Spaces:
Sleeping
Sleeping
File size: 84,837 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 |
# coding=utf-8
from abc import ABC, abstractmethod
from sympy import pi, Derivative, Matrix
from sympy.core.function import AppliedUndef
from sympy.physics.mechanics.body_base import BodyBase
from sympy.physics.mechanics.functions import _validate_coordinates
from sympy.physics.vector import (Vector, dynamicsymbols, cross, Point,
ReferenceFrame)
from sympy.utilities.iterables import iterable
from sympy.utilities.exceptions import sympy_deprecation_warning
__all__ = ['Joint', 'PinJoint', 'PrismaticJoint', 'CylindricalJoint',
'PlanarJoint', 'SphericalJoint', 'WeldJoint']
class Joint(ABC):
"""Abstract base class for all specific joints.
Explanation
===========
A joint subtracts degrees of freedom from a body. This is the base class
for all specific joints and holds all common methods acting as an interface
for all joints. Custom joint can be created by inheriting Joint class and
defining all abstract functions.
The abstract methods are:
- ``_generate_coordinates``
- ``_generate_speeds``
- ``_orient_frames``
- ``_set_angular_velocity``
- ``_set_linear_velocity``
Parameters
==========
name : string
A unique name for the joint.
parent : Particle or RigidBody or Body
The parent body of joint.
child : Particle or RigidBody or Body
The child body of joint.
coordinates : iterable of dynamicsymbols, optional
Generalized coordinates of the joint.
speeds : iterable of dynamicsymbols, optional
Generalized speeds of joint.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the parent body which aligns with an axis fixed in the
child body. The default is the x axis of parent's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
child_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the child body which aligns with an axis fixed in the
parent body. The default is the x axis of child's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
parent_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by parent_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
child_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by child_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
Attributes
==========
name : string
The joint's name.
parent : Particle or RigidBody or Body
The joint's parent body.
child : Particle or RigidBody or Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_axis : Vector
The axis fixed in the parent frame that represents the joint.
child_axis : Vector
The axis fixed in the child frame that represents the joint.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
Notes
=====
When providing a vector as the intermediate frame, a new intermediate frame
is created which aligns its X axis with the provided vector. This is done
with a single fixed rotation about a rotation axis. This rotation axis is
determined by taking the cross product of the ``body.x`` axis with the
provided vector. In the case where the provided vector is in the ``-body.x``
direction, the rotation is done about the ``body.y`` axis.
"""
def __init__(self, name, parent, child, coordinates=None, speeds=None,
parent_point=None, child_point=None, parent_interframe=None,
child_interframe=None, parent_axis=None, child_axis=None,
parent_joint_pos=None, child_joint_pos=None):
if not isinstance(name, str):
raise TypeError('Supply a valid name.')
self._name = name
if not isinstance(parent, BodyBase):
raise TypeError('Parent must be a body.')
self._parent = parent
if not isinstance(child, BodyBase):
raise TypeError('Child must be a body.')
self._child = child
if parent_axis is not None or child_axis is not None:
sympy_deprecation_warning(
"""
The parent_axis and child_axis arguments for the Joint classes
are deprecated. Instead use parent_interframe, child_interframe.
""",
deprecated_since_version="1.12",
active_deprecations_target="deprecated-mechanics-joint-axis",
stacklevel=4
)
if parent_interframe is None:
parent_interframe = parent_axis
if child_interframe is None:
child_interframe = child_axis
# Set parent and child frame attributes
if hasattr(self._parent, 'frame'):
self._parent_frame = self._parent.frame
else:
if isinstance(parent_interframe, ReferenceFrame):
self._parent_frame = parent_interframe
else:
self._parent_frame = ReferenceFrame(
f'{self.name}_{self._parent.name}_frame')
if hasattr(self._child, 'frame'):
self._child_frame = self._child.frame
else:
if isinstance(child_interframe, ReferenceFrame):
self._child_frame = child_interframe
else:
self._child_frame = ReferenceFrame(
f'{self.name}_{self._child.name}_frame')
self._parent_interframe = self._locate_joint_frame(
self._parent, parent_interframe, self._parent_frame)
self._child_interframe = self._locate_joint_frame(
self._child, child_interframe, self._child_frame)
self._parent_axis = self._axis(parent_axis, self._parent_frame)
self._child_axis = self._axis(child_axis, self._child_frame)
if parent_joint_pos is not None or child_joint_pos is not None:
sympy_deprecation_warning(
"""
The parent_joint_pos and child_joint_pos arguments for the Joint
classes are deprecated. Instead use parent_point and child_point.
""",
deprecated_since_version="1.12",
active_deprecations_target="deprecated-mechanics-joint-pos",
stacklevel=4
)
if parent_point is None:
parent_point = parent_joint_pos
if child_point is None:
child_point = child_joint_pos
self._parent_point = self._locate_joint_pos(
self._parent, parent_point, self._parent_frame)
self._child_point = self._locate_joint_pos(
self._child, child_point, self._child_frame)
self._coordinates = self._generate_coordinates(coordinates)
self._speeds = self._generate_speeds(speeds)
_validate_coordinates(self.coordinates, self.speeds)
self._kdes = self._generate_kdes()
self._orient_frames()
self._set_angular_velocity()
self._set_linear_velocity()
def __str__(self):
return self.name
def __repr__(self):
return self.__str__()
@property
def name(self):
"""Name of the joint."""
return self._name
@property
def parent(self):
"""Parent body of Joint."""
return self._parent
@property
def child(self):
"""Child body of Joint."""
return self._child
@property
def coordinates(self):
"""Matrix of the joint's generalized coordinates."""
return self._coordinates
@property
def speeds(self):
"""Matrix of the joint's generalized speeds."""
return self._speeds
@property
def kdes(self):
"""Kinematical differential equations of the joint."""
return self._kdes
@property
def parent_axis(self):
"""The axis of parent frame."""
# Will be removed with `deprecated-mechanics-joint-axis`
return self._parent_axis
@property
def child_axis(self):
"""The axis of child frame."""
# Will be removed with `deprecated-mechanics-joint-axis`
return self._child_axis
@property
def parent_point(self):
"""Attachment point where the joint is fixed to the parent body."""
return self._parent_point
@property
def child_point(self):
"""Attachment point where the joint is fixed to the child body."""
return self._child_point
@property
def parent_interframe(self):
return self._parent_interframe
@property
def child_interframe(self):
return self._child_interframe
@abstractmethod
def _generate_coordinates(self, coordinates):
"""Generate Matrix of the joint's generalized coordinates."""
pass
@abstractmethod
def _generate_speeds(self, speeds):
"""Generate Matrix of the joint's generalized speeds."""
pass
@abstractmethod
def _orient_frames(self):
"""Orient frames as per the joint."""
pass
@abstractmethod
def _set_angular_velocity(self):
"""Set angular velocity of the joint related frames."""
pass
@abstractmethod
def _set_linear_velocity(self):
"""Set velocity of related points to the joint."""
pass
@staticmethod
def _to_vector(matrix, frame):
"""Converts a matrix to a vector in the given frame."""
return Vector([(matrix, frame)])
@staticmethod
def _axis(ax, *frames):
"""Check whether an axis is fixed in one of the frames."""
if ax is None:
ax = frames[0].x
return ax
if not isinstance(ax, Vector):
raise TypeError("Axis must be a Vector.")
ref_frame = None # Find a body in which the axis can be expressed
for frame in frames:
try:
ax.to_matrix(frame)
except ValueError:
pass
else:
ref_frame = frame
break
if ref_frame is None:
raise ValueError("Axis cannot be expressed in one of the body's "
"frames.")
if not ax.dt(ref_frame) == 0:
raise ValueError('Axis cannot be time-varying when viewed from the '
'associated body.')
return ax
@staticmethod
def _choose_rotation_axis(frame, axis):
components = axis.to_matrix(frame)
x, y, z = components[0], components[1], components[2]
if x != 0:
if y != 0:
if z != 0:
return cross(axis, frame.x)
if z != 0:
return frame.y
return frame.z
else:
if y != 0:
return frame.x
return frame.y
@staticmethod
def _create_aligned_interframe(frame, align_axis, frame_axis=None,
frame_name=None):
"""
Returns an intermediate frame, where the ``frame_axis`` defined in
``frame`` is aligned with ``axis``. By default this means that the X
axis will be aligned with ``axis``.
