File size: 10,287 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from sympy import Symbol, S
from sympy.physics.vector import ReferenceFrame, Dyadic, Point, dot
from sympy.physics.mechanics.body_base import BodyBase
from sympy.physics.mechanics.inertia import inertia_of_point_mass, Inertia
from sympy.utilities.exceptions import sympy_deprecation_warning

__all__ = ['RigidBody']


class RigidBody(BodyBase):
    """An idealized rigid body.

    Explanation
    ===========

    This is essentially a container which holds the various components which
    describe a rigid body: a name, mass, center of mass, reference frame, and
    inertia.

    All of these need to be supplied on creation, but can be changed
    afterwards.

    Attributes
    ==========

    name : string
        The body's name.
    masscenter : Point
        The point which represents the center of mass of the rigid body.
    frame : ReferenceFrame
        The ReferenceFrame which the rigid body is fixed in.
    mass : Sympifyable
        The body's mass.
    inertia : (Dyadic, Point)
        The body's inertia about a point; stored in a tuple as shown above.
    potential_energy : Sympifyable
        The potential energy of the RigidBody.

    Examples
    ========

    >>> from sympy import Symbol
    >>> from sympy.physics.mechanics import ReferenceFrame, Point, RigidBody
    >>> from sympy.physics.mechanics import outer
    >>> m = Symbol('m')
    >>> A = ReferenceFrame('A')
    >>> P = Point('P')
    >>> I = outer (A.x, A.x)
    >>> inertia_tuple = (I, P)
    >>> B = RigidBody('B', P, A, m, inertia_tuple)
    >>> # Or you could change them afterwards
    >>> m2 = Symbol('m2')
    >>> B.mass = m2

    """

    def __init__(self, name, masscenter=None, frame=None, mass=None,
                 inertia=None):
        super().__init__(name, masscenter, mass)
        if frame is None:
            frame = ReferenceFrame(f'{name}_frame')
        self.frame = frame
        if inertia is None:
            ixx = Symbol(f'{name}_ixx')
            iyy = Symbol(f'{name}_iyy')
            izz = Symbol(f'{name}_izz')
            izx = Symbol(f'{name}_izx')
            ixy = Symbol(f'{name}_ixy')
            iyz = Symbol(f'{name}_iyz')
            inertia = Inertia.from_inertia_scalars(self.masscenter, self.frame,
                                                   ixx, iyy, izz, ixy, iyz, izx)
        self.inertia = inertia

    def __repr__(self):
        return (f'{self.__class__.__name__}({repr(self.name)}, masscenter='
                f'{repr(self.masscenter)}, frame={repr(self.frame)}, mass='
                f'{repr(self.mass)}, inertia={repr(self.inertia)})')

    @property
    def frame(self):
        """The ReferenceFrame fixed to the body."""
        return self._frame

    @frame.setter
    def frame(self, F):
        if not isinstance(F, ReferenceFrame):
            raise TypeError("RigidBody frame must be a ReferenceFrame object.")
        self._frame = F

    @property
    def x(self):
        """The basis Vector for the body, in the x direction. """
        return self.frame.x

    @property
    def y(self):
        """The basis Vector for the body, in the y direction. """
        return self.frame.y

    @property
    def z(self):
        """The basis Vector for the body, in the z direction. """
        return self.frame.z

    @property
    def inertia(self):
        """The body's inertia about a point; stored as (Dyadic, Point)."""
        return self._inertia

    @inertia.setter
    def inertia(self, I):
        # check if I is of the form (Dyadic, Point)
        if len(I) != 2 or not isinstance(I[0], Dyadic) or not isinstance(I[1], Point):
            raise TypeError("RigidBody inertia must be a tuple of the form (Dyadic, Point).")

        self._inertia = Inertia(I[0], I[1])
        # have I S/O, want I S/S*
        # I S/O = I S/S* + I S*/O; I S/S* = I S/O - I S*/O
        # I_S/S* = I_S/O - I_S*/O
        I_Ss_O = inertia_of_point_mass(self.mass,
                                       self.masscenter.pos_from(I[1]),
                                       self.frame)
        self._central_inertia = I[0] - I_Ss_O

    @property
    def central_inertia(self):
        """The body's central inertia dyadic."""
        return self._central_inertia

    @central_inertia.setter
    def central_inertia(self, I):
        if not isinstance(I, Dyadic):
            raise TypeError("RigidBody inertia must be a Dyadic object.")
        self.inertia = Inertia(I, self.masscenter)

    def linear_momentum(self, frame):
        """ Linear momentum of the rigid body.

        Explanation
        ===========

        The linear momentum L, of a rigid body B, with respect to frame N is
        given by:

        ``L = m * v``

        where m is the mass of the rigid body, and v is the velocity of the mass
        center of B in the frame N.

        Parameters
        ==========

        frame : ReferenceFrame
            The frame in which linear momentum is desired.

