Spaces:
Sleeping
Sleeping
File size: 59,457 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 |
from functools import wraps
from sympy.core.basic import Basic
from sympy.matrices.immutable import ImmutableMatrix
from sympy.matrices.dense import Matrix, eye, zeros
from sympy.core.containers import OrderedSet
from sympy.physics.mechanics.actuator import ActuatorBase
from sympy.physics.mechanics.body_base import BodyBase
from sympy.physics.mechanics.functions import (
Lagrangian, _validate_coordinates, find_dynamicsymbols)
from sympy.physics.mechanics.joint import Joint
from sympy.physics.mechanics.kane import KanesMethod
from sympy.physics.mechanics.lagrange import LagrangesMethod
from sympy.physics.mechanics.loads import _parse_load, gravity
from sympy.physics.mechanics.method import _Methods
from sympy.physics.mechanics.particle import Particle
from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
from sympy.utilities.iterables import iterable
from sympy.utilities.misc import filldedent
__all__ = ['SymbolicSystem', 'System']
def _reset_eom_method(method):
"""Decorator to reset the eom_method if a property is changed."""
@wraps(method)
def wrapper(self, *args, **kwargs):
self._eom_method = None
return method(self, *args, **kwargs)
return wrapper
class System(_Methods):
"""Class to define a multibody system and form its equations of motion.
Explanation
===========
A ``System`` instance stores the different objects associated with a model,
including bodies, joints, constraints, and other relevant information. With
all the relationships between components defined, the ``System`` can be used
to form the equations of motion using a backend, such as ``KanesMethod``.
The ``System`` has been designed to be compatible with third-party
libraries for greater flexibility and integration with other tools.
Attributes
==========
frame : ReferenceFrame
Inertial reference frame of the system.
fixed_point : Point
A fixed point in the inertial reference frame.
x : Vector
Unit vector fixed in the inertial reference frame.
y : Vector
Unit vector fixed in the inertial reference frame.
z : Vector
Unit vector fixed in the inertial reference frame.
q : ImmutableMatrix
Matrix of all the generalized coordinates, i.e. the independent
generalized coordinates stacked upon the dependent.
u : ImmutableMatrix
Matrix of all the generalized speeds, i.e. the independent generealized
speeds stacked upon the dependent.
q_ind : ImmutableMatrix
Matrix of the independent generalized coordinates.
q_dep : ImmutableMatrix
Matrix of the dependent generalized coordinates.
u_ind : ImmutableMatrix
Matrix of the independent generalized speeds.
u_dep : ImmutableMatrix
Matrix of the dependent generalized speeds.
u_aux : ImmutableMatrix
Matrix of auxiliary generalized speeds.
kdes : ImmutableMatrix
Matrix of the kinematical differential equations as expressions equated
to the zero matrix.
bodies : tuple of BodyBase subclasses
Tuple of all bodies that make up the system.
joints : tuple of Joint
Tuple of all joints that connect bodies in the system.
loads : tuple of LoadBase subclasses
Tuple of all loads that have been applied to the system.
actuators : tuple of ActuatorBase subclasses
Tuple of all actuators present in the system.
holonomic_constraints : ImmutableMatrix
Matrix with the holonomic constraints as expressions equated to the zero
matrix.
nonholonomic_constraints : ImmutableMatrix
Matrix with the nonholonomic constraints as expressions equated to the
zero matrix.
velocity_constraints : ImmutableMatrix
Matrix with the velocity constraints as expressions equated to the zero
matrix. These are by default derived as the time derivatives of the
holonomic constraints extended with the nonholonomic constraints.
eom_method : subclass of KanesMethod or LagrangesMethod
Backend for forming the equations of motion.
Examples
========
In the example below a cart with a pendulum is created. The cart moves along
the x axis of the rail and the pendulum rotates about the z axis. The length
of the pendulum is ``l`` with the pendulum represented as a particle. To
move the cart a time dependent force ``F`` is applied to the cart.
We first need to import some functions and create some of our variables.
>>> from sympy import symbols, simplify
>>> from sympy.physics.mechanics import (
... mechanics_printing, dynamicsymbols, RigidBody, Particle,
... ReferenceFrame, PrismaticJoint, PinJoint, System)
>>> mechanics_printing(pretty_print=False)
>>> g, l = symbols('g l')
>>> F = dynamicsymbols('F')
The next step is to create bodies. It is also useful to create a frame for
locating the particle with respect to the pin joint later on, as a particle
does not have a body-fixed frame.
>>> rail = RigidBody('rail')
>>> cart = RigidBody('cart')
>>> bob = Particle('bob')
>>> bob_frame = ReferenceFrame('bob_frame')
Initialize the system, with the rail as the Newtonian reference. The body is
also automatically added to the system.
>>> system = System.from_newtonian(rail)
>>> print(system.bodies[0])
rail
Create the joints, while immediately also adding them to the system.
>>> system.add_joints(
... PrismaticJoint('slider', rail, cart, joint_axis=rail.x),
... PinJoint('pin', cart, bob, joint_axis=cart.z,
... child_interframe=bob_frame,
... child_point=l * bob_frame.y)
... )
>>> system.joints
(PrismaticJoint: slider parent: rail child: cart,
PinJoint: pin parent: cart child: bob)
While adding the joints, the associated generalized coordinates, generalized
speeds, kinematic differential equations and bodies are also added to the
system.
>>> system.q
Matrix([
[q_slider],
[ q_pin]])
>>> system.u
Matrix([
[u_slider],
[ u_pin]])
>>> system.kdes
Matrix([
[u_slider - q_slider'],
[ u_pin - q_pin']])
>>> [body.name for body in system.bodies]
['rail', 'cart', 'bob']
With the kinematics established, we can now apply gravity and the cart force
``F``.
>>> system.apply_uniform_gravity(-g * system.y)
>>> system.add_loads((cart.masscenter, F * rail.x))
>>> system.loads
((rail_masscenter, - g*rail_mass*rail_frame.y),
(cart_masscenter, - cart_mass*g*rail_frame.y),
(bob_masscenter, - bob_mass*g*rail_frame.y),
(cart_masscenter, F*rail_frame.x))
With the entire system defined, we can now form the equations of motion.