Parameters
==========
frame : BodyBase or ReferenceFrame
The body or reference frame with respect to which the intermediate
frame is oriented.
align_axis : Vector
The vector with respect to which the intermediate frame will be
aligned.
frame_axis : Vector
The vector of the frame which should get aligned with ``axis``. The
default is the X axis of the frame.
frame_name : string
Name of the to be created intermediate frame. The default adds
"_int_frame" to the name of ``frame``.
Example
=======
An intermediate frame, where the X axis of the parent becomes aligned
with ``parent.y + parent.z`` can be created as follows:
>>> from sympy.physics.mechanics.joint import Joint
>>> from sympy.physics.mechanics import RigidBody
>>> parent = RigidBody('parent')
>>> parent_interframe = Joint._create_aligned_interframe(
... parent, parent.y + parent.z)
>>> parent_interframe
parent_int_frame
>>> parent.frame.dcm(parent_interframe)
Matrix([
[ 0, -sqrt(2)/2, -sqrt(2)/2],
[sqrt(2)/2, 1/2, -1/2],
[sqrt(2)/2, -1/2, 1/2]])
>>> (parent.y + parent.z).express(parent_interframe)
sqrt(2)*parent_int_frame.x
Notes
=====
The direction cosine matrix between the given frame and intermediate
frame is formed using a simple rotation about an axis that is normal to
both ``align_axis`` and ``frame_axis``. In general, the normal axis is
formed by crossing the ``frame_axis`` with the ``align_axis``. The
exception is if the axes are parallel with opposite directions, in which
case the rotation vector is chosen using the rules in the following
table with the vectors expressed in the given frame:
.. list-table::
:header-rows: 1
* - ``align_axis``
- ``frame_axis``
- ``rotation_axis``
* - ``-x``
- ``x``
- ``z``
* - ``-y``
- ``y``
- ``x``
* - ``-z``
- ``z``
- ``y``
* - ``-x-y``
- ``x+y``
- ``z``
* - ``-y-z``
- ``y+z``
- ``x``
* - ``-x-z``
- ``x+z``
- ``y``
* - ``-x-y-z``
- ``x+y+z``
- ``(x+y+z) × x``
"""
if isinstance(frame, BodyBase):
frame = frame.frame
if frame_axis is None:
frame_axis = frame.x
if frame_name is None:
if frame.name[-6:] == '_frame':
frame_name = f'{frame.name[:-6]}_int_frame'
else:
frame_name = f'{frame.name}_int_frame'
angle = frame_axis.angle_between(align_axis)
rotation_axis = cross(frame_axis, align_axis)
if rotation_axis == Vector(0) and angle == 0:
return frame
if angle == pi:
rotation_axis = Joint._choose_rotation_axis(frame, align_axis)
int_frame = ReferenceFrame(frame_name)
int_frame.orient_axis(frame, rotation_axis, angle)
int_frame.set_ang_vel(frame, 0 * rotation_axis)
return int_frame
def _generate_kdes(self):
"""Generate kinematical differential equations."""
kdes = []
t = dynamicsymbols._t
for i in range(len(self.coordinates)):
kdes.append(-self.coordinates[i].diff(t) + self.speeds[i])
return Matrix(kdes)
def _locate_joint_pos(self, body, joint_pos, body_frame=None):
"""Returns the attachment point of a body."""
if body_frame is None:
body_frame = body.frame
if joint_pos is None:
return body.masscenter
if not isinstance(joint_pos, (Point, Vector)):
raise TypeError('Attachment point must be a Point or Vector.')
if isinstance(joint_pos, Vector):
point_name = f'{self.name}_{body.name}_joint'
joint_pos = body.masscenter.locatenew(point_name, joint_pos)
if not joint_pos.pos_from(body.masscenter).dt(body_frame) == 0:
raise ValueError('Attachment point must be fixed to the associated '
'body.')
return joint_pos
def _locate_joint_frame(self, body, interframe, body_frame=None):
"""Returns the attachment frame of a body."""
if body_frame is None:
body_frame = body.frame
if interframe is None:
return body_frame
if isinstance(interframe, Vector):
interframe = Joint._create_aligned_interframe(
body_frame, interframe,
frame_name=f'{self.name}_{body.name}_int_frame')
elif not isinstance(interframe, ReferenceFrame):
raise TypeError('Interframe must be a ReferenceFrame.')
if not interframe.ang_vel_in(body_frame) == 0:
raise ValueError(f'Interframe {interframe} is not fixed to body '
f'{body}.')
body.masscenter.set_vel(interframe, 0) # Fixate interframe to body
return interframe
def _fill_coordinate_list(self, coordinates, n_coords, label='q', offset=0,
number_single=False):
"""Helper method for _generate_coordinates and _generate_speeds.
Parameters
==========
coordinates : iterable
Iterable of coordinates or speeds that have been provided.
n_coords : Integer
Number of coordinates that should be returned.
label : String, optional
Coordinate type either 'q' (coordinates) or 'u' (speeds). The
Default is 'q'.
offset : Integer
Count offset when creating new dynamicsymbols. The default is 0.
number_single : Boolean
Boolean whether if n_coords == 1, number should still be used. The
default is False.
"""
def create_symbol(number):
if n_coords == 1 and not number_single:
return dynamicsymbols(f'{label}_{self.name}')
return dynamicsymbols(f'{label}{number}_{self.name}')
name = 'generalized coordinate' if label == 'q' else 'generalized speed'
generated_coordinates = []
if coordinates is None:
coordinates = []
elif not iterable(coordinates):
coordinates = [coordinates]
if not (len(coordinates) == 0 or len(coordinates) == n_coords):
raise ValueError(f'Expected {n_coords} {name}s, instead got '
f'{len(coordinates)} {name}s.')
# Supports more iterables, also Matrix
for i, coord in enumerate(coordinates):
if coord is None:
generated_coordinates.append(create_symbol(i + offset))
elif isinstance(coord, (AppliedUndef, Derivative)):
generated_coordinates.append(coord)
else:
raise TypeError(f'The {name} {coord} should have been a '
f'dynamicsymbol.')
for i in range(len(coordinates) + offset, n_coords + offset):
generated_coordinates.append(create_symbol(i))
return Matrix(generated_coordinates)
class PinJoint(Joint):
"""Pin (Revolute) Joint.
