File size: 24,253 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
"""
    Module to handle gamma matrices expressed as tensor objects.

    Examples
    ========

    >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex
    >>> from sympy.tensor.tensor import tensor_indices
    >>> i = tensor_indices('i', LorentzIndex)
    >>> G(i)
    GammaMatrix(i)

    Note that there is already an instance of GammaMatrixHead in four dimensions:
    GammaMatrix, which is simply declare as

    >>> from sympy.physics.hep.gamma_matrices import GammaMatrix
    >>> from sympy.tensor.tensor import tensor_indices
    >>> i = tensor_indices('i', LorentzIndex)
    >>> GammaMatrix(i)
    GammaMatrix(i)

    To access the metric tensor

    >>> LorentzIndex.metric
    metric(LorentzIndex,LorentzIndex)

"""
from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.matrices.dense import eye
from sympy.matrices.expressions.trace import trace
from sympy.tensor.tensor import TensorIndexType, TensorIndex,\
    TensMul, TensAdd, tensor_mul, Tensor, TensorHead, TensorSymmetry


# DiracSpinorIndex = TensorIndexType('DiracSpinorIndex', dim=4, dummy_name="S")


LorentzIndex = TensorIndexType('LorentzIndex', dim=4, dummy_name="L")


GammaMatrix = TensorHead("GammaMatrix", [LorentzIndex],
                         TensorSymmetry.no_symmetry(1), comm=None)


def extract_type_tens(expression, component):
    """
    Extract from a ``TensExpr`` all tensors with `component`.

    Returns two tensor expressions:

    * the first contains all ``Tensor`` of having `component`.
    * the second contains all remaining.


    """
    if isinstance(expression, Tensor):
        sp = [expression]
    elif isinstance(expression, TensMul):
        sp = expression.args
    else:
        raise ValueError('wrong type')

    # Collect all gamma matrices of the same dimension
    new_expr = S.One
    residual_expr = S.One
    for i in sp:
        if isinstance(i, Tensor) and i.component == component:
            new_expr *= i
        else:
            residual_expr *= i
    return new_expr, residual_expr


def simplify_gamma_expression(expression):
    extracted_expr, residual_expr = extract_type_tens(expression, GammaMatrix)
    res_expr = _simplify_single_line(extracted_expr)
    return res_expr * residual_expr


def simplify_gpgp(ex, sort=True):
    """
    simplify products ``G(i)*p(-i)*G(j)*p(-j) -> p(i)*p(-i)``

    Examples
    ========

    >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \
        LorentzIndex, simplify_gpgp
    >>> from sympy.tensor.tensor import tensor_indices, tensor_heads
    >>> p, q = tensor_heads('p, q', [LorentzIndex])
    >>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex)
    >>> ps = p(i0)*G(-i0)
    >>> qs = q(i0)*G(-i0)
    >>> simplify_gpgp(ps*qs*qs)
    GammaMatrix(-L_0)*p(L_0)*q(L_1)*q(-L_1)
    """
    def _simplify_gpgp(ex):
        components = ex.components
        a = []
        comp_map = []
        for i, comp in enumerate(components):
            comp_map.extend([i]*comp.rank)
        dum = [(i[0], i[1], comp_map[i[0]], comp_map[i[1]]) for i in ex.dum]
        for i in range(len(components)):
            if components[i] != GammaMatrix:
                continue
            for dx in dum:
                if dx[2] == i:
                    p_pos1 = dx[3]
                elif dx[3] == i:
                    p_pos1 = dx[2]
                else:
                    continue
                comp1 = components[p_pos1]
                if comp1.comm == 0 and comp1.rank == 1:
                    a.append((i, p_pos1))
        if not a:
            return ex
        elim = set()
        tv = []
        hit = True
        coeff = S.One
        ta = None
        while hit:
            hit = False
            for i, ai in enumerate(a[:-1]):
                if ai[0] in elim:
                    continue
                if ai[0] != a[i + 1][0] - 1:
                    continue
                if components[ai[1]] != components[a[i + 1][1]]:
                    continue
                elim.add(ai[0])
                elim.add(ai[1])
                elim.add(a[i + 1][0])
                elim.add(a[i + 1][1])
                if not ta:
                    ta = ex.split()
                    mu = TensorIndex('mu', LorentzIndex)
                hit = True
                if i == 0:
                    coeff = ex.coeff
                tx = components[ai[1]](mu)*components[ai[1]](-mu)
                if len(a) == 2:
                    tx *= 4  # eye(4)
                tv.append(tx)
                break

        if tv:
            a = [x for j, x in enumerate(ta) if j not in elim]
            a.extend(tv)
            t = tensor_mul(*a)*coeff
            # t = t.replace(lambda x: x.is_Matrix, lambda x: 1)
            return t
        else:
            return ex

    if sort:
        ex = ex.sorted_components()
    # this would be better off with pattern matching
    while 1:
        t = _simplify_gpgp(ex)
        if t != ex:
            ex = t
        else:
            return t


def gamma_trace(t):
    """
    trace of a single line of gamma matrices

    Examples
    ========

    >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \
        gamma_trace, LorentzIndex
    >>> from sympy.tensor.tensor import tensor_indices, tensor_heads
    >>> p, q = tensor_heads('p, q', [LorentzIndex])
    >>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex)
    >>> ps = p(i0)*G(-i0)
    >>> qs = q(i0)*G(-i0)
    >>> gamma_trace(G(i0)*G(i1))
    4*metric(i0, i1)
    >>> gamma_trace(ps*ps) - 4*p(i0)*p(-i0)
    0
    >>> gamma_trace(ps*qs + ps*ps) - 4*p(i0)*p(-i0) - 4*p(i0)*q(-i0)
    0

    """
    if isinstance(t, TensAdd):
        res = TensAdd(*[gamma_trace(x) for x in t.args])
        return res
    t = _simplify_single_line(t)
    res = _trace_single_line(t)
    return res


def _simplify_single_line(expression):
    """
    Simplify single-line product of gamma matrices.