Before forming the equations of motion, one can also run some checks that
will try to identify some common errors.
>>> system.validate_system()
>>> system.form_eoms()
Matrix([
[bob_mass*l*u_pin**2*sin(q_pin) - bob_mass*l*cos(q_pin)*u_pin'
- (bob_mass + cart_mass)*u_slider' + F],
[ -bob_mass*g*l*sin(q_pin) - bob_mass*l**2*u_pin'
- bob_mass*l*cos(q_pin)*u_slider']])
>>> simplify(system.mass_matrix)
Matrix([
[ bob_mass + cart_mass, bob_mass*l*cos(q_pin)],
[bob_mass*l*cos(q_pin), bob_mass*l**2]])
>>> system.forcing
Matrix([
[bob_mass*l*u_pin**2*sin(q_pin) + F],
[ -bob_mass*g*l*sin(q_pin)]])
The complexity of the above example can be increased if we add a constraint
to prevent the particle from moving in the horizontal (x) direction. This
can be done by adding a holonomic constraint. After which we should also
redefine what our (in)dependent generalized coordinates and speeds are.
>>> system.add_holonomic_constraints(
... bob.masscenter.pos_from(rail.masscenter).dot(system.x)
... )
>>> system.q_ind = system.get_joint('pin').coordinates
>>> system.q_dep = system.get_joint('slider').coordinates
>>> system.u_ind = system.get_joint('pin').speeds
>>> system.u_dep = system.get_joint('slider').speeds
With the updated system the equations of motion can be formed again.
>>> system.validate_system()
>>> system.form_eoms()
Matrix([[-bob_mass*g*l*sin(q_pin)
- bob_mass*l**2*u_pin'
- bob_mass*l*cos(q_pin)*u_slider'
- l*(bob_mass*l*u_pin**2*sin(q_pin)
- bob_mass*l*cos(q_pin)*u_pin'
- (bob_mass + cart_mass)*u_slider')*cos(q_pin)
- l*F*cos(q_pin)]])
>>> simplify(system.mass_matrix)
Matrix([
[bob_mass*l**2*sin(q_pin)**2, -cart_mass*l*cos(q_pin)],
[ l*cos(q_pin), 1]])
>>> simplify(system.forcing)
Matrix([
[-l*(bob_mass*g*sin(q_pin) + bob_mass*l*u_pin**2*sin(2*q_pin)/2
+ F*cos(q_pin))],
[
l*u_pin**2*sin(q_pin)]])
"""
def __init__(self, frame=None, fixed_point=None):
"""Initialize the system.
Parameters
==========
frame : ReferenceFrame, optional
The inertial frame of the system. If none is supplied, a new frame
will be created.
fixed_point : Point, optional
A fixed point in the inertial reference frame. If none is supplied,
a new fixed_point will be created.
"""
if frame is None:
frame = ReferenceFrame('inertial_frame')
elif not isinstance(frame, ReferenceFrame):
raise TypeError('Frame must be an instance of ReferenceFrame.')
self._frame = frame
if fixed_point is None:
fixed_point = Point('inertial_point')
elif not isinstance(fixed_point, Point):
raise TypeError('Fixed point must be an instance of Point.')
self._fixed_point = fixed_point
self._fixed_point.set_vel(self._frame, 0)
self._q_ind = ImmutableMatrix(1, 0, []).T
self._q_dep = ImmutableMatrix(1, 0, []).T
self._u_ind = ImmutableMatrix(1, 0, []).T
self._u_dep = ImmutableMatrix(1, 0, []).T
self._u_aux = ImmutableMatrix(1, 0, []).T
self._kdes = ImmutableMatrix(1, 0, []).T
self._hol_coneqs = ImmutableMatrix(1, 0, []).T
self._nonhol_coneqs = ImmutableMatrix(1, 0, []).T
self._vel_constrs = None
self._bodies = []
self._joints = []
self._loads = []
self._actuators = []
self._eom_method = None
@classmethod
def from_newtonian(cls, newtonian):
"""Constructs the system with respect to a Newtonian body."""
if isinstance(newtonian, Particle):
raise TypeError('A Particle has no frame so cannot act as '
'the Newtonian.')
system = cls(frame=newtonian.frame, fixed_point=newtonian.masscenter)
system.add_bodies(newtonian)
return system
@property
def fixed_point(self):
"""Fixed point in the inertial reference frame."""
return self._fixed_point
@property
def frame(self):
"""Inertial reference frame of the system."""
return self._frame
@property
def x(self):
"""Unit vector fixed in the inertial reference frame."""
return self._frame.x
@property
def y(self):
"""Unit vector fixed in the inertial reference frame."""
return self._frame.y
@property
def z(self):
"""Unit vector fixed in the inertial reference frame."""
return self._frame.z
@property
def bodies(self):
"""Tuple of all bodies that have been added to the system."""
return tuple(self._bodies)
@bodies.setter
@_reset_eom_method
def bodies(self, bodies):
bodies = self._objects_to_list(bodies)
self._check_objects(bodies, [], BodyBase, 'Bodies', 'bodies')
self._bodies = bodies
@property
def joints(self):
"""Tuple of all joints that have been added to the system."""
return tuple(self._joints)
@joints.setter
@_reset_eom_method
def joints(self, joints):
joints = self._objects_to_list(joints)
self._check_objects(joints, [], Joint, 'Joints', 'joints')
self._joints = []
self.add_joints(*joints)
@property
def loads(self):
"""Tuple of loads that have been applied on the system."""
return tuple(self._loads)
@loads.setter
@_reset_eom_method
def loads(self, loads):
loads = self._objects_to_list(loads)
self._loads = [_parse_load(load) for load in loads]
@property
def actuators(self):
"""Tuple of actuators present in the system."""
return tuple(self._actuators)
@actuators.setter
@_reset_eom_method
def actuators(self, actuators):
actuators = self._objects_to_list(actuators)
self._check_objects(actuators, [], ActuatorBase, 'Actuators',
'actuators')
self._actuators = actuators
@property
def q(self):
"""Matrix of all the generalized coordinates with the independent
stacked upon the dependent."""