.. raw:: html
:file: ../../../doc/src/modules/physics/mechanics/api/PinJoint.svg
Explanation
===========
A pin joint is defined such that the joint rotation axis is fixed in both
the child and parent and the location of the joint is relative to the mass
center of each body. The child rotates an angle, θ, from the parent about
the rotation axis and has a simple angular speed, ω, relative to the
parent. The direction cosine matrix between the child interframe and
parent interframe is formed using a simple rotation about the joint axis.
The page on the joints framework gives a more detailed explanation of the
intermediate frames.
Parameters
==========
name : string
A unique name for the joint.
parent : Particle or RigidBody or Body
The parent body of joint.
child : Particle or RigidBody or Body
The child body of joint.
coordinates : dynamicsymbol, optional
Generalized coordinates of the joint.
speeds : dynamicsymbol, optional
Generalized speeds of joint.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the parent body which aligns with an axis fixed in the
child body. The default is the x axis of parent's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
child_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the child body which aligns with an axis fixed in the
parent body. The default is the x axis of child's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
joint_axis : Vector
The axis about which the rotation occurs. Note that the components
of this axis are the same in the parent_interframe and child_interframe.
parent_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by parent_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
child_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by child_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
Attributes
==========
name : string
The joint's name.
parent : Particle or RigidBody or Body
The joint's parent body.
child : Particle or RigidBody or Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates. The default value is
``dynamicsymbols(f'q_{joint.name}')``.
speeds : Matrix
Matrix of the joint's generalized speeds. The default value is
``dynamicsymbols(f'u_{joint.name}')``.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_axis : Vector
The axis fixed in the parent frame that represents the joint.
child_axis : Vector
The axis fixed in the child frame that represents the joint.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
joint_axis : Vector
The axis about which the rotation occurs. Note that the components of
this axis are the same in the parent_interframe and child_interframe.
kdes : Matrix
Kinematical differential equations of the joint.
Examples
=========
A single pin joint is created from two bodies and has the following basic
attributes:
>>> from sympy.physics.mechanics import RigidBody, PinJoint
>>> parent = RigidBody('P')
>>> parent
P
>>> child = RigidBody('C')
>>> child
C
>>> joint = PinJoint('PC', parent, child)
>>> joint
PinJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_axis
P_frame.x
>>> joint.child_axis
C_frame.x
>>> joint.coordinates
Matrix([[q_PC(t)]])
>>> joint.speeds
Matrix([[u_PC(t)]])
>>> child.frame.ang_vel_in(parent.frame)
u_PC(t)*P_frame.x
>>> child.frame.dcm(parent.frame)
Matrix([
[1, 0, 0],
[0, cos(q_PC(t)), sin(q_PC(t))],
[0, -sin(q_PC(t)), cos(q_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
0
To further demonstrate the use of the pin joint, the kinematics of simple
double pendulum that rotates about the Z axis of each connected body can be
created as follows.
>>> from sympy import symbols, trigsimp
>>> from sympy.physics.mechanics import RigidBody, PinJoint
>>> l1, l2 = symbols('l1 l2')
First create bodies to represent the fixed ceiling and one to represent
each pendulum bob.
>>> ceiling = RigidBody('C')
>>> upper_bob = RigidBody('U')
>>> lower_bob = RigidBody('L')
The first joint will connect the upper bob to the ceiling by a distance of
``l1`` and the joint axis will be about the Z axis for each body.
>>> ceiling_joint = PinJoint('P1', ceiling, upper_bob,
... child_point=-l1*upper_bob.frame.x,
... joint_axis=ceiling.frame.z)
The second joint will connect the lower bob to the upper bob by a distance
of ``l2`` and the joint axis will also be about the Z axis for each body.
>>> pendulum_joint = PinJoint('P2', upper_bob, lower_bob,
... child_point=-l2*lower_bob.frame.x,
... joint_axis=upper_bob.frame.z)
Once the joints are established the kinematics of the connected bodies can
be accessed. First the direction cosine matrices of pendulum link relative
to the ceiling are found:
>>> upper_bob.frame.dcm(ceiling.frame)
Matrix([
[ cos(q_P1(t)), sin(q_P1(t)), 0],
[-sin(q_P1(t)), cos(q_P1(t)), 0],
[ 0, 0, 1]])
>>> trigsimp(lower_bob.frame.dcm(ceiling.frame))
Matrix([
[ cos(q_P1(t) + q_P2(t)), sin(q_P1(t) + q_P2(t)), 0],
[-sin(q_P1(t) + q_P2(t)), cos(q_P1(t) + q_P2(t)), 0],
[ 0, 0, 1]])
The position of the lower bob's masscenter is found with:
>>> lower_bob.masscenter.pos_from(ceiling.masscenter)
l1*U_frame.x + l2*L_frame.x
The angular velocities of the two pendulum links can be computed with
respect to the ceiling.
>>> upper_bob.frame.ang_vel_in(ceiling.frame)
u_P1(t)*C_frame.z
>>> lower_bob.frame.ang_vel_in(ceiling.frame)
u_P1(t)*C_frame.z + u_P2(t)*U_frame.z
And finally, the linear velocities of the two pendulum bobs can be computed
with respect to the ceiling.
>>> upper_bob.masscenter.vel(ceiling.frame)
l1*u_P1(t)*U_frame.y
>>> lower_bob.masscenter.vel(ceiling.frame)
l1*u_P1(t)*U_frame.y + l2*(u_P1(t) + u_P2(t))*L_frame.y
"""
def __init__(self, name, parent, child, coordinates=None, speeds=None,
parent_point=None, child_point=None, parent_interframe=None,
child_interframe=None, parent_axis=None, child_axis=None,
joint_axis=None, parent_joint_pos=None, child_joint_pos=None):
self._joint_axis = joint_axis
super().__init__(name, parent, child, coordinates, speeds, parent_point,
child_point, parent_interframe, child_interframe,
parent_axis, child_axis, parent_joint_pos,
child_joint_pos)
def __str__(self):
return (f'PinJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
@property
def joint_axis(self):
"""Axis about which the child rotates with respect to the parent."""
return self._joint_axis
def _generate_coordinates(self, coordinate):
return self._fill_coordinate_list(coordinate, 1, 'q')
def _generate_speeds(self, speed):
return self._fill_coordinate_list(speed, 1, 'u')
def _orient_frames(self):
self._joint_axis = self._axis(self.joint_axis, self.parent_interframe)
self.child_interframe.orient_axis(
self.parent_interframe, self.joint_axis, self.coordinates[0])
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(self.parent_interframe, self.speeds[
0] * self.joint_axis.normalize())
def _set_linear_velocity(self):
self.child_point.set_pos(self.parent_point, 0)
self.parent_point.set_vel(self._parent_frame, 0)
self.child_point.set_vel(self._child_frame, 0)
self.child.masscenter.v2pt_theory(self.parent_point,
self._parent_frame, self._child_frame)
class PrismaticJoint(Joint):
"""Prismatic (Sliding) Joint.
.. image:: PrismaticJoint.svg
Explanation
===========
It is defined such that the child body translates with respect to the parent
body along the body-fixed joint axis. The location of the joint is defined
by two points, one in each body, which coincide when the generalized
coordinate is zero. The direction cosine matrix between the
parent_interframe and child_interframe is the identity matrix. Therefore,
the direction cosine matrix between the parent and child frames is fully
defined by the definition of the intermediate frames. The page on the joints
framework gives a more detailed explanation of the intermediate frames.
