Spaces:
Sleeping
Sleeping
File size: 17,241 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
__all__ = ['Linearizer']
from sympy import Matrix, eye, zeros
from sympy.core.symbol import Dummy
from sympy.utilities.iterables import flatten
from sympy.physics.vector import dynamicsymbols
from sympy.physics.mechanics.functions import msubs, _parse_linear_solver
from collections import namedtuple
from collections.abc import Iterable
class Linearizer:
"""This object holds the general model form for a dynamic system. This
model is used for computing the linearized form of the system, while
properly dealing with constraints leading to dependent coordinates and
speeds. The notation and method is described in [1]_.
Attributes
==========
f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a : Matrix
Matrices holding the general system form.
q, u, r : Matrix
Matrices holding the generalized coordinates, speeds, and
input vectors.
q_i, u_i : Matrix
Matrices of the independent generalized coordinates and speeds.
q_d, u_d : Matrix
Matrices of the dependent generalized coordinates and speeds.
perm_mat : Matrix
Permutation matrix such that [q_ind, u_ind]^T = perm_mat*[q, u]^T
References
==========
.. [1] D. L. Peterson, G. Gede, and M. Hubbard, "Symbolic linearization of
equations of motion of constrained multibody systems," Multibody
Syst Dyn, vol. 33, no. 2, pp. 143-161, Feb. 2015, doi:
10.1007/s11044-014-9436-5.
"""
def __init__(self, f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i=None,
q_d=None, u_i=None, u_d=None, r=None, lams=None,
linear_solver='LU'):
"""
Parameters
==========
f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a : array_like
System of equations holding the general system form.
Supply empty array or Matrix if the parameter
does not exist.
q : array_like
The generalized coordinates.
u : array_like
The generalized speeds
q_i, u_i : array_like, optional
The independent generalized coordinates and speeds.
q_d, u_d : array_like, optional
The dependent generalized coordinates and speeds.
r : array_like, optional
The input variables.
lams : array_like, optional
The lagrange multipliers
linear_solver : str, callable
Method used to solve the several symbolic linear systems of the
form ``A*x=b`` in the linearization process. If a string is
supplied, it should be a valid method that can be used with the
:meth:`sympy.matrices.matrixbase.MatrixBase.solve`. If a callable is
supplied, it should have the format ``x = f(A, b)``, where it
solves the equations and returns the solution. The default is
``'LU'`` which corresponds to SymPy's ``A.LUsolve(b)``.
``LUsolve()`` is fast to compute but will often result in
divide-by-zero and thus ``nan`` results.
"""
self.linear_solver = _parse_linear_solver(linear_solver)
# Generalized equation form
self.f_0 = Matrix(f_0)
self.f_1 = Matrix(f_1)
self.f_2 = Matrix(f_2)
self.f_3 = Matrix(f_3)
self.f_4 = Matrix(f_4)
self.f_c = Matrix(f_c)
self.f_v = Matrix(f_v)
self.f_a = Matrix(f_a)
# Generalized equation variables
self.q = Matrix(q)
self.u = Matrix(u)
none_handler = lambda x: Matrix(x) if x else Matrix()
self.q_i = none_handler(q_i)
self.q_d = none_handler(q_d)
self.u_i = none_handler(u_i)
self.u_d = none_handler(u_d)
self.r = none_handler(r)
self.lams = none_handler(lams)
# Derivatives of generalized equation variables
self._qd = self.q.diff(dynamicsymbols._t)
self._ud = self.u.diff(dynamicsymbols._t)
# If the user doesn't actually use generalized variables, and the
# qd and u vectors have any intersecting variables, this can cause
# problems. We'll fix this with some hackery, and Dummy variables
dup_vars = set(self._qd).intersection(self.u)
self._qd_dup = Matrix([var if var not in dup_vars else Dummy() for var
in self._qd])
# Derive dimesion terms
l = len(self.f_c)
m = len(self.f_v)
n = len(self.q)
o = len(self.u)
s = len(self.r)
k = len(self.lams)
dims = namedtuple('dims', ['l', 'm', 'n', 'o', 's', 'k'])
self._dims = dims(l, m, n, o, s, k)
self._Pq = None
self._Pqi = None
self._Pqd = None
self._Pu = None
self._Pui = None
self._Pud = None
self._C_0 = None
self._C_1 = None
self._C_2 = None
self.perm_mat = None
self._setup_done = False
def _setup(self):