return self._q_ind.col_join(self._q_dep)
@property
def u(self):
"""Matrix of all the generalized speeds with the independent stacked
upon the dependent."""
return self._u_ind.col_join(self._u_dep)
@property
def q_ind(self):
"""Matrix of the independent generalized coordinates."""
return self._q_ind
@q_ind.setter
@_reset_eom_method
def q_ind(self, q_ind):
self._q_ind, self._q_dep = self._parse_coordinates(
self._objects_to_list(q_ind), True, [], self.q_dep, 'coordinates')
@property
def q_dep(self):
"""Matrix of the dependent generalized coordinates."""
return self._q_dep
@q_dep.setter
@_reset_eom_method
def q_dep(self, q_dep):
self._q_ind, self._q_dep = self._parse_coordinates(
self._objects_to_list(q_dep), False, self.q_ind, [], 'coordinates')
@property
def u_ind(self):
"""Matrix of the independent generalized speeds."""
return self._u_ind
@u_ind.setter
@_reset_eom_method
def u_ind(self, u_ind):
self._u_ind, self._u_dep = self._parse_coordinates(
self._objects_to_list(u_ind), True, [], self.u_dep, 'speeds')
@property
def u_dep(self):
"""Matrix of the dependent generalized speeds."""
return self._u_dep
@u_dep.setter
@_reset_eom_method
def u_dep(self, u_dep):
self._u_ind, self._u_dep = self._parse_coordinates(
self._objects_to_list(u_dep), False, self.u_ind, [], 'speeds')
@property
def u_aux(self):
"""Matrix of auxiliary generalized speeds."""
return self._u_aux
@u_aux.setter
@_reset_eom_method
def u_aux(self, u_aux):
self._u_aux = self._parse_coordinates(
self._objects_to_list(u_aux), True, [], [], 'u_auxiliary')[0]
@property
def kdes(self):
"""Kinematical differential equations as expressions equated to the zero
matrix. These equations describe the coupling between the generalized
coordinates and the generalized speeds."""
return self._kdes
@kdes.setter
@_reset_eom_method
def kdes(self, kdes):
kdes = self._objects_to_list(kdes)
self._kdes = self._parse_expressions(
kdes, [], 'kinematic differential equations')
@property
def holonomic_constraints(self):
"""Matrix with the holonomic constraints as expressions equated to the
zero matrix."""
return self._hol_coneqs
@holonomic_constraints.setter
@_reset_eom_method
def holonomic_constraints(self, constraints):
constraints = self._objects_to_list(constraints)
self._hol_coneqs = self._parse_expressions(
constraints, [], 'holonomic constraints')
@property
def nonholonomic_constraints(self):
"""Matrix with the nonholonomic constraints as expressions equated to
the zero matrix."""
return self._nonhol_coneqs
@nonholonomic_constraints.setter
@_reset_eom_method
def nonholonomic_constraints(self, constraints):
constraints = self._objects_to_list(constraints)
self._nonhol_coneqs = self._parse_expressions(
constraints, [], 'nonholonomic constraints')
@property
def velocity_constraints(self):
"""Matrix with the velocity constraints as expressions equated to the
zero matrix. The velocity constraints are by default derived from the
holonomic and nonholonomic constraints unless they are explicitly set.
"""
if self._vel_constrs is None:
return self.holonomic_constraints.diff(dynamicsymbols._t).col_join(
self.nonholonomic_constraints)
return self._vel_constrs
@velocity_constraints.setter
@_reset_eom_method
def velocity_constraints(self, constraints):
if constraints is None:
self._vel_constrs = None
return
constraints = self._objects_to_list(constraints)
self._vel_constrs = self._parse_expressions(
constraints, [], 'velocity constraints')
@property
def eom_method(self):
"""Backend for forming the equations of motion."""
return self._eom_method
@staticmethod
def _objects_to_list(lst):
"""Helper to convert passed objects to a list."""
if not iterable(lst): # Only one object
return [lst]
return list(lst[:]) # converts Matrix and tuple to flattened list
@staticmethod
def _check_objects(objects, obj_lst, expected_type, obj_name, type_name):
"""Helper to check the objects that are being added to the system.
Explanation
===========
This method checks that the objects that are being added to the system
are of the correct type and have not already been added. If any of the
objects are not of the correct type or have already been added, then
an error is raised.
Parameters
==========
objects : iterable
The objects that would be added to the system.
obj_lst : list
The list of objects that are already in the system.
expected_type : type
The type that the objects should be.
obj_name : str
The name of the category of objects. This string is used to
formulate the error message for the user.
type_name : str
The name of the type that the objects should be. This string is used
to formulate the error message for the user.
"""
seen = set(obj_lst)
duplicates = set()
wrong_types = set()
for obj in objects:
if not isinstance(obj, expected_type):
wrong_types.add(obj)
if obj in seen:
duplicates.add(obj)
else:
seen.add(obj)
if wrong_types:
raise TypeError(f'{obj_name} {wrong_types} are not {type_name}.')
if duplicates:
raise ValueError(f'{obj_name} {duplicates} have already been added '
f'to the system.')
def _parse_coordinates(self, new_coords, independent, old_coords_ind,
old_coords_dep, coord_type='coordinates'):
"""Helper to parse coordinates and speeds."""
# Construct lists of the independent and dependent coordinates
coords_ind, coords_dep = old_coords_ind[:], old_coords_dep[:]
if not iterable(independent):
independent = [independent] * len(new_coords)
for coord, indep in zip(new_coords, independent):
if indep:
coords_ind.append(coord)
else:
coords_dep.append(coord)
# Check types and duplicates
current = {'coordinates': self.q_ind[:] + self.q_dep[:],
'speeds': self.u_ind[:] + self.u_dep[:],
'u_auxiliary': self._u_aux[:],
coord_type: coords_ind + coords_dep}
_validate_coordinates(**current)
return (ImmutableMatrix(1, len(coords_ind), coords_ind).T,
ImmutableMatrix(1, len(coords_dep), coords_dep).T)
@staticmethod
def _parse_expressions(new_expressions, old_expressions, name,
check_negatives=False):
"""Helper to parse expressions like constraints."""
old_expressions = old_expressions[:]
new_expressions = list(new_expressions) # Converts a possible tuple
if check_negatives:
check_exprs = old_expressions + [-expr for expr in old_expressions]
else:
check_exprs = old_expressions
System._check_objects(new_expressions, check_exprs, Basic, name,
'expressions')
for expr in new_expressions:
if expr == 0:
raise ValueError(f'Parsed {name} are zero.')
return ImmutableMatrix(1, len(old_expressions) + len(new_expressions),
old_expressions + new_expressions).T
@_reset_eom_method
def add_coordinates(self, *coordinates, independent=True):
"""Add generalized coordinate(s) to the system.