Parameters
==========
name : string
A unique name for the joint.
parent : Particle or RigidBody or Body
The parent body of joint.
child : Particle or RigidBody or Body
The child body of joint.
coordinates : dynamicsymbol, optional
Generalized coordinates of the joint. The default value is
``dynamicsymbols(f'q_{joint.name}')``.
speeds : dynamicsymbol, optional
Generalized speeds of joint. The default value is
``dynamicsymbols(f'u_{joint.name}')``.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the parent body which aligns with an axis fixed in the
child body. The default is the x axis of parent's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
child_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the child body which aligns with an axis fixed in the
parent body. The default is the x axis of child's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
joint_axis : Vector
The axis along which the translation occurs. Note that the components
of this axis are the same in the parent_interframe and child_interframe.
parent_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by parent_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
child_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by child_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
Attributes
==========
name : string
The joint's name.
parent : Particle or RigidBody or Body
The joint's parent body.
child : Particle or RigidBody or Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_axis : Vector
The axis fixed in the parent frame that represents the joint.
child_axis : Vector
The axis fixed in the child frame that represents the joint.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
Examples
=========
A single prismatic joint is created from two bodies and has the following
basic attributes:
>>> from sympy.physics.mechanics import RigidBody, PrismaticJoint
>>> parent = RigidBody('P')
>>> parent
P
>>> child = RigidBody('C')
>>> child
C
>>> joint = PrismaticJoint('PC', parent, child)
>>> joint
PrismaticJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_axis
P_frame.x
>>> joint.child_axis
C_frame.x
>>> joint.coordinates
Matrix([[q_PC(t)]])
>>> joint.speeds
Matrix([[u_PC(t)]])
>>> child.frame.ang_vel_in(parent.frame)
0
>>> child.frame.dcm(parent.frame)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> joint.child_point.pos_from(joint.parent_point)
q_PC(t)*P_frame.x
To further demonstrate the use of the prismatic joint, the kinematics of two
masses sliding, one moving relative to a fixed body and the other relative
to the moving body. about the X axis of each connected body can be created
as follows.
>>> from sympy.physics.mechanics import PrismaticJoint, RigidBody
First create bodies to represent the fixed ceiling and one to represent
a particle.
>>> wall = RigidBody('W')
>>> Part1 = RigidBody('P1')
>>> Part2 = RigidBody('P2')
The first joint will connect the particle to the ceiling and the
joint axis will be about the X axis for each body.
>>> J1 = PrismaticJoint('J1', wall, Part1)
The second joint will connect the second particle to the first particle
and the joint axis will also be about the X axis for each body.
>>> J2 = PrismaticJoint('J2', Part1, Part2)
Once the joint is established the kinematics of the connected bodies can
be accessed. First the direction cosine matrices of Part relative
to the ceiling are found:
>>> Part1.frame.dcm(wall.frame)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> Part2.frame.dcm(wall.frame)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
The position of the particles' masscenter is found with:
>>> Part1.masscenter.pos_from(wall.masscenter)
q_J1(t)*W_frame.x
>>> Part2.masscenter.pos_from(wall.masscenter)
q_J1(t)*W_frame.x + q_J2(t)*P1_frame.x
The angular velocities of the two particle links can be computed with
respect to the ceiling.
>>> Part1.frame.ang_vel_in(wall.frame)
0
>>> Part2.frame.ang_vel_in(wall.frame)
0
And finally, the linear velocities of the two particles can be computed
with respect to the ceiling.
>>> Part1.masscenter.vel(wall.frame)
u_J1(t)*W_frame.x
>>> Part2.masscenter.vel(wall.frame)
u_J1(t)*W_frame.x + Derivative(q_J2(t), t)*P1_frame.x
"""
def __init__(self, name, parent, child, coordinates=None, speeds=None,
parent_point=None, child_point=None, parent_interframe=None,
child_interframe=None, parent_axis=None, child_axis=None,
joint_axis=None, parent_joint_pos=None, child_joint_pos=None):
self._joint_axis = joint_axis
super().__init__(name, parent, child, coordinates, speeds, parent_point,
child_point, parent_interframe, child_interframe,
parent_axis, child_axis, parent_joint_pos,
child_joint_pos)
def __str__(self):
return (f'PrismaticJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
@property
def joint_axis(self):
"""Axis along which the child translates with respect to the parent."""
return self._joint_axis
def _generate_coordinates(self, coordinate):
return self._fill_coordinate_list(coordinate, 1, 'q')
def _generate_speeds(self, speed):
return self._fill_coordinate_list(speed, 1, 'u')
def _orient_frames(self):
self._joint_axis = self._axis(self.joint_axis, self.parent_interframe)
self.child_interframe.orient_axis(
self.parent_interframe, self.joint_axis, 0)
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(self.parent_interframe, 0)
def _set_linear_velocity(self):
axis = self.joint_axis.normalize()
self.child_point.set_pos(self.parent_point, self.coordinates[0] * axis)
self.parent_point.set_vel(self._parent_frame, 0)
self.child_point.set_vel(self._child_frame, 0)
self.child_point.set_vel(self._parent_frame, self.speeds[0] * axis)
self.child.masscenter.set_vel(self._parent_frame, self.speeds[0] * axis)
class CylindricalJoint(Joint):
"""Cylindrical Joint.
.. image:: CylindricalJoint.svg
:align: center
:width: 600
Explanation
===========
A cylindrical joint is defined such that the child body both rotates about
and translates along the body-fixed joint axis with respect to the parent
body. The joint axis is both the rotation axis and translation axis. The
location of the joint is defined by two points, one in each body, which
coincide when the generalized coordinate corresponding to the translation is
zero. The direction cosine matrix between the child interframe and parent
interframe is formed using a simple rotation about the joint axis. The page
on the joints framework gives a more detailed explanation of the
intermediate frames.
Parameters
==========
name : string
A unique name for the joint.
parent : Particle or RigidBody or Body
The parent body of joint.
child : Particle or RigidBody or Body
The child body of joint.
rotation_coordinate : dynamicsymbol, optional
Generalized coordinate corresponding to the rotation angle. The default
value is ``dynamicsymbols(f'q0_{joint.name}')``.
translation_coordinate : dynamicsymbol, optional
Generalized coordinate corresponding to the translation distance. The
default value is ``dynamicsymbols(f'q1_{joint.name}')``.
rotation_speed : dynamicsymbol, optional
Generalized speed corresponding to the angular velocity. The default
value is ``dynamicsymbols(f'u0_{joint.name}')``.
translation_speed : dynamicsymbol, optional
Generalized speed corresponding to the translation velocity. The default
value is ``dynamicsymbols(f'u1_{joint.name}')``.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
joint_axis : Vector, optional
The rotation as well as translation axis. Note that the components of
this axis are the same in the parent_interframe and child_interframe.
Attributes
==========
name : string
The joint's name.
parent : Particle or RigidBody or Body
The joint's parent body.
child : Particle or RigidBody or Body
The joint's child body.
rotation_coordinate : dynamicsymbol
Generalized coordinate corresponding to the rotation angle.
translation_coordinate : dynamicsymbol
Generalized coordinate corresponding to the translation distance.
rotation_speed : dynamicsymbol
Generalized speed corresponding to the angular velocity.
translation_speed : dynamicsymbol
Generalized speed corresponding to the translation velocity.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
joint_axis : Vector
The axis of rotation and translation.