# Calculations here only need to be run once. They are moved out of
# the __init__ method to increase the speed of Linearizer creation.
self._form_permutation_matrices()
self._form_block_matrices()
self._form_coefficient_matrices()
self._setup_done = True
def _form_permutation_matrices(self):
"""Form the permutation matrices Pq and Pu."""
# Extract dimension variables
l, m, n, o, s, k = self._dims
# Compute permutation matrices
if n != 0:
self._Pq = permutation_matrix(self.q, Matrix([self.q_i, self.q_d]))
if l > 0:
self._Pqi = self._Pq[:, :-l]
self._Pqd = self._Pq[:, -l:]
else:
self._Pqi = self._Pq
self._Pqd = Matrix()
if o != 0:
self._Pu = permutation_matrix(self.u, Matrix([self.u_i, self.u_d]))
if m > 0:
self._Pui = self._Pu[:, :-m]
self._Pud = self._Pu[:, -m:]
else:
self._Pui = self._Pu
self._Pud = Matrix()
# Compute combination permutation matrix for computing A and B
P_col1 = Matrix([self._Pqi, zeros(o + k, n - l)])
P_col2 = Matrix([zeros(n, o - m), self._Pui, zeros(k, o - m)])
if P_col1:
if P_col2:
self.perm_mat = P_col1.row_join(P_col2)
else:
self.perm_mat = P_col1
else:
self.perm_mat = P_col2
def _form_coefficient_matrices(self):
"""Form the coefficient matrices C_0, C_1, and C_2."""
# Extract dimension variables
l, m, n, o, s, k = self._dims
# Build up the coefficient matrices C_0, C_1, and C_2
# If there are configuration constraints (l > 0), form C_0 as normal.
# If not, C_0 is I_(nxn). Note that this works even if n=0
if l > 0:
f_c_jac_q = self.f_c.jacobian(self.q)
self._C_0 = (eye(n) - self._Pqd *
self.linear_solver(f_c_jac_q*self._Pqd,
f_c_jac_q))*self._Pqi
else:
self._C_0 = eye(n)
# If there are motion constraints (m > 0), form C_1 and C_2 as normal.
# If not, C_1 is 0, and C_2 is I_(oxo). Note that this works even if
# o = 0.
if m > 0:
f_v_jac_u = self.f_v.jacobian(self.u)
temp = f_v_jac_u * self._Pud
if n != 0:
f_v_jac_q = self.f_v.jacobian(self.q)
self._C_1 = -self._Pud * self.linear_solver(temp, f_v_jac_q)
else:
self._C_1 = zeros(o, n)
self._C_2 = (eye(o) - self._Pud *
self.linear_solver(temp, f_v_jac_u))*self._Pui
else:
self._C_1 = zeros(o, n)
self._C_2 = eye(o)
def _form_block_matrices(self):
"""Form the block matrices for composing M, A, and B."""