Parameters
==========
*coordinates : dynamicsymbols
One or more generalized coordinates to be added to the system.
independent : bool or list of bool, optional
Boolean whether a coordinate is dependent or independent. The
default is True, so the coordinates are added as independent by
default.
"""
self._q_ind, self._q_dep = self._parse_coordinates(
coordinates, independent, self.q_ind, self.q_dep, 'coordinates')
@_reset_eom_method
def add_speeds(self, *speeds, independent=True):
"""Add generalized speed(s) to the system.
Parameters
==========
*speeds : dynamicsymbols
One or more generalized speeds to be added to the system.
independent : bool or list of bool, optional
Boolean whether a speed is dependent or independent. The default is
True, so the speeds are added as independent by default.
"""
self._u_ind, self._u_dep = self._parse_coordinates(
speeds, independent, self.u_ind, self.u_dep, 'speeds')
@_reset_eom_method
def add_auxiliary_speeds(self, *speeds):
"""Add auxiliary speed(s) to the system.
Parameters
==========
*speeds : dynamicsymbols
One or more auxiliary speeds to be added to the system.
"""
self._u_aux = self._parse_coordinates(
speeds, True, self._u_aux, [], 'u_auxiliary')[0]
@_reset_eom_method
def add_kdes(self, *kdes):
"""Add kinematic differential equation(s) to the system.
Parameters
==========
*kdes : Expr
One or more kinematic differential equations.
"""
self._kdes = self._parse_expressions(
kdes, self.kdes, 'kinematic differential equations',
check_negatives=True)
@_reset_eom_method
def add_holonomic_constraints(self, *constraints):
"""Add holonomic constraint(s) to the system.
Parameters
==========
*constraints : Expr
One or more holonomic constraints, which are expressions that should
be zero.
"""
self._hol_coneqs = self._parse_expressions(
constraints, self._hol_coneqs, 'holonomic constraints',
check_negatives=True)
@_reset_eom_method
def add_nonholonomic_constraints(self, *constraints):
"""Add nonholonomic constraint(s) to the system.
Parameters
==========
*constraints : Expr
One or more nonholonomic constraints, which are expressions that
should be zero.
"""
self._nonhol_coneqs = self._parse_expressions(
constraints, self._nonhol_coneqs, 'nonholonomic constraints',
check_negatives=True)
@_reset_eom_method
def add_bodies(self, *bodies):
"""Add body(ies) to the system.
Parameters
==========
bodies : Particle or RigidBody
One or more bodies.
"""
self._check_objects(bodies, self.bodies, BodyBase, 'Bodies', 'bodies')
self._bodies.extend(bodies)
@_reset_eom_method
def add_loads(self, *loads):
"""Add load(s) to the system.
Parameters
==========
*loads : Force or Torque
One or more loads.
"""
loads = [_parse_load(load) for load in loads] # Checks the loads
self._loads.extend(loads)
@_reset_eom_method
def apply_uniform_gravity(self, acceleration):
"""Apply uniform gravity to all bodies in the system by adding loads.
Parameters
==========
acceleration : Vector
The acceleration due to gravity.
"""
self.add_loads(*gravity(acceleration, *self.bodies))
@_reset_eom_method
def add_actuators(self, *actuators):
"""Add actuator(s) to the system.
Parameters
==========
*actuators : subclass of ActuatorBase
One or more actuators.
"""
self._check_objects(actuators, self.actuators, ActuatorBase,
'Actuators', 'actuators')
self._actuators.extend(actuators)
@_reset_eom_method
def add_joints(self, *joints):
"""Add joint(s) to the system.
Explanation
===========
This methods adds one or more joints to the system including its
associated objects, i.e. generalized coordinates, generalized speeds,
kinematic differential equations and the bodies.
Parameters
==========
*joints : subclass of Joint
One or more joints.
Notes
=====
For the generalized coordinates, generalized speeds and bodies it is
checked whether they are already known by the system instance. If they
are, then they are not added. The kinematic differential equations are
however always added to the system, so you should not also manually add
those on beforehand.
"""
self._check_objects(joints, self.joints, Joint, 'Joints', 'joints')
self._joints.extend(joints)
coordinates, speeds, kdes, bodies = (OrderedSet() for _ in range(4))
for joint in joints:
coordinates.update(joint.coordinates)
speeds.update(joint.speeds)
kdes.update(joint.kdes)
bodies.update((joint.parent, joint.child))
coordinates = coordinates.difference(self.q)
speeds = speeds.difference(self.u)
kdes = kdes.difference(self.kdes[:] + (-self.kdes)[:])
bodies = bodies.difference(self.bodies)
self.add_coordinates(*tuple(coordinates))
self.add_speeds(*tuple(speeds))
self.add_kdes(*(kde for kde in tuple(kdes) if not kde == 0))
self.add_bodies(*tuple(bodies))
def get_body(self, name):
"""Retrieve a body from the system by name.
Parameters
==========
name : str
The name of the body to retrieve.
Returns
=======
RigidBody or Particle
The body with the given name, or None if no such body exists.
"""
for body in self._bodies:
if body.name == name:
return body
def get_joint(self, name):
"""Retrieve a joint from the system by name.
Parameters
==========
name : str
The name of the joint to retrieve.
Returns
=======
subclass of Joint
The joint with the given name, or None if no such joint exists.
"""
for joint in self._joints:
if joint.name == name:
return joint
def _form_eoms(self):
return self.form_eoms()
def form_eoms(self, eom_method=KanesMethod, **kwargs):
"""Form the equations of motion of the system.