Examples
=========
A single cylindrical joint is created between two bodies and has the
following basic attributes:
>>> from sympy.physics.mechanics import RigidBody, CylindricalJoint
>>> parent = RigidBody('P')
>>> parent
P
>>> child = RigidBody('C')
>>> child
C
>>> joint = CylindricalJoint('PC', parent, child)
>>> joint
CylindricalJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_axis
P_frame.x
>>> joint.child_axis
C_frame.x
>>> joint.coordinates
Matrix([
[q0_PC(t)],
[q1_PC(t)]])
>>> joint.speeds
Matrix([
[u0_PC(t)],
[u1_PC(t)]])
>>> child.frame.ang_vel_in(parent.frame)
u0_PC(t)*P_frame.x
>>> child.frame.dcm(parent.frame)
Matrix([
[1, 0, 0],
[0, cos(q0_PC(t)), sin(q0_PC(t))],
[0, -sin(q0_PC(t)), cos(q0_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
q1_PC(t)*P_frame.x
>>> child.masscenter.vel(parent.frame)
u1_PC(t)*P_frame.x
To further demonstrate the use of the cylindrical joint, the kinematics of
two cylindrical joints perpendicular to each other can be created as follows.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import RigidBody, CylindricalJoint
>>> r, l, w = symbols('r l w')
First create bodies to represent the fixed floor with a fixed pole on it.
The second body represents a freely moving tube around that pole. The third
body represents a solid flag freely translating along and rotating around
the Y axis of the tube.
>>> floor = RigidBody('floor')
>>> tube = RigidBody('tube')
>>> flag = RigidBody('flag')
The first joint will connect the first tube to the floor with it translating
along and rotating around the Z axis of both bodies.
>>> floor_joint = CylindricalJoint('C1', floor, tube, joint_axis=floor.z)
The second joint will connect the tube perpendicular to the flag along the Y
axis of both the tube and the flag, with the joint located at a distance
``r`` from the tube's center of mass and a combination of the distances
``l`` and ``w`` from the flag's center of mass.
>>> flag_joint = CylindricalJoint('C2', tube, flag,
... parent_point=r * tube.y,
... child_point=-w * flag.y + l * flag.z,
... joint_axis=tube.y)
Once the joints are established the kinematics of the connected bodies can
be accessed. First the direction cosine matrices of both the body and the
flag relative to the floor are found:
>>> tube.frame.dcm(floor.frame)
Matrix([
[ cos(q0_C1(t)), sin(q0_C1(t)), 0],
[-sin(q0_C1(t)), cos(q0_C1(t)), 0],
[ 0, 0, 1]])
>>> flag.frame.dcm(floor.frame)
Matrix([
[cos(q0_C1(t))*cos(q0_C2(t)), sin(q0_C1(t))*cos(q0_C2(t)), -sin(q0_C2(t))],
[ -sin(q0_C1(t)), cos(q0_C1(t)), 0],
[sin(q0_C2(t))*cos(q0_C1(t)), sin(q0_C1(t))*sin(q0_C2(t)), cos(q0_C2(t))]])
The position of the flag's center of mass is found with:
>>> flag.masscenter.pos_from(floor.masscenter)
q1_C1(t)*floor_frame.z + (r + q1_C2(t))*tube_frame.y + w*flag_frame.y - l*flag_frame.z
The angular velocities of the two tubes can be computed with respect to the
floor.
>>> tube.frame.ang_vel_in(floor.frame)
u0_C1(t)*floor_frame.z
>>> flag.frame.ang_vel_in(floor.frame)
u0_C1(t)*floor_frame.z + u0_C2(t)*tube_frame.y
Finally, the linear velocities of the two tube centers of mass can be
computed with respect to the floor, while expressed in the tube's frame.
>>> tube.masscenter.vel(floor.frame).to_matrix(tube.frame)
Matrix([
[ 0],
[ 0],
[u1_C1(t)]])
>>> flag.masscenter.vel(floor.frame).to_matrix(tube.frame).simplify()
Matrix([
[-l*u0_C2(t)*cos(q0_C2(t)) - r*u0_C1(t) - w*u0_C1(t) - q1_C2(t)*u0_C1(t)],
[ -l*u0_C1(t)*sin(q0_C2(t)) + Derivative(q1_C2(t), t)],
[ l*u0_C2(t)*sin(q0_C2(t)) + u1_C1(t)]])
"""
def __init__(self, name, parent, child, rotation_coordinate=None,
translation_coordinate=None, rotation_speed=None,
translation_speed=None, parent_point=None, child_point=None,
parent_interframe=None, child_interframe=None,
joint_axis=None):
self._joint_axis = joint_axis
coordinates = (rotation_coordinate, translation_coordinate)
speeds = (rotation_speed, translation_speed)
super().__init__(name, parent, child, coordinates, speeds,
parent_point, child_point,
parent_interframe=parent_interframe,
child_interframe=child_interframe)
def __str__(self):
return (f'CylindricalJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
@property
def joint_axis(self):
"""Axis about and along which the rotation and translation occurs."""
return self._joint_axis
@property
def rotation_coordinate(self):
"""Generalized coordinate corresponding to the rotation angle."""
return self.coordinates[0]
@property
def translation_coordinate(self):
"""Generalized coordinate corresponding to the translation distance."""
return self.coordinates[1]
@property
def rotation_speed(self):
"""Generalized speed corresponding to the angular velocity."""
return self.speeds[0]
@property
def translation_speed(self):
"""Generalized speed corresponding to the translation velocity."""
return self.speeds[1]
def _generate_coordinates(self, coordinates):
return self._fill_coordinate_list(coordinates, 2, 'q')
def _generate_speeds(self, speeds):
return self._fill_coordinate_list(speeds, 2, 'u')
def _orient_frames(self):
self._joint_axis = self._axis(self.joint_axis, self.parent_interframe)
self.child_interframe.orient_axis(
self.parent_interframe, self.joint_axis, self.rotation_coordinate)
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(
self.parent_interframe,
self.rotation_speed * self.joint_axis.normalize())
def _set_linear_velocity(self):
self.child_point.set_pos(
self.parent_point,
self.translation_coordinate * self.joint_axis.normalize())
self.parent_point.set_vel(self._parent_frame, 0)
self.child_point.set_vel(self._child_frame, 0)
self.child_point.set_vel(
self._parent_frame,
self.translation_speed * self.joint_axis.normalize())
self.child.masscenter.v2pt_theory(self.child_point, self._parent_frame,
self.child_interframe)
class PlanarJoint(Joint):
"""Planar Joint.
.. raw:: html
:file: ../../../doc/src/modules/physics/mechanics/api/PlanarJoint.svg
Explanation
===========
A planar joint is defined such that the child body translates over a fixed
plane of the parent body as well as rotate about the rotation axis, which
is perpendicular to that plane. The origin of this plane is the
``parent_point`` and the plane is spanned by two nonparallel planar vectors.
The location of the ``child_point`` is based on the planar vectors
($\\vec{v}_1$, $\\vec{v}_2$) and generalized coordinates ($q_1$, $q_2$),
i.e. $\\vec{r} = q_1 \\hat{v}_1 + q_2 \\hat{v}_2$. The direction cosine
matrix between the ``child_interframe`` and ``parent_interframe`` is formed
using a simple rotation ($q_0$) about the rotation axis.