# Extract dimension variables
l, m, n, o, s, k = self._dims
# Block Matrix Definitions. These are only defined if under certain
# conditions. If undefined, an empty matrix is used instead
if n != 0:
self._M_qq = self.f_0.jacobian(self._qd)
self._A_qq = -(self.f_0 + self.f_1).jacobian(self.q)
else:
self._M_qq = Matrix()
self._A_qq = Matrix()
if n != 0 and m != 0:
self._M_uqc = self.f_a.jacobian(self._qd_dup)
self._A_uqc = -self.f_a.jacobian(self.q)
else:
self._M_uqc = Matrix()
self._A_uqc = Matrix()
if n != 0 and o - m + k != 0:
self._M_uqd = self.f_3.jacobian(self._qd_dup)
self._A_uqd = -(self.f_2 + self.f_3 + self.f_4).jacobian(self.q)
else:
self._M_uqd = Matrix()
self._A_uqd = Matrix()
if o != 0 and m != 0:
self._M_uuc = self.f_a.jacobian(self._ud)
self._A_uuc = -self.f_a.jacobian(self.u)
else:
self._M_uuc = Matrix()
self._A_uuc = Matrix()
if o != 0 and o - m + k != 0:
self._M_uud = self.f_2.jacobian(self._ud)
self._A_uud = -(self.f_2 + self.f_3).jacobian(self.u)
else:
self._M_uud = Matrix()
self._A_uud = Matrix()
if o != 0 and n != 0:
self._A_qu = -self.f_1.jacobian(self.u)
else:
self._A_qu = Matrix()
if k != 0 and o - m + k != 0:
self._M_uld = self.f_4.jacobian(self.lams)
else:
self._M_uld = Matrix()
if s != 0 and o - m + k != 0:
self._B_u = -self.f_3.jacobian(self.r)
else:
self._B_u = Matrix()
def linearize(self, op_point=None, A_and_B=False, simplify=False):
"""Linearize the system about the operating point. Note that
q_op, u_op, qd_op, ud_op must satisfy the equations of motion.
These may be either symbolic or numeric.
Parameters
==========
op_point : dict or iterable of dicts, optional
Dictionary or iterable of dictionaries containing the operating
point conditions for all or a subset of the generalized
coordinates, generalized speeds, and time derivatives of the
generalized speeds. These will be substituted into the linearized
system before the linearization is complete. Leave set to ``None``
if you want the operating point to be an arbitrary set of symbols.
Note that any reduction in symbols (whether substituted for numbers
or expressions with a common parameter) will result in faster
runtime.
A_and_B : bool, optional
If A_and_B=False (default), (M, A, B) is returned and of
A_and_B=True, (A, B) is returned. See below.
simplify : bool, optional
Determines if returned values are simplified before return.
For large expressions this may be time consuming. Default is False.
Returns
=======
M, A, B : Matrices, ``A_and_B=False``
Matrices from the implicit form:
``[M]*[q', u']^T = [A]*[q_ind, u_ind]^T + [B]*r``
A, B : Matrices, ``A_and_B=True``
Matrices from the explicit form:
``[q_ind', u_ind']^T = [A]*[q_ind, u_ind]^T + [B]*r``
Notes
=====
Note that the process of solving with A_and_B=True is computationally
intensive if there are many symbolic parameters. For this reason, it
may be more desirable to use the default A_and_B=False, returning M, A,
and B. More values may then be substituted in to these matrices later
on. The state space form can then be found as A = P.T*M.LUsolve(A), B =
P.T*M.LUsolve(B), where P = Linearizer.perm_mat.
"""
# Run the setup if needed:
if not self._setup_done:
self._setup()
# Compose dict of operating conditions
if isinstance(op_point, dict):
op_point_dict = op_point
elif isinstance(op_point, Iterable):
op_point_dict = {}
for op in op_point:
op_point_dict.update(op)
