects
image distance
positive for real images
"""
__all__ = [
'RayTransferMatrix',
'FreeSpace',
'FlatRefraction',
'CurvedRefraction',
'FlatMirror',
'CurvedMirror',
'ThinLens',
'GeometricRay',
'BeamParameter',
'waist2rayleigh',
'rayleigh2waist',
'geometric_conj_ab',
'geometric_conj_af',
'geometric_conj_bf',
'gaussian_conj',
'conjugate_gauss_beams',
]
from sympy.core.expr import Expr
from sympy.core.numbers import (I, pi)
from sympy.core.sympify import sympify
from sympy.functions.elementary.complexes import (im, re)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import atan2
from sympy.matrices.dense import Matrix, MutableDenseMatrix
from sympy.polys.rationaltools import together
from sympy.utilities.misc import filldedent
###
# A, B, C, D matrices
###
class RayTransferMatrix(MutableDenseMatrix):
"""
Base class for a Ray Transfer Matrix.
It should be used if there is not already a more specific subclass mentioned
in See Also.
Parameters
==========
parameters :
A, B, C and D or 2x2 matrix (Matrix(2, 2, [A, B, C, D]))
Examples
========
>>> from sympy.physics.optics import RayTransferMatrix, ThinLens
>>> from sympy import Symbol, Matrix
>>> mat = RayTransferMatrix(1, 2, 3, 4)
>>> mat
Matrix([
[1, 2],
[3, 4]])
>>> RayTransferMatrix(Matrix([[1, 2], [3, 4]]))
Matrix([
[1, 2],
[3, 4]])
>>> mat.A
1
>>> f = Symbol('f')
>>> lens = ThinLens(f)
>>> lens
Matrix([
[ 1, 0],
[-1/f, 1]])
>>> lens.C
-1/f
See Also
========
GeometricRay, BeamParameter,
FreeSpace, FlatRefraction, CurvedRefraction,
FlatMirror, CurvedMirror, ThinLens
References
==========
.. [1] https://en.wikipedia.org/wiki/Ray_transfer_matrix_analysis
"""
def __new__(cls, *args):
if len(args) == 4:
temp = ((args[0], args[1]), (args[2], args[3]))
elif len(args) == 1 \
and isinstance(args[0], Matrix) \
and args[0].shape == (2, 2):
temp = args[0]
else:
raise ValueError(filldedent('''
Expecting 2x2 Matrix or the 4 elements of
the Matrix but got %s''' % str(args)))
return Matrix.__new__(cls, temp)
def __mul__(self, other):
if isinstance(other, RayTransferMatrix):
return RayTransferMatrix(Matrix(self)*Matrix(other))
elif isinstance(other, GeometricRay):
return GeometricRay(Matrix(self)*Matrix(other))
elif isinstance(other, BeamParameter):
temp = Matrix(self)*Matrix(((other.q,), (1,)))
q = (temp[0]/temp[1]).expand(complex=True)
return BeamParameter(other.wavelen,
together(re(q)),
z_r=together(im(q)))
else:
return Matrix.__mul__(self, other)
@property
def A(self):
"""
The A parameter of the Matrix.
Examples
========
>>> from sympy.physics.optics import RayTransferMatrix
>>> mat = RayTransferMatrix(1, 2, 3, 4)
>>> mat.A
1
"""
return self[0, 0]
@property
def B(self):
"""
The B parameter of the Matrix.
Examples
========
>>> from sympy.physics.optics import RayTransferMatrix
>>> mat = RayTransferMatrix(1, 2, 3, 4)
>>> mat.B
2
"""
return self[0, 1]
@property
def C(self):
"""
The C parameter of the Matrix.
Examples
========
>>> from sympy.physics.optics import RayTransferMatrix
>>> mat = RayTransferMatrix(1, 2, 3, 4)
>>> mat.C
3
"""
return self[1, 0]
@property
def D(self):
"""
The D parameter of the Matrix.
Examples
========
>>> from sympy.physics.optics import RayTransferMatrix
>>> mat = RayTransferMatrix(1, 2, 3, 4)
>>> mat.D
4
"""
return self[1, 1]
class FreeSpace(RayTransferMatrix):
"""
Ray Transfer Matrix for free space.
Parameters
==========
distance
See Also
========
RayTransferMatrix
Examples
========
>>> from sympy.physics.optics import FreeSpace
>>> from sympy import symbols
>>> d = symbols('d')
>>> FreeSpace(d)
Matrix([
[1, d],
[0, 1]])
"""
def __new__(cls, d):
return RayTransferMatrix.__new__(cls, 1, d, 0, 1)
class FlatRefraction(RayTransferMatrix):
"""
Ray Transfer Matrix for refraction.
Parameters
==========
n1 :
Refractive index of one medium.
n2 :
Refractive index of other medium.