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame, outer
        >>> from sympy.physics.mechanics import RigidBody, dynamicsymbols
        >>> from sympy.physics.vector import init_vprinting
        >>> init_vprinting(pretty_print=False)
        >>> m, v = dynamicsymbols('m v')
        >>> N = ReferenceFrame('N')
        >>> P = Point('P')
        >>> P.set_vel(N, v * N.x)
        >>> I = outer (N.x, N.x)
        >>> Inertia_tuple = (I, P)
        >>> B = RigidBody('B', P, N, m, Inertia_tuple)
        >>> B.linear_momentum(N)
        m*v*N.x

        """

        return self.mass * self.masscenter.vel(frame)

    def angular_momentum(self, point, frame):
        """Returns the angular momentum of the rigid body about a point in the
        given frame.

        Explanation
        ===========

        The angular momentum H of a rigid body B about some point O in a frame N
        is given by:

        ``H = dot(I, w) + cross(r, m * v)``

        where I and m are the central inertia dyadic and mass of rigid body B, w
        is the angular velocity of body B in the frame N, r is the position
        vector from point O to the mass center of B, and v is the velocity of
        the mass center in the frame N.

        Parameters
        ==========

        point : Point
            The point about which angular momentum is desired.
        frame : ReferenceFrame
            The frame in which angular momentum is desired.

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame, outer
        >>> from sympy.physics.mechanics import RigidBody, dynamicsymbols
        >>> from sympy.physics.vector import init_vprinting
        >>> init_vprinting(pretty_print=False)
        >>> m, v, r, omega = dynamicsymbols('m v r omega')
        >>> N = ReferenceFrame('N')
        >>> b = ReferenceFrame('b')
        >>> b.set_ang_vel(N, omega * b.x)
        >>> P = Point('P')
        >>> P.set_vel(N, 1 * N.x)
        >>> I = outer(b.x, b.x)
        >>> B = RigidBody('B', P, b, m, (I, P))
        >>> B.angular_momentum(P, N)
        omega*b.x

        """
        I = self.central_inertia
        w = self.frame.ang_vel_in(frame)
        m = self.mass
        r = self.masscenter.pos_from(point)
        v = self.masscenter.vel(frame)

        return I.dot(w) + r.cross(m * v)

    def kinetic_energy(self, frame):
        """Kinetic energy of the rigid body.

        Explanation
        ===========

        The kinetic energy, T, of a rigid body, B, is given by:

        ``T = 1/2 * (dot(dot(I, w), w) + dot(m * v, v))``

        where I and m are the central inertia dyadic and mass of rigid body B
        respectively, w is the body's angular velocity, and v is the velocity of
        the body's mass center in the supplied ReferenceFrame.

        Parameters
        ==========

        frame : ReferenceFrame
            The RigidBody's angular velocity and the velocity of it's mass
            center are typically defined with respect to an inertial frame but
            any relevant frame in which the velocities are known can be
            supplied.

        Examples
        ========

        >>> from sympy.physics.mechanics import Point, ReferenceFrame, outer
        >>> from sympy.physics.mechanics import RigidBody
        >>> from sympy import symbols
        >>> m, v, r, omega = symbols('m v r omega')
        >>> N = ReferenceFrame('N')
        >>> b = ReferenceFrame('b')
        >>> b.set_ang_vel(N, omega * b.x)
        >>> P = Point('P')
        >>> P.set_vel(N, v * N.x)
        >>> I = outer (b.x, b.x)
        >>> inertia_tuple = (I, P)
        >>> B = RigidBody('B', P, b, m, inertia_tuple)
        >>> B.kinetic_energy(N)
        m*v**2/2 + omega**2/2

        """

        rotational_KE = S.Half * dot(
            self.frame.ang_vel_in(frame),
            dot(self.central_inertia, self.frame.ang_vel_in(frame)))
        translational_KE = S.Half * self.mass * dot(self.masscenter.vel(frame),
                                                    self.masscenter.vel(frame))
        return rotational_KE + translational_KE

    def set_potential_energy(self, scalar):
        sympy_deprecation_warning(
            """
The sympy.physics.mechanics.RigidBody.set_potential_energy()
method is deprecated. Instead use

    B.potential_energy = scalar
            """,
        deprecated_since_version="1.5",
        active_deprecations_target="deprecated-set-potential-energy",
        )
        self.potential_energy = scalar

    def parallel_axis(self, point, frame=None):
        """Returns the inertia dyadic of the body with respect to another point.

        Parameters
        ==========

        point : sympy.physics.vector.Point
            The point to express the inertia dyadic about.
        frame : sympy.physics.vector.ReferenceFrame
            The reference frame used to construct the dyadic.

        Returns
        =======

        inertia : sympy.physics.vector.Dyadic
            The inertia dyadic of the rigid body expressed about the provided
            point.

        """
        if frame is None:
            frame = self.frame
        return self.central_inertia + inertia_of_point_mass(
            self.mass, self.masscenter.pos_from(point), frame)