else:
op_point_dict = {}
# Extract dimension variables
l, m, n, o, s, k = self._dims
# Rename terms to shorten expressions
M_qq = self._M_qq
M_uqc = self._M_uqc
M_uqd = self._M_uqd
M_uuc = self._M_uuc
M_uud = self._M_uud
M_uld = self._M_uld
A_qq = self._A_qq
A_uqc = self._A_uqc
A_uqd = self._A_uqd
A_qu = self._A_qu
A_uuc = self._A_uuc
A_uud = self._A_uud
B_u = self._B_u
C_0 = self._C_0
C_1 = self._C_1
C_2 = self._C_2
# Build up Mass Matrix
# |M_qq 0_nxo 0_nxk|
# M = |M_uqc M_uuc 0_mxk|
# |M_uqd M_uud M_uld|
if o != 0:
col2 = Matrix([zeros(n, o), M_uuc, M_uud])
if k != 0:
col3 = Matrix([zeros(n + m, k), M_uld])
if n != 0:
col1 = Matrix([M_qq, M_uqc, M_uqd])
if o != 0 and k != 0:
M = col1.row_join(col2).row_join(col3)
elif o != 0:
M = col1.row_join(col2)
else:
M = col1
elif k != 0:
M = col2.row_join(col3)
else:
M = col2
M_eq = msubs(M, op_point_dict)
# Build up state coefficient matrix A
# |(A_qq + A_qu*C_1)*C_0 A_qu*C_2|
# A = |(A_uqc + A_uuc*C_1)*C_0 A_uuc*C_2|
# |(A_uqd + A_uud*C_1)*C_0 A_uud*C_2|
# Col 1 is only defined if n != 0
if n != 0:
r1c1 = A_qq
if o != 0:
r1c1 += (A_qu * C_1)
r1c1 = r1c1 * C_0
if m != 0:
r2c1 = A_uqc
if o != 0:
r2c1 += (A_uuc * C_1)
r2c1 = r2c1 * C_0
else:
r2c1 = Matrix()
if o - m + k != 0:
r3c1 = A_uqd
if o != 0:
r3c1 += (A_uud * C_1)
r3c1 = r3c1 * C_0
else:
r3c1 = Matrix()
col1 = Matrix([r1c1, r2c1, r3c1])
else:
col1 = Matrix()
# Col 2 is only defined if o != 0
if o != 0:
if n != 0:
r1c2 = A_qu * C_2
else:
r1c2 = Matrix()
if m != 0:
r2c2 = A_uuc * C_2
else:
r2c2 = Matrix()
if o - m + k != 0:
r3c2 = A_uud * C_2
else:
r3c2 = Matrix()
col2 = Matrix([r1c2, r2c2, r3c2])
else:
col2 = Matrix()
if col1:
if col2:
Amat = col1.row_join(col2)
else:
Amat = col1
else:
Amat = col2
Amat_eq = msubs(Amat, op_point_dict)
# Build up the B matrix if there are forcing variables
# |0_(n + m)xs|
# B = |B_u |
if s != 0 and o - m + k != 0:
Bmat = zeros(n + m, s).col_join(B_u)
Bmat_eq = msubs(Bmat, op_point_dict)
else:
Bmat_eq = Matrix()
# kwarg A_and_B indicates to return A, B for forming the equation
# dx = [A]x + [B]r, where x = [q_indnd, u_indnd]^T,
if A_and_B:
A_cont = self.perm_mat.T * self.linear_solver(M_eq, Amat_eq)
if Bmat_eq:
B_cont = self.perm_mat.T * self.linear_solver(M_eq, Bmat_eq)
else:
# Bmat = Matrix([]), so no need to sub
B_cont = Bmat_eq
if simplify:
A_cont.simplify()
B_cont.simplify()
return A_cont, B_cont
# Otherwise return M, A, B for forming the equation
# [M]dx = [A]x + [B]r, where x = [q, u]^T
else:
if simplify:
M_eq.simplify()
Amat_eq.simplify()
Bmat_eq.simplify()
return M_eq, Amat_eq, Bmat_eq
def permutation_matrix(orig_vec, per_vec):
"""Compute the permutation matrix to change order of
orig_vec into order of per_vec.
Parameters
==========
orig_vec : array_like
Symbols in original ordering.
per_vec : array_like
Symbols in new ordering.
Returns
=======
p_matrix : Matrix
Permutation matrix such that orig_vec == (p_matrix * per_vec).
"""
if not isinstance(orig_vec, (list, tuple)):
orig_vec = flatten(orig_vec)
if not isinstance(per_vec, (list, tuple)):
per_vec = flatten(per_vec)
if set(orig_vec) != set(per_vec):
raise ValueError("orig_vec and per_vec must be the same length, "
"and contain the same symbols.")
ind_list = [orig_vec.index(i) for i in per_vec]
p_matrix = zeros(len(orig_vec))
for i, j in enumerate(ind_list):
p_matrix[i, j] = 1
return p_matrix
|