See Also
========
RayTransferMatrix
Examples
========
>>> from sympy.physics.optics import FlatRefraction
>>> from sympy import symbols
>>> n1, n2 = symbols('n1 n2')
>>> FlatRefraction(n1, n2)
Matrix([
[1, 0],
[0, n1/n2]])
"""
def __new__(cls, n1, n2):
n1, n2 = map(sympify, (n1, n2))
return RayTransferMatrix.__new__(cls, 1, 0, 0, n1/n2)
class CurvedRefraction(RayTransferMatrix):
"""
Ray Transfer Matrix for refraction on curved interface.
Parameters
==========
R :
Radius of curvature (positive for concave).
n1 :
Refractive index of one medium.
n2 :
Refractive index of other medium.
See Also
========
RayTransferMatrix
Examples
========
>>> from sympy.physics.optics import CurvedRefraction
>>> from sympy import symbols
>>> R, n1, n2 = symbols('R n1 n2')
>>> CurvedRefraction(R, n1, n2)
Matrix([
[ 1, 0],
[(n1 - n2)/(R*n2), n1/n2]])
"""
def __new__(cls, R, n1, n2):
R, n1, n2 = map(sympify, (R, n1, n2))
return RayTransferMatrix.__new__(cls, 1, 0, (n1 - n2)/R/n2, n1/n2)
class FlatMirror(RayTransferMatrix):
"""
Ray Transfer Matrix for reflection.
See Also
========
RayTransferMatrix
Examples
========
>>> from sympy.physics.optics import FlatMirror
>>> FlatMirror()
Matrix([
[1, 0],
[0, 1]])
"""
def __new__(cls):
return RayTransferMatrix.__new__(cls, 1, 0, 0, 1)
class CurvedMirror(RayTransferMatrix):
"""
Ray Transfer Matrix for reflection from curved surface.
Parameters
==========
R : radius of curvature (positive for concave)
See Also
========
RayTransferMatrix
Examples
========
>>> from sympy.physics.optics import CurvedMirror
>>> from sympy import symbols
>>> R = symbols('R')
>>> CurvedMirror(R)
Matrix([
[ 1, 0],
[-2/R, 1]])
"""
def __new__(cls, R):
R = sympify(R)
return RayTransferMatrix.__new__(cls, 1, 0, -2/R, 1)
class ThinLens(RayTransferMatrix):
"""
Ray Transfer Matrix for a thin lens.
Parameters
==========
f :
The focal distance.
See Also
========
RayTransferMatrix
Examples
========
>>> from sympy.physics.optics import ThinLens
>>> from sympy import symbols
>>> f = symbols('f')
>>> ThinLens(f)
Matrix([
[ 1, 0],
[-1/f, 1]])
"""
def __new__(cls, f):
f = sympify(f)
return RayTransferMatrix.__new__(cls, 1, 0, -1/f, 1)
###
# Representation for geometric ray
###
class GeometricRay(MutableDenseMatrix):
"""
Representation for a geometric ray in the Ray Transfer Matrix formalism.
Parameters
==========
h : height, and
angle : angle, or
matrix : a 2x1 matrix (Matrix(2, 1, [height, angle]))
Examples
========
>>> from sympy.physics.optics import GeometricRay, FreeSpace
>>> from sympy import symbols, Matrix
>>> d, h, angle = symbols('d, h, angle')
>>> GeometricRay(h, angle)
Matrix([
[ h],
[angle]])
>>> FreeSpace(d)*GeometricRay(h, angle)
Matrix([
[angle*d + h],
[ angle]])
>>> GeometricRay( Matrix( ((h,), (angle,)) ) )
Matrix([
[ h],
[angle]])
See Also
========
RayTransferMatrix
"""
def __new__(cls, *args):
if len(args) == 1 and isinstance(args[0], Matrix) \
and args[0].shape == (2, 1):
temp = args[0]
elif len(args) == 2:
temp = ((args[0],), (args[1],))
else:
raise ValueError(filldedent('''
Expecting 2x1 Matrix or the 2 elements of
the Matrix but got %s''' % str(args)))
return Matrix.__new__(cls, temp)
@property
def height(self):
"""
The distance from the optical axis.
Examples
========
>>> from sympy.physics.optics import GeometricRay
>>> from sympy import symbols
>>> h, angle = symbols('h, angle')
>>> gRay = GeometricRay(h, angle)
>>> gRay.height
h
"""
return self[0]
@property
def angle(self):
"""
The angle with the optical axis.
Examples
========
>>> from sympy.physics.optics import GeometricRay
>>> from sympy import symbols
>>> h, angle = symbols('h, angle')
>>> gRay = GeometricRay(h, angle)
>>> gRay.angle
angle
"""
return self[1]
###
# Representation for gauss beam
###
class BeamParameter(Expr):
"""
Representation for a gaussian ray in the Ray Transfer Matrix formalism.