In order to simplify the definition of the ``PlanarJoint``, the
``rotation_axis`` and ``planar_vectors`` are set to be the unit vectors of
the ``parent_interframe`` according to the table below. This ensures that
you can only define these vectors by creating a separate frame and supplying
that as the interframe. If you however would only like to supply the normals
of the plane with respect to the parent and child bodies, then you can also
supply those to the ``parent_interframe`` and ``child_interframe``
arguments. An example of both of these cases is in the examples section
below and the page on the joints framework provides a more detailed
explanation of the intermediate frames.
.. list-table::
* - ``rotation_axis``
- ``parent_interframe.x``
* - ``planar_vectors[0]``
- ``parent_interframe.y``
* - ``planar_vectors[1]``
- ``parent_interframe.z``
Parameters
==========
name : string
A unique name for the joint.
parent : Particle or RigidBody or Body
The parent body of joint.
child : Particle or RigidBody or Body
The child body of joint.
rotation_coordinate : dynamicsymbol, optional
Generalized coordinate corresponding to the rotation angle. The default
value is ``dynamicsymbols(f'q0_{joint.name}')``.
planar_coordinates : iterable of dynamicsymbols, optional
Two generalized coordinates used for the planar translation. The default
value is ``dynamicsymbols(f'q1_{joint.name} q2_{joint.name}')``.
rotation_speed : dynamicsymbol, optional
Generalized speed corresponding to the angular velocity. The default
value is ``dynamicsymbols(f'u0_{joint.name}')``.
planar_speeds : dynamicsymbols, optional
Two generalized speeds used for the planar translation velocity. The
default value is ``dynamicsymbols(f'u1_{joint.name} u2_{joint.name}')``.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
Attributes
==========
name : string
The joint's name.
parent : Particle or RigidBody or Body
The joint's parent body.
child : Particle or RigidBody or Body
The joint's child body.
rotation_coordinate : dynamicsymbol
Generalized coordinate corresponding to the rotation angle.
planar_coordinates : Matrix
Two generalized coordinates used for the planar translation.
rotation_speed : dynamicsymbol
Generalized speed corresponding to the angular velocity.
planar_speeds : Matrix
Two generalized speeds used for the planar translation velocity.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
rotation_axis : Vector
The axis about which the rotation occurs.
planar_vectors : list
The vectors that describe the planar translation directions.
Examples
=========
A single planar joint is created between two bodies and has the following
basic attributes:
>>> from sympy.physics.mechanics import RigidBody, PlanarJoint
>>> parent = RigidBody('P')
>>> parent
P
>>> child = RigidBody('C')
>>> child
C
>>> joint = PlanarJoint('PC', parent, child)
>>> joint
PlanarJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.rotation_axis
P_frame.x
>>> joint.planar_vectors
[P_frame.y, P_frame.z]
>>> joint.rotation_coordinate
q0_PC(t)
>>> joint.planar_coordinates
Matrix([
[q1_PC(t)],
[q2_PC(t)]])
>>> joint.coordinates
Matrix([
[q0_PC(t)],
[q1_PC(t)],
[q2_PC(t)]])
>>> joint.rotation_speed
u0_PC(t)
>>> joint.planar_speeds
Matrix([
[u1_PC(t)],
[u2_PC(t)]])
>>> joint.speeds
Matrix([
[u0_PC(t)],
[u1_PC(t)],
[u2_PC(t)]])
>>> child.frame.ang_vel_in(parent.frame)
u0_PC(t)*P_frame.x
>>> child.frame.dcm(parent.frame)
Matrix([
[1, 0, 0],
[0, cos(q0_PC(t)), sin(q0_PC(t))],
[0, -sin(q0_PC(t)), cos(q0_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
q1_PC(t)*P_frame.y + q2_PC(t)*P_frame.z
>>> child.masscenter.vel(parent.frame)
u1_PC(t)*P_frame.y + u2_PC(t)*P_frame.z
To further demonstrate the use of the planar joint, the kinematics of a
block sliding on a slope, can be created as follows.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import PlanarJoint, RigidBody, ReferenceFrame
>>> a, d, h = symbols('a d h')
First create bodies to represent the slope and the block.
>>> ground = RigidBody('G')
>>> block = RigidBody('B')
To define the slope you can either define the plane by specifying the
``planar_vectors`` or/and the ``rotation_axis``. However it is advisable to
create a rotated intermediate frame, so that the ``parent_vectors`` and
``rotation_axis`` will be the unit vectors of this intermediate frame.
>>> slope = ReferenceFrame('A')
>>> slope.orient_axis(ground.frame, ground.y, a)
The planar joint can be created using these bodies and intermediate frame.
We can specify the origin of the slope to be ``d`` above the slope's center
of mass and the block's center of mass to be a distance ``h`` above the
slope's surface. Note that we can specify the normal of the plane using the
rotation axis argument.
>>> joint = PlanarJoint('PC', ground, block, parent_point=d * ground.x,
... child_point=-h * block.x, parent_interframe=slope)
Once the joint is established the kinematics of the bodies can be accessed.
First the ``rotation_axis``, which is normal to the plane and the
``plane_vectors``, can be found.
>>> joint.rotation_axis
A.x
>>> joint.planar_vectors
[A.y, A.z]
The direction cosine matrix of the block with respect to the ground can be
found with:
>>> block.frame.dcm(ground.frame)
Matrix([
[ cos(a), 0, -sin(a)],
[sin(a)*sin(q0_PC(t)), cos(q0_PC(t)), sin(q0_PC(t))*cos(a)],
[sin(a)*cos(q0_PC(t)), -sin(q0_PC(t)), cos(a)*cos(q0_PC(t))]])
The angular velocity of the block can be computed with respect to the
ground.
>>> block.frame.ang_vel_in(ground.frame)
u0_PC(t)*A.x
The position of the block's center of mass can be found with:
>>> block.masscenter.pos_from(ground.masscenter)
d*G_frame.x + h*B_frame.x + q1_PC(t)*A.y + q2_PC(t)*A.z
Finally, the linear velocity of the block's center of mass can be
computed with respect to the ground.
>>> block.masscenter.vel(ground.frame)
u1_PC(t)*A.y + u2_PC(t)*A.z
In some cases it could be your preference to only define the normals of the
plane with respect to both bodies. This can most easily be done by supplying
vectors to the ``interframe`` arguments. What will happen in this case is
that an interframe will be created with its ``x`` axis aligned with the
provided vector. For a further explanation of how this is done see the notes
of the ``Joint`` class. In the code below, the above example (with the block
on the slope) is recreated by supplying vectors to the interframe arguments.
Note that the previously described option is however more computationally
efficient, because the algorithm now has to compute the rotation angle
between the provided vector and the 'x' axis.