Parameters
==========
eom_method : subclass of KanesMethod or LagrangesMethod
Backend class to be used for forming the equations of motion. The
default is ``KanesMethod``.
Returns
========
ImmutableMatrix
Vector of equations of motions.
Examples
========
This is a simple example for a one degree of freedom translational
spring-mass-damper.
>>> from sympy import S, symbols
>>> from sympy.physics.mechanics import (
... LagrangesMethod, dynamicsymbols, PrismaticJoint, Particle,
... RigidBody, System)
>>> q = dynamicsymbols('q')
>>> qd = dynamicsymbols('q', 1)
>>> m, k, b = symbols('m k b')
>>> wall = RigidBody('W')
>>> system = System.from_newtonian(wall)
>>> bob = Particle('P', mass=m)
>>> bob.potential_energy = S.Half * k * q**2
>>> system.add_joints(PrismaticJoint('J', wall, bob, q, qd))
>>> system.add_loads((bob.masscenter, b * qd * system.x))
>>> system.form_eoms(LagrangesMethod)
Matrix([[-b*Derivative(q(t), t) + k*q(t) + m*Derivative(q(t), (t, 2))]])
We can also solve for the states using the 'rhs' method.
>>> system.rhs()
Matrix([
[ Derivative(q(t), t)],
[(b*Derivative(q(t), t) - k*q(t))/m]])
"""
# KanesMethod does not accept empty iterables
loads = self.loads + tuple(
load for act in self.actuators for load in act.to_loads())
loads = loads if loads else None
if issubclass(eom_method, KanesMethod):
disallowed_kwargs = {
"frame", "q_ind", "u_ind", "kd_eqs", "q_dependent",
"u_dependent", "u_auxiliary", "configuration_constraints",
"velocity_constraints", "forcelist", "bodies"}
wrong_kwargs = disallowed_kwargs.intersection(kwargs)
if wrong_kwargs:
raise ValueError(
f"The following keyword arguments are not allowed to be "
f"overwritten in {eom_method.__name__}: {wrong_kwargs}.")
kwargs = {"frame": self.frame, "q_ind": self.q_ind,
"u_ind": self.u_ind, "kd_eqs": self.kdes,
"q_dependent": self.q_dep, "u_dependent": self.u_dep,
"configuration_constraints": self.holonomic_constraints,
"velocity_constraints": self.velocity_constraints,
"u_auxiliary": self.u_aux,
"forcelist": loads, "bodies": self.bodies,
"explicit_kinematics": False, **kwargs}
self._eom_method = eom_method(**kwargs)
elif issubclass(eom_method, LagrangesMethod):
disallowed_kwargs = {
"frame", "qs", "forcelist", "bodies", "hol_coneqs",
"nonhol_coneqs", "Lagrangian"}
wrong_kwargs = disallowed_kwargs.intersection(kwargs)
if wrong_kwargs:
raise ValueError(
f"The following keyword arguments are not allowed to be "
f"overwritten in {eom_method.__name__}: {wrong_kwargs}.")
kwargs = {"frame": self.frame, "qs": self.q, "forcelist": loads,
"bodies": self.bodies,
"hol_coneqs": self.holonomic_constraints,
"nonhol_coneqs": self.nonholonomic_constraints, **kwargs}
if "Lagrangian" not in kwargs:
kwargs["Lagrangian"] = Lagrangian(kwargs["frame"],
*kwargs["bodies"])
self._eom_method = eom_method(**kwargs)
else:
raise NotImplementedError(f'{eom_method} has not been implemented.')
return self.eom_method._form_eoms()
def rhs(self, inv_method=None):
"""Compute the equations of motion in the explicit form.
Parameters
==========
inv_method : str
The specific sympy inverse matrix calculation method to use. For a
list of valid methods, see
:meth:`~sympy.matrices.matrixbase.MatrixBase.inv`
Returns
========
ImmutableMatrix
Equations of motion in the explicit form.
See Also
========
sympy.physics.mechanics.kane.KanesMethod.rhs:
KanesMethod's ``rhs`` function.
sympy.physics.mechanics.lagrange.LagrangesMethod.rhs:
LagrangesMethod's ``rhs`` function.
"""
return self.eom_method.rhs(inv_method=inv_method)
@property
def mass_matrix(self):
r"""The mass matrix of the system.
Explanation
===========
The mass matrix $M_d$ and the forcing vector $f_d$ of a system describe
the system's dynamics according to the following equations:
.. math::
M_d \dot{u} = f_d
where $\dot{u}$ is the time derivative of the generalized speeds.
"""
return self.eom_method.mass_matrix
@property
def mass_matrix_full(self):
r"""The mass matrix of the system, augmented by the kinematic
differential equations in explicit or implicit form.
Explanation
===========
The full mass matrix $M_m$ and the full forcing vector $f_m$ of a system
describe the dynamics and kinematics according to the following
equation:
.. math::
M_m \dot{x} = f_m
where $x$ is the state vector stacking $q$ and $u$.
"""
return self.eom_method.mass_matrix_full
@property
def forcing(self):
"""The forcing vector of the system."""
return self.eom_method.forcing
@property
def forcing_full(self):
"""The forcing vector of the system, augmented by the kinematic
differential equations in explicit or implicit form."""
return self.eom_method.forcing_full
def validate_system(self, eom_method=KanesMethod, check_duplicates=False):
"""Validates the system using some basic checks.
Explanation
===========
This method validates the system based on the following checks:
- The number of dependent generalized coordinates should equal the
number of holonomic constraints.
- All generalized coordinates defined by the joints should also be known
to the system.
- If ``KanesMethod`` is used as a ``eom_method``:
- All generalized speeds and kinematic differential equations
defined by the joints should also be known to the system.
- The number of dependent generalized speeds should equal the number
of velocity constraints.
- The number of generalized coordinates should be less than or equal
to the number of generalized speeds.
- The number of generalized coordinates should equal the number of
kinematic differential equations.
- If ``LagrangesMethod`` is used as ``eom_method``:
- There should not be any generalized speeds that are not
derivatives of the generalized coordinates (this includes the
generalized speeds defined by the joints).