Parameters
==========
wavelen : the wavelength,
z : the distance to waist, and
w : the waist, or
z_r : the rayleigh range.
n : the refractive index of medium.
Examples
========
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.q
1 + 1.88679245283019*I*pi
>>> p.q.n()
1.0 + 5.92753330865999*I
>>> p.w_0.n()
0.00100000000000000
>>> p.z_r.n()
5.92753330865999
>>> from sympy.physics.optics import FreeSpace
>>> fs = FreeSpace(10)
>>> p1 = fs*p
>>> p.w.n()
0.00101413072159615
>>> p1.w.n()
0.00210803120913829
See Also
========
RayTransferMatrix
References
==========
.. [1] https://en.wikipedia.org/wiki/Complex_beam_parameter
.. [2] https://en.wikipedia.org/wiki/Gaussian_beam
"""
#TODO A class Complex may be implemented. The BeamParameter may
# subclass it. See:
# https://groups.google.com/d/topic/sympy/7XkU07NRBEs/discussion
def __new__(cls, wavelen, z, z_r=None, w=None, n=1):
wavelen = sympify(wavelen)
z = sympify(z)
n = sympify(n)
if z_r is not None and w is None:
z_r = sympify(z_r)
elif w is not None and z_r is None:
z_r = waist2rayleigh(sympify(w), wavelen, n)
elif z_r is None and w is None:
raise ValueError('Must specify one of w and z_r.')
return Expr.__new__(cls, wavelen, z, z_r, n)
@property
def wavelen(self):
return self.args[0]
@property
def z(self):
return self.args[1]
@property
def z_r(self):
return self.args[2]
@property
def n(self):
return self.args[3]
@property
def q(self):
"""
The complex parameter representing the beam.
Examples
========
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.q
1 + 1.88679245283019*I*pi
"""
return self.z + I*self.z_r
@property
def radius(self):
"""
The radius of curvature of the phase front.
Examples
========
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.radius
1 + 3.55998576005696*pi**2
"""
return self.z*(1 + (self.z_r/self.z)**2)
@property
def w(self):
"""
The radius of the beam w(z), at any position z along the beam.
The beam radius at `1/e^2` intensity (axial value).
See Also
========
w_0 :
The minimal radius of beam.
Examples
========
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.w
0.001*sqrt(0.2809/pi**2 + 1)
"""
return self.w_0*sqrt(1 + (self.z/self.z_r)**2)
@property
def w_0(self):
"""
The minimal radius of beam at `1/e^2` intensity (peak value).
See Also
========
w : the beam radius at `1/e^2` intensity (axial value).
Examples
========
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.w_0
0.00100000000000000
"""
return sqrt(self.z_r/(pi*self.n)*self.wavelen)
@property
def divergence(self):
"""
Half of the total angular spread.
Examples
========
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.divergence
0.00053/pi
"""
return self.wavelen/pi/self.w_0
@property
def gouy(self):
"""
The Gouy phase.
Examples
========
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.gouy
atan(0.53/pi)
"""
return atan2(self.z, self.z_r)
@property
def waist_approximation_limit(self):
"""
The minimal waist for which the gauss beam approximation is valid.
Explanation
===========
The gauss beam is a solution to the paraxial equation. For curvatures
that are too great it is not a valid approximation.
Examples
========
>>> from sympy.physics.optics import BeamParameter
>>> p = BeamParameter(530e-9, 1, w=1e-3)
>>> p.waist_approximation_limit
1.06e-6/pi
"""
return 2*self.wavelen/pi
###
# Utilities
###
def waist2rayleigh(w, wavelen, n=1):
"""
Calculate the rayleigh range from the waist of a gaussian beam.
See Also
========
rayleigh2waist, BeamParameter
Examples
========
>>> from sympy.physics.optics import waist2rayleigh
>>> from sympy import symbols
>>> w, wavelen = symbols('w wavelen')
>>> waist2rayleigh(w, wavelen)
pi*w**2/wavelen
"""
w, wavelen = map(sympify, (w, wavelen))
return w**2*n*pi/wavelen
def rayleigh2waist(z_r, wavelen):
"""Calculate the waist from the rayleigh range of a gaussian beam.
See Also
========
waist2rayleigh, BeamParameter
Examples
========
>>> from sympy.physics.optics import rayleigh2waist
>>> from sympy import symbols
>>> z_r, wavelen = symbols('z_r wavelen')
>>> rayleigh2waist(z_r, wavelen)
sqrt(wavelen*z_r)/sqrt(pi)
"""
z_r, wavelen = map(sympify, (z_r, wavelen))
return sqrt(z_r/pi*wavelen)
def geometric_conj_ab(a, b):
"""
Conjugation relation for geometrical beams under paraxial conditions.