>>> from sympy import symbols, cos, sin
>>> from sympy.physics.mechanics import PlanarJoint, RigidBody
>>> a, d, h = symbols('a d h')
>>> ground = RigidBody('G')
>>> block = RigidBody('B')
>>> joint = PlanarJoint(
... 'PC', ground, block, parent_point=d * ground.x,
... child_point=-h * block.x, child_interframe=block.x,
... parent_interframe=cos(a) * ground.x + sin(a) * ground.z)
>>> block.frame.dcm(ground.frame).simplify()
Matrix([
[ cos(a), 0, sin(a)],
[-sin(a)*sin(q0_PC(t)), cos(q0_PC(t)), sin(q0_PC(t))*cos(a)],
[-sin(a)*cos(q0_PC(t)), -sin(q0_PC(t)), cos(a)*cos(q0_PC(t))]])
"""
def __init__(self, name, parent, child, rotation_coordinate=None,
planar_coordinates=None, rotation_speed=None,
planar_speeds=None, parent_point=None, child_point=None,
parent_interframe=None, child_interframe=None):
# A ready to merge implementation of setting the planar_vectors and
# rotation_axis was added and removed in PR #24046
coordinates = (rotation_coordinate, planar_coordinates)
speeds = (rotation_speed, planar_speeds)
super().__init__(name, parent, child, coordinates, speeds,
parent_point, child_point,
parent_interframe=parent_interframe,
child_interframe=child_interframe)
def __str__(self):
return (f'PlanarJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
@property
def rotation_coordinate(self):
"""Generalized coordinate corresponding to the rotation angle."""
return self.coordinates[0]
@property
def planar_coordinates(self):
"""Two generalized coordinates used for the planar translation."""
return self.coordinates[1:, 0]
@property
def rotation_speed(self):
"""Generalized speed corresponding to the angular velocity."""
return self.speeds[0]
@property
def planar_speeds(self):
"""Two generalized speeds used for the planar translation velocity."""
return self.speeds[1:, 0]
@property
def rotation_axis(self):
"""The axis about which the rotation occurs."""
return self.parent_interframe.x
@property
def planar_vectors(self):
"""The vectors that describe the planar translation directions."""
return [self.parent_interframe.y, self.parent_interframe.z]
def _generate_coordinates(self, coordinates):
rotation_speed = self._fill_coordinate_list(coordinates[0], 1, 'q',
number_single=True)
planar_speeds = self._fill_coordinate_list(coordinates[1], 2, 'q', 1)
return rotation_speed.col_join(planar_speeds)
def _generate_speeds(self, speeds):
rotation_speed = self._fill_coordinate_list(speeds[0], 1, 'u',
number_single=True)
planar_speeds = self._fill_coordinate_list(speeds[1], 2, 'u', 1)
return rotation_speed.col_join(planar_speeds)
def _orient_frames(self):
self.child_interframe.orient_axis(
self.parent_interframe, self.rotation_axis,
self.rotation_coordinate)
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(
self.parent_interframe,
self.rotation_speed * self.rotation_axis)
def _set_linear_velocity(self):
self.child_point.set_pos(
self.parent_point,
self.planar_coordinates[0] * self.planar_vectors[0] +
self.planar_coordinates[1] * self.planar_vectors[1])
self.parent_point.set_vel(self.parent_interframe, 0)
self.child_point.set_vel(self.child_interframe, 0)
self.child_point.set_vel(
self._parent_frame, self.planar_speeds[0] * self.planar_vectors[0] +
self.planar_speeds[1] * self.planar_vectors[1])
self.child.masscenter.v2pt_theory(self.child_point, self._parent_frame,
self._child_frame)
class SphericalJoint(Joint):
"""Spherical (Ball-and-Socket) Joint.
.. image:: SphericalJoint.svg
:align: center
:width: 600
Explanation
===========
A spherical joint is defined such that the child body is free to rotate in
any direction, without allowing a translation of the ``child_point``. As can
also be seen in the image, the ``parent_point`` and ``child_point`` are
fixed on top of each other, i.e. the ``joint_point``. This rotation is
defined using the :func:`parent_interframe.orient(child_interframe,
rot_type, amounts, rot_order)
<sympy.physics.vector.frame.ReferenceFrame.orient>` method. The default
rotation consists of three relative rotations, i.e. body-fixed rotations.
Based on the direction cosine matrix following from these rotations, the
angular velocity is computed based on the generalized coordinates and
generalized speeds.
Parameters
==========
name : string
A unique name for the joint.
parent : Particle or RigidBody or Body
The parent body of joint.
child : Particle or RigidBody or Body
The child body of joint.
coordinates: iterable of dynamicsymbols, optional
Generalized coordinates of the joint.
speeds : iterable of dynamicsymbols, optional
Generalized speeds of joint.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
rot_type : str, optional
The method used to generate the direction cosine matrix. Supported
methods are:
- ``'Body'``: three successive rotations about new intermediate axes,
also called "Euler and Tait-Bryan angles"
- ``'Space'``: three successive rotations about the parent frames' unit
vectors
The default method is ``'Body'``.
amounts :
Expressions defining the rotation angles or direction cosine matrix.
These must match the ``rot_type``. See examples below for details. The
input types are:
- ``'Body'``: 3-tuple of expressions, symbols, or functions
- ``'Space'``: 3-tuple of expressions, symbols, or functions
The default amounts are the given ``coordinates``.
rot_order : str or int, optional
If applicable, the order of the successive of rotations. The string
``'123'`` and integer ``123`` are equivalent, for example. Required for
``'Body'`` and ``'Space'``. The default value is ``123``.
Attributes
==========
name : string
The joint's name.
parent : Particle or RigidBody or Body
The joint's parent body.
child : Particle or RigidBody or Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
Examples
=========
A single spherical joint is created from two bodies and has the following
basic attributes:
>>> from sympy.physics.mechanics import RigidBody, SphericalJoint
>>> parent = RigidBody('P')
>>> parent
P
>>> child = RigidBody('C')
>>> child
C
>>> joint = SphericalJoint('PC', parent, child)
>>> joint
SphericalJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_interframe
P_frame
>>> joint.child_interframe
C_frame
>>> joint.coordinates
Matrix([
[q0_PC(t)],
[q1_PC(t)],
[q2_PC(t)]])
>>> joint.speeds
Matrix([
[u0_PC(t)],
[u1_PC(t)],
[u2_PC(t)]])
>>> child.frame.ang_vel_in(parent.frame).to_matrix(child.frame)
Matrix([
[ u0_PC(t)*cos(q1_PC(t))*cos(q2_PC(t)) + u1_PC(t)*sin(q2_PC(t))],
[-u0_PC(t)*sin(q2_PC(t))*cos(q1_PC(t)) + u1_PC(t)*cos(q2_PC(t))],
[ u0_PC(t)*sin(q1_PC(t)) + u2_PC(t)]])
>>> child.frame.x.to_matrix(parent.frame)
Matrix([
[ cos(q1_PC(t))*cos(q2_PC(t))],
[sin(q0_PC(t))*sin(q1_PC(t))*cos(q2_PC(t)) + sin(q2_PC(t))*cos(q0_PC(t))],
[sin(q0_PC(t))*sin(q2_PC(t)) - sin(q1_PC(t))*cos(q0_PC(t))*cos(q2_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
0
To further demonstrate the use of the spherical joint, the kinematics of a
spherical joint with a ZXZ rotation can be created as follows.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import RigidBody, SphericalJoint
>>> l1 = symbols('l1')
First create bodies to represent the fixed floor and a pendulum bob.
>>> floor = RigidBody('F')
>>> bob = RigidBody('B')
The joint will connect the bob to the floor, with the joint located at a
distance of ``l1`` from the child's center of mass and the rotation set to a
body-fixed ZXZ rotation.