Parameters
==========
eom_method : subclass of KanesMethod or LagrangesMethod
Backend class that will be used for forming the equations of motion.
There are different checks for the different backends. The default
is ``KanesMethod``.
check_duplicates : bool
Boolean whether the system should be checked for duplicate
definitions. The default is False, because duplicates are already
checked when adding objects to the system.
Notes
=====
This method is not guaranteed to be backwards compatible as it may
improve over time. The method can become both more and less strict in
certain areas. However a well-defined system should always pass all
these tests.
"""
msgs = []
# Save some data in variables
n_hc = self.holonomic_constraints.shape[0]
n_vc = self.velocity_constraints.shape[0]
n_q_dep, n_u_dep = self.q_dep.shape[0], self.u_dep.shape[0]
q_set, u_set = set(self.q), set(self.u)
n_q, n_u = len(q_set), len(u_set)
# Check number of holonomic constraints
if n_q_dep != n_hc:
msgs.append(filldedent(f"""
The number of dependent generalized coordinates {n_q_dep} should be
equal to the number of holonomic constraints {n_hc}."""))
# Check if all joint coordinates and speeds are present
missing_q = set()
for joint in self.joints:
missing_q.update(set(joint.coordinates).difference(q_set))
if missing_q:
msgs.append(filldedent(f"""
The generalized coordinates {missing_q} used in joints are not added
to the system."""))
# Method dependent checks
if issubclass(eom_method, KanesMethod):
n_kdes = len(self.kdes)
missing_kdes, missing_u = set(), set()
for joint in self.joints:
missing_u.update(set(joint.speeds).difference(u_set))
missing_kdes.update(set(joint.kdes).difference(
self.kdes[:] + (-self.kdes)[:]))
if missing_u:
msgs.append(filldedent(f"""
The generalized speeds {missing_u} used in joints are not added
to the system."""))
if missing_kdes:
msgs.append(filldedent(f"""
The kinematic differential equations {missing_kdes} used in
joints are not added to the system."""))
if n_u_dep != n_vc:
msgs.append(filldedent(f"""
The number of dependent generalized speeds {n_u_dep} should be
equal to the number of velocity constraints {n_vc}."""))
if n_q > n_u:
msgs.append(filldedent(f"""
The number of generalized coordinates {n_q} should be less than
or equal to the number of generalized speeds {n_u}."""))
if n_u != n_kdes:
msgs.append(filldedent(f"""
The number of generalized speeds {n_u} should be equal to the
number of kinematic differential equations {n_kdes}."""))
elif issubclass(eom_method, LagrangesMethod):
not_qdots = set(self.u).difference(self.q.diff(dynamicsymbols._t))
for joint in self.joints:
not_qdots.update(set(
joint.speeds).difference(self.q.diff(dynamicsymbols._t)))
if not_qdots:
msgs.append(filldedent(f"""
The generalized speeds {not_qdots} are not supported by this
method. Only derivatives of the generalized coordinates are
supported. If these symbols are used in your expressions, then
this will result in wrong equations of motion."""))
if self.u_aux:
msgs.append(filldedent(f"""
This method does not support auxiliary speeds. If these symbols
are used in your expressions, then this will result in wrong
equations of motion. The auxiliary speeds are {self.u_aux}."""))
else:
raise NotImplementedError(f'{eom_method} has not been implemented.')
if check_duplicates: # Should be redundant
duplicates_to_check = [('generalized coordinates', self.q),
('generalized speeds', self.u),
('auxiliary speeds', self.u_aux),
('bodies', self.bodies),
('joints', self.joints)]
for name, lst in duplicates_to_check:
seen = set()
duplicates = {x for x in lst if x in seen or seen.add(x)}
if duplicates:
msgs.append(filldedent(f"""
The {name} {duplicates} exist multiple times within the
system."""))
if msgs:
raise ValueError('\n'.join(msgs))
class SymbolicSystem:
"""SymbolicSystem is a class that contains all the information about a
system in a symbolic format such as the equations of motions and the bodies
and loads in the system.
There are three ways that the equations of motion can be described for
Symbolic System:
[1] Explicit form where the kinematics and dynamics are combined
x' = F_1(x, t, r, p)
[2] Implicit form where the kinematics and dynamics are combined
M_2(x, p) x' = F_2(x, t, r, p)
[3] Implicit form where the kinematics and dynamics are separate
M_3(q, p) u' = F_3(q, u, t, r, p)
q' = G(q, u, t, r, p)
where
x : states, e.g. [q, u]
t : time
r : specified (exogenous) inputs
p : constants
q : generalized coordinates
u : generalized speeds
F_1 : right hand side of the combined equations in explicit form
F_2 : right hand side of the combined equations in implicit form
F_3 : right hand side of the dynamical equations in implicit form
M_2 : mass matrix of the combined equations in implicit form
M_3 : mass matrix of the dynamical equations in implicit form
G : right hand side of the kinematical differential equations
Parameters
==========
coord_states : ordered iterable of functions of time
This input will either be a collection of the coordinates or states
of the system depending on whether or not the speeds are also
given. If speeds are specified this input will be assumed to
be the coordinates otherwise this input will be assumed to
be the states.
right_hand_side : Matrix
This variable is the right hand side of the equations of motion in
any of the forms. The specific form will be assumed depending on
whether a mass matrix or coordinate derivatives are given.
speeds : ordered iterable of functions of time, optional
This is a collection of the generalized speeds of the system. If
given it will be assumed that the first argument (coord_states)
will represent the generalized coordinates of the system.
mass_matrix : Matrix, optional
The matrix of the implicit forms of the equations of motion (forms
[2] and [3]). The distinction between the forms is determined by
whether or not the coordinate derivatives are passed in. If
they are given form [3] will be assumed otherwise form [2] is
assumed.
coordinate_derivatives : Matrix, optional
The right hand side of the kinematical equations in explicit form.