Explanation
===========
Takes the distances to the optical element and returns the needed
focal distance.
See Also
========
geometric_conj_af, geometric_conj_bf
Examples
========
>>> from sympy.physics.optics import geometric_conj_ab
>>> from sympy import symbols
>>> a, b = symbols('a b')
>>> geometric_conj_ab(a, b)
a*b/(a + b)
"""
a, b = map(sympify, (a, b))
if a.is_infinite or b.is_infinite:
return a if b.is_infinite else b
else:
return a*b/(a + b)
def geometric_conj_af(a, f):
"""
Conjugation relation for geometrical beams under paraxial conditions.
Explanation
===========
Takes the object distance (for geometric_conj_af) or the image distance
(for geometric_conj_bf) to the optical element and the focal distance.
Then it returns the other distance needed for conjugation.
See Also
========
geometric_conj_ab
Examples
========
>>> from sympy.physics.optics.gaussopt import geometric_conj_af, geometric_conj_bf
>>> from sympy import symbols
>>> a, b, f = symbols('a b f')
>>> geometric_conj_af(a, f)
a*f/(a - f)
>>> geometric_conj_bf(b, f)
b*f/(b - f)
"""
a, f = map(sympify, (a, f))
return -geometric_conj_ab(a, -f)
geometric_conj_bf = geometric_conj_af
def gaussian_conj(s_in, z_r_in, f):
"""
Conjugation relation for gaussian beams.
Parameters
==========
s_in :
The distance to optical element from the waist.
z_r_in :
The rayleigh range of the incident beam.
f :
The focal length of the optical element.
Returns
=======
a tuple containing (s_out, z_r_out, m)
s_out :
The distance between the new waist and the optical element.
z_r_out :
The rayleigh range of the emergent beam.
m :
The ration between the new and the old waists.
Examples
========
>>> from sympy.physics.optics import gaussian_conj
>>> from sympy import symbols
>>> s_in, z_r_in, f = symbols('s_in z_r_in f')
>>> gaussian_conj(s_in, z_r_in, f)[0]
1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f)
>>> gaussian_conj(s_in, z_r_in, f)[1]
z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2)
>>> gaussian_conj(s_in, z_r_in, f)[2]
1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2)
"""
s_in, z_r_in, f = map(sympify, (s_in, z_r_in, f))
s_out = 1 / ( -1/(s_in + z_r_in**2/(s_in - f)) + 1/f )
m = 1/sqrt((1 - (s_in/f)**2) + (z_r_in/f)**2)
z_r_out = z_r_in / ((1 - (s_in/f)**2) + (z_r_in/f)**2)
return (s_out, z_r_out, m)
def conjugate_gauss_beams(wavelen, waist_in, waist_out, **kwargs):
"""
Find the optical setup conjugating the object/image waists.
Parameters
==========
wavelen :
The wavelength of the beam.
waist_in and waist_out :
The waists to be conjugated.
f :
The focal distance of the element used in the conjugation.
Returns
=======
a tuple containing (s_in, s_out, f)
s_in :
The distance before the optical element.
s_out :
The distance after the optical element.
f :
The focal distance of the optical element.
Examples
========
>>> from sympy.physics.optics import conjugate_gauss_beams
>>> from sympy import symbols, factor
>>> l, w_i, w_o, f = symbols('l w_i w_o f')
>>> conjugate_gauss_beams(l, w_i, w_o, f=f)[0]
f*(1 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))
>>> factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1])
f*w_o**2*(w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 -
pi**2*w_i**4/(f**2*l**2)))/w_i**2
>>> conjugate_gauss_beams(l, w_i, w_o, f=f)[2]
f
"""
#TODO add the other possible arguments
wavelen, waist_in, waist_out = map(sympify, (wavelen, waist_in, waist_out))
m = waist_out / waist_in
z = waist2rayleigh(waist_in, wavelen)
if len(kwargs) != 1:
raise ValueError("The function expects only one named argument")
elif 'dist' in kwargs:
raise NotImplementedError(filldedent('''
Currently only focal length is supported as a parameter'''))
elif 'f' in kwargs:
f = sympify(kwargs['f'])
s_in = f * (1 - sqrt(1/m**2 - z**2/f**2))
s_out = gaussian_conj(s_in, z, f)[0]
elif 's_in' in kwargs:
raise NotImplementedError(filldedent('''
Currently only focal length is supported as a parameter'''))
else:
raise ValueError(filldedent('''
The functions expects the focal length as a named argument'''))
return (s_in, s_out, f)
#TODO
#def plot_beam():
# """Plot the beam radius as it propagates in space."""
# pass
#TODO
#def plot_beam_conjugation():
# """
# Plot the intersection of two beams.
#
# Represents the conjugation relation.
#
# See Also
# ========
#
# conjugate_gauss_beams
# """
# pass
|