>>> joint = SphericalJoint('S', floor, bob, child_point=l1 * bob.y,
... rot_type='body', rot_order='ZXZ')
Now that the joint is established, the kinematics of the connected body can
be accessed.
The position of the bob's masscenter is found with:
>>> bob.masscenter.pos_from(floor.masscenter)
- l1*B_frame.y
The angular velocities of the pendulum link can be computed with respect to
the floor.
>>> bob.frame.ang_vel_in(floor.frame).to_matrix(
... floor.frame).simplify()
Matrix([
[u1_S(t)*cos(q0_S(t)) + u2_S(t)*sin(q0_S(t))*sin(q1_S(t))],
[u1_S(t)*sin(q0_S(t)) - u2_S(t)*sin(q1_S(t))*cos(q0_S(t))],
[ u0_S(t) + u2_S(t)*cos(q1_S(t))]])
Finally, the linear velocity of the bob's center of mass can be computed.
>>> bob.masscenter.vel(floor.frame).to_matrix(bob.frame)
Matrix([
[ l1*(u0_S(t)*cos(q1_S(t)) + u2_S(t))],
[ 0],
[-l1*(u0_S(t)*sin(q1_S(t))*sin(q2_S(t)) + u1_S(t)*cos(q2_S(t)))]])
"""
def __init__(self, name, parent, child, coordinates=None, speeds=None,
parent_point=None, child_point=None, parent_interframe=None,
child_interframe=None, rot_type='BODY', amounts=None,
rot_order=123):
self._rot_type = rot_type
self._amounts = amounts
self._rot_order = rot_order
super().__init__(name, parent, child, coordinates, speeds,
parent_point, child_point,
parent_interframe=parent_interframe,
child_interframe=child_interframe)
def __str__(self):
return (f'SphericalJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
def _generate_coordinates(self, coordinates):
return self._fill_coordinate_list(coordinates, 3, 'q')
def _generate_speeds(self, speeds):
return self._fill_coordinate_list(speeds, len(self.coordinates), 'u')
def _orient_frames(self):
supported_rot_types = ('BODY', 'SPACE')
if self._rot_type.upper() not in supported_rot_types:
raise NotImplementedError(
f'Rotation type "{self._rot_type}" is not implemented. '
f'Implemented rotation types are: {supported_rot_types}')
amounts = self.coordinates if self._amounts is None else self._amounts
self.child_interframe.orient(self.parent_interframe, self._rot_type,
amounts, self._rot_order)
def _set_angular_velocity(self):
t = dynamicsymbols._t
vel = self.child_interframe.ang_vel_in(self.parent_interframe).xreplace(
{q.diff(t): u for q, u in zip(self.coordinates, self.speeds)}
)
self.child_interframe.set_ang_vel(self.parent_interframe, vel)
def _set_linear_velocity(self):
self.child_point.set_pos(self.parent_point, 0)
self.parent_point.set_vel(self._parent_frame, 0)
self.child_point.set_vel(self._child_frame, 0)
self.child.masscenter.v2pt_theory(self.parent_point, self._parent_frame,
self._child_frame)
class WeldJoint(Joint):
"""Weld Joint.
.. raw:: html
:file: ../../../doc/src/modules/physics/mechanics/api/WeldJoint.svg
Explanation
===========
A weld joint is defined such that there is no relative motion between the
child and parent bodies. The direction cosine matrix between the attachment
frame (``parent_interframe`` and ``child_interframe``) is the identity
matrix and the attachment points (``parent_point`` and ``child_point``) are
coincident. The page on the joints framework gives a more detailed
explanation of the intermediate frames.
Parameters
==========
name : string
A unique name for the joint.
parent : Particle or RigidBody or Body
The parent body of joint.
child : Particle or RigidBody or Body
The child body of joint.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
Attributes
==========
name : string
The joint's name.
parent : Particle or RigidBody or Body
The joint's parent body.
child : Particle or RigidBody or Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates. The default value is
``dynamicsymbols(f'q_{joint.name}')``.
speeds : Matrix
Matrix of the joint's generalized speeds. The default value is
``dynamicsymbols(f'u_{joint.name}')``.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
Examples
=========
A single weld joint is created from two bodies and has the following basic
attributes:
>>> from sympy.physics.mechanics import RigidBody, WeldJoint
>>> parent = RigidBody('P')
>>> parent
P
>>> child = RigidBody('C')
>>> child
C
>>> joint = WeldJoint('PC', parent, child)
>>> joint
WeldJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.coordinates
Matrix(0, 0, [])
>>> joint.speeds
Matrix(0, 0, [])
>>> child.frame.ang_vel_in(parent.frame)
0
>>> child.frame.dcm(parent.frame)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> joint.child_point.pos_from(joint.parent_point)
0
To further demonstrate the use of the weld joint, two relatively-fixed
bodies rotated by a quarter turn about the Y axis can be created as follows:
>>> from sympy import symbols, pi
>>> from sympy.physics.mechanics import ReferenceFrame, RigidBody, WeldJoint
>>> l1, l2 = symbols('l1 l2')
First create the bodies to represent the parent and rotated child body.
>>> parent = RigidBody('P')
>>> child = RigidBody('C')
Next the intermediate frame specifying the fixed rotation with respect to
the parent can be created.
>>> rotated_frame = ReferenceFrame('Pr')
>>> rotated_frame.orient_axis(parent.frame, parent.y, pi / 2)
The weld between the parent body and child body is located at a distance
``l1`` from the parent's center of mass in the X direction and ``l2`` from
the child's center of mass in the child's negative X direction.
>>> weld = WeldJoint('weld', parent, child, parent_point=l1 * parent.x,
... child_point=-l2 * child.x,
... parent_interframe=rotated_frame)
Now that the joint has been established, the kinematics of the bodies can be
accessed. The direction cosine matrix of the child body with respect to the
parent can be found:
>>> child.frame.dcm(parent.frame)
Matrix([
[0, 0, -1],
[0, 1, 0],
[1, 0, 0]])
As can also been seen from the direction cosine matrix, the parent X axis is
aligned with the child's Z axis:
>>> parent.x == child.z
True
The position of the child's center of mass with respect to the parent's
center of mass can be found with:
>>> child.masscenter.pos_from(parent.masscenter)
l1*P_frame.x + l2*C_frame.x
The angular velocity of the child with respect to the parent is 0 as one
would expect.
>>> child.frame.ang_vel_in(parent.frame)
0
"""
def __init__(self, name, parent, child, parent_point=None, child_point=None,
parent_interframe=None, child_interframe=None):
super().__init__(name, parent, child, [], [], parent_point,
child_point, parent_interframe=parent_interframe,
child_interframe=child_interframe)
self._kdes = Matrix(1, 0, []).T # Removes stackability problems #10770
def __str__(self):
return (f'WeldJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
def _generate_coordinates(self, coordinate):
return Matrix()
def _generate_speeds(self, speed):
return Matrix()
def _orient_frames(self):
self.child_interframe.orient_axis(self.parent_interframe,
self.parent_interframe.x, 0)
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(self.parent_interframe, 0)
def _set_linear_velocity(self):
self.child_point.set_pos(self.parent_point, 0)
self.parent_point.set_vel(self._parent_frame, 0)
self.child_point.set_vel(self._child_frame, 0)
self.child.masscenter.set_vel(self._parent_frame, 0)
|