If given it will be assumed that the equations of motion are being
entered in form [3].
alg_con : Iterable, optional
The indexes of the rows in the equations of motion that contain
algebraic constraints instead of differential equations. If the
equations are input in form [3], it will be assumed the indexes are
referencing the mass_matrix/right_hand_side combination and not the
coordinate_derivatives.
output_eqns : Dictionary, optional
Any output equations that are desired to be tracked are stored in a
dictionary where the key corresponds to the name given for the
specific equation and the value is the equation itself in symbolic
form
coord_idxs : Iterable, optional
If coord_states corresponds to the states rather than the
coordinates this variable will tell SymbolicSystem which indexes of
the states correspond to generalized coordinates.
speed_idxs : Iterable, optional
If coord_states corresponds to the states rather than the
coordinates this variable will tell SymbolicSystem which indexes of
the states correspond to generalized speeds.
bodies : iterable of Body/Rigidbody objects, optional
Iterable containing the bodies of the system
loads : iterable of load instances (described below), optional
Iterable containing the loads of the system where forces are given
by (point of application, force vector) and torques are given by
(reference frame acting upon, torque vector). Ex [(point, force),
(ref_frame, torque)]
Attributes
==========
coordinates : Matrix, shape(n, 1)
This is a matrix containing the generalized coordinates of the system
speeds : Matrix, shape(m, 1)
This is a matrix containing the generalized speeds of the system
states : Matrix, shape(o, 1)
This is a matrix containing the state variables of the system
alg_con : List
This list contains the indices of the algebraic constraints in the
combined equations of motion. The presence of these constraints
requires that a DAE solver be used instead of an ODE solver.
If the system is given in form [3] the alg_con variable will be
adjusted such that it is a representation of the combined kinematics
and dynamics thus make sure it always matches the mass matrix
entered.
dyn_implicit_mat : Matrix, shape(m, m)
This is the M matrix in form [3] of the equations of motion (the mass
matrix or generalized inertia matrix of the dynamical equations of
motion in implicit form).
dyn_implicit_rhs : Matrix, shape(m, 1)
This is the F vector in form [3] of the equations of motion (the right
hand side of the dynamical equations of motion in implicit form).
comb_implicit_mat : Matrix, shape(o, o)
This is the M matrix in form [2] of the equations of motion.
This matrix contains a block diagonal structure where the top
left block (the first rows) represent the matrix in the
implicit form of the kinematical equations and the bottom right
block (the last rows) represent the matrix in the implicit form
of the dynamical equations.
comb_implicit_rhs : Matrix, shape(o, 1)
This is the F vector in form [2] of the equations of motion. The top
part of the vector represents the right hand side of the implicit form
of the kinemaical equations and the bottom of the vector represents the
right hand side of the implicit form of the dynamical equations of
motion.
comb_explicit_rhs : Matrix, shape(o, 1)
This vector represents the right hand side of the combined equations of
motion in explicit form (form [1] from above).
kin_explicit_rhs : Matrix, shape(m, 1)
This is the right hand side of the explicit form of the kinematical
equations of motion as can be seen in form [3] (the G matrix).
output_eqns : Dictionary
If output equations were given they are stored in a dictionary where
the key corresponds to the name given for the specific equation and
the value is the equation itself in symbolic form
bodies : Tuple
If the bodies in the system were given they are stored in a tuple for
future access
loads : Tuple
If the loads in the system were given they are stored in a tuple for
future access. This includes forces and torques where forces are given
by (point of application, force vector) and torques are given by
(reference frame acted upon, torque vector).
Example
=======
As a simple example, the dynamics of a simple pendulum will be input into a
SymbolicSystem object manually. First some imports will be needed and then
symbols will be set up for the length of the pendulum (l), mass at the end
of the pendulum (m), and a constant for gravity (g). ::
>>> from sympy import Matrix, sin, symbols
>>> from sympy.physics.mechanics import dynamicsymbols, SymbolicSystem
>>> l, m, g = symbols('l m g')
The system will be defined by an angle of theta from the vertical and a
generalized speed of omega will be used where omega = theta_dot. ::
>>> theta, omega = dynamicsymbols('theta omega')
Now the equations of motion are ready to be formed and passed to the
SymbolicSystem object. ::
>>> kin_explicit_rhs = Matrix([omega])
>>> dyn_implicit_mat = Matrix([l**2 * m])
>>> dyn_implicit_rhs = Matrix([-g * l * m * sin(theta)])
>>> symsystem = SymbolicSystem([theta], dyn_implicit_rhs, [omega],
... dyn_implicit_mat)
Notes
=====
m : number of generalized speeds
n : number of generalized coordinates
o : number of states
"""
def __init__(self, coord_states, right_hand_side, speeds=None,
mass_matrix=None, coordinate_derivatives=None, alg_con=None,
output_eqns={}, coord_idxs=None, speed_idxs=None, bodies=None,
loads=None):
"""Initializes a SymbolicSystem object"""
# Extract information on speeds, coordinates and states
if speeds is None:
self._states = Matrix(coord_states)
if coord_idxs is None:
self._coordinates = None
else:
coords = [coord_states[i] for i in coord_idxs]
self._coordinates = Matrix(coords)
if speed_idxs is None:
self._speeds = None
else:
speeds_inter = [coord_states[i] for i in speed_idxs]
self._speeds = Matrix(speeds_inter)
else:
self._coordinates = Matrix(coord_states)
self._speeds = Matrix(speeds)
self._states = self._coordinates.col_join(self._speeds)
# Extract equations of motion form
if coordinate_derivatives is not None:
self._kin_explicit_rhs = coordinate_derivatives
self._dyn_implicit_rhs = right_hand_side
self._dyn_implicit_mat = mass_matrix
self._comb_implicit_rhs = None
self._comb_implicit_mat = None
self._comb_explicit_rhs = None
elif mass_matrix is not None:
self._kin_explicit_rhs = None
self._dyn_implicit_rhs = None
self._dyn_implicit_mat = None
self._comb_implicit_rhs = right_hand_side
self._comb_implicit_mat = mass_matrix
self._comb_explicit_rhs = None
else:
self._kin_explicit_rhs = None
self._dyn_implicit_rhs = None
self._dyn_implicit_mat = None
self._comb_implicit_rhs = None
self._comb_implicit_mat = None
self._comb_explicit_rhs = right_hand_side
# Set the remainder of the inputs as instance attributes
if alg_con is not None and coordinate_derivatives is not None:
alg_con = [i + len(coordinate_derivatives) for i in alg_con]
self._alg_con = alg_con
self.output_eqns = output_eqns
# Change the body and loads iterables to tuples if they are not tuples
# already
if not isinstance(bodies, tuple) and bodies is not None:
bodies = tuple(bodies)
if not isinstance(loads, tuple) and loads is not None:
loads = tuple(loads)
self._bodies = bodies
self._loads = loads
@property
def coordinates(self):
"""Returns the column matrix of the generalized coordinates"""
if self._coordinates is None:
raise AttributeError("The coordinates were not specified.")
else:
return self._coordinates
@property
def speeds(self):
"""Returns the column matrix of generalized speeds"""
if self._speeds is None:
raise AttributeError("The speeds were not specified.")
else:
return self._speeds
@property
def states(self):
"""Returns the column matrix of the state variables"""
return self._states
@property
def alg_con(self):
"""Returns a list with the indices of the rows containing algebraic
constraints in the combined form of the equations of motion"""
return self._alg_con
@property
def dyn_implicit_mat(self):
"""Returns the matrix, M, corresponding to the dynamic equations in
implicit form, M x' = F, where the kinematical equations are not
included"""
if self._dyn_implicit_mat is None:
raise AttributeError("dyn_implicit_mat is not specified for "
"equations of motion form [1] or [2].")
else:
return self._dyn_implicit_mat
@property
def dyn_implicit_rhs(self):
"""Returns the column matrix, F, corresponding to the dynamic equations
in implicit form, M x' = F, where the kinematical equations are not
included"""
if self._dyn_implicit_rhs is None:
raise AttributeError("dyn_implicit_rhs is not specified for "
"equations of motion form [1] or [2].")
else:
return self._dyn_implicit_rhs
@property
def comb_implicit_mat(self):
"""Returns the matrix, M, corresponding to the equations of motion in
implicit form (form [2]), M x' = F, where the kinematical equations are
included"""
if self._comb_implicit_mat is None:
if self._dyn_implicit_mat is not None:
num_kin_eqns = len(self._kin_explicit_rhs)
num_dyn_eqns = len(self._dyn_implicit_rhs)
zeros1 = zeros(num_kin_eqns, num_dyn_eqns)
zeros2 = zeros(num_dyn_eqns, num_kin_eqns)
inter1 = eye(num_kin_eqns).row_join(zeros1)
inter2 = zeros2.row_join(self._dyn_implicit_mat)
self._comb_implicit_mat = inter1.col_join(inter2)
return self._comb_implicit_mat
else:
raise AttributeError("comb_implicit_mat is not specified for "
"equations of motion form [1].")
else:
return self._comb_implicit_mat
@property
def comb_implicit_rhs(self):
"""Returns the column matrix, F, corresponding to the equations of
motion in implicit form (form [2]), M x' = F, where the kinematical
equations are included"""
if self._comb_implicit_rhs is None:
if self._dyn_implicit_rhs is not None:
kin_inter = self._kin_explicit_rhs
dyn_inter = self._dyn_implicit_rhs
self._comb_implicit_rhs = kin_inter.col_join(dyn_inter)
return self._comb_implicit_rhs
else:
raise AttributeError("comb_implicit_mat is not specified for "
"equations of motion in form [1].")
else:
return self._comb_implicit_rhs
def compute_explicit_form(self):
"""If the explicit right hand side of the combined equations of motion
is to provided upon initialization, this method will calculate it. This
calculation can potentially take awhile to compute."""
if self._comb_explicit_rhs is not None:
raise AttributeError("comb_explicit_rhs is already formed.")
inter1 = getattr(self, 'kin_explicit_rhs', None)
if inter1 is not None:
inter2 = self._dyn_implicit_mat.LUsolve(self._dyn_implicit_rhs)
out = inter1.col_join(inter2)
else:
out = self._comb_implicit_mat.LUsolve(self._comb_implicit_rhs)
self._comb_explicit_rhs = out
@property
def comb_explicit_rhs(self):
"""Returns the right hand side of the equations of motion in explicit
form, x' = F, where the kinematical equations are included"""
if self._comb_explicit_rhs is None:
raise AttributeError("Please run .combute_explicit_form before "
"attempting to access comb_explicit_rhs.")
else:
return self._comb_explicit_rhs
@property
def kin_explicit_rhs(self):
"""Returns the right hand side of the kinematical equations in explicit
form, q' = G"""
if self._kin_explicit_rhs is None:
raise AttributeError("kin_explicit_rhs is not specified for "
"equations of motion form [1] or [2].")
else:
return self._kin_explicit_rhs
def dynamic_symbols(self):
"""Returns a column matrix containing all of the symbols in the system
that depend on time"""
# Create a list of all of the expressions in the equations of motion
if self._comb_explicit_rhs is None:
eom_expressions = (self.comb_implicit_mat[:] +
self.comb_implicit_rhs[:])
else:
eom_expressions = (self._comb_explicit_rhs[:])
functions_of_time = set()
for expr in eom_expressions:
functions_of_time = functions_of_time.union(
find_dynamicsymbols(expr))
functions_of_time = functions_of_time.union(self._states)
return tuple(functions_of_time)
def constant_symbols(self):
"""Returns a column matrix containing all of the symbols in the system
that do not depend on time"""
# Create a list of all of the expressions in the equations of motion
if self._comb_explicit_rhs is None:
eom_expressions = (self.comb_implicit_mat[:] +
self.comb_implicit_rhs[:])
else:
eom_expressions = (self._comb_explicit_rhs[:])
constants = set()
for expr in eom_expressions:
constants = constants.union(expr.free_symbols)
constants.remove(dynamicsymbols._t)
return tuple(constants)
@property
def bodies(self):
"""Returns the bodies in the system"""
if self._bodies is None:
raise AttributeError("bodies were not specified for the system.")
else:
return self._bodies
@property
def loads(self):
"""Returns the loads in the system"""
if self._loads is None:
raise AttributeError("loads were not specified for the system.")
else:
return self._loads
|