    Examples
    ========

    >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \
        LorentzIndex, _simplify_single_line
    >>> from sympy.tensor.tensor import tensor_indices, TensorHead
    >>> p = TensorHead('p', [LorentzIndex])
    >>> i0,i1 = tensor_indices('i0:2', LorentzIndex)
    >>> _simplify_single_line(G(i0)*G(i1)*p(-i1)*G(-i0)) + 2*G(i0)*p(-i0)
    0

    """
    t1, t2 = extract_type_tens(expression, GammaMatrix)
    if t1 != 1:
        t1 = kahane_simplify(t1)
    res = t1*t2
    return res


def _trace_single_line(t):
    """
    Evaluate the trace of a single gamma matrix line inside a ``TensExpr``.

    Notes
    =====

    If there are ``DiracSpinorIndex.auto_left`` and ``DiracSpinorIndex.auto_right``
    indices trace over them; otherwise traces are not implied (explain)


    Examples
    ========

    >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \
        LorentzIndex, _trace_single_line
    >>> from sympy.tensor.tensor import tensor_indices, TensorHead
    >>> p = TensorHead('p', [LorentzIndex])
    >>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex)
    >>> _trace_single_line(G(i0)*G(i1))
    4*metric(i0, i1)
    >>> _trace_single_line(G(i0)*p(-i0)*G(i1)*p(-i1)) - 4*p(i0)*p(-i0)
    0

    """
    def _trace_single_line1(t):
        t = t.sorted_components()
        components = t.components
        ncomps = len(components)
        g = LorentzIndex.metric
        # gamma matirices are in a[i:j]
        hit = 0
        for i in range(ncomps):
            if components[i] == GammaMatrix:
                hit = 1
                break

        for j in range(i + hit, ncomps):
            if components[j] != GammaMatrix:
                break
        else:
            j = ncomps
        numG = j - i
        if numG == 0:
            tcoeff = t.coeff
            return t.nocoeff if tcoeff else t
        if numG % 2 == 1:
            return TensMul.from_data(S.Zero, [], [], [])
        elif numG > 4:
            # find the open matrix indices and connect them:
            a = t.split()
            ind1 = a[i].get_indices()[0]
            ind2 = a[i + 1].get_indices()[0]
            aa = a[:i] + a[i + 2:]
            t1 = tensor_mul(*aa)*g(ind1, ind2)
            t1 = t1.contract_metric(g)
            args = [t1]
            sign = 1
            for k in range(i + 2, j):
                sign = -sign
                ind2 = a[k].get_indices()[0]
                aa = a[:i] + a[i + 1:k] + a[k + 1:]
                t2 = sign*tensor_mul(*aa)*g(ind1, ind2)
                t2 = t2.contract_metric(g)
                t2 = simplify_gpgp(t2, False)
                args.append(t2)
            t3 = TensAdd(*args)
            t3 = _trace_single_line(t3)
            return t3
        else:
            a = t.split()
            t1 = _gamma_trace1(*a[i:j])
            a2 = a[:i] + a[j:]
            t2 = tensor_mul(*a2)
            t3 = t1*t2
            if not t3:
                return t3
            t3 = t3.contract_metric(g)
            return t3

    t = t.expand()
    if isinstance(t, TensAdd):
        a = [_trace_single_line1(x)*x.coeff for x in t.args]
        return TensAdd(*a)
    elif isinstance(t, (Tensor, TensMul)):
        r = t.coeff*_trace_single_line1(t)
        return r
    else:
        return trace(t)


def _gamma_trace1(*a):
    gctr = 4  # FIXME specific for d=4
    g = LorentzIndex.metric
    if not a:
        return gctr
    n = len(a)
    if n%2 == 1:
        #return TensMul.from_data(S.Zero, [], [], [])
        return S.Zero
    if n == 2:
        ind0 = a[0].get_indices()[0]
        ind1 = a[1].get_indices()[0]
        return gctr*g(ind0, ind1)
    if n == 4:
        ind0 = a[0].get_indices()[0]
        ind1 = a[1].get_indices()[0]
        ind2 = a[2].get_indices()[0]
        ind3 = a[3].get_indices()[0]

        return gctr*(g(ind0, ind1)*g(ind2, ind3) - \
           g(ind0, ind2)*g(ind1, ind3) + g(ind0, ind3)*g(ind1, ind2))


def kahane_simplify(expression):
    r"""
    This function cancels contracted elements in a product of four
    dimensional gamma matrices, resulting in an expression equal to the given
    one, without the contracted gamma matrices.

    Parameters
    ==========

    `expression`    the tensor expression containing the gamma matrices to simplify.

    Notes
    =====

    If spinor indices are given, the matrices must be given in
    the order given in the product.

    Algorithm
    =========

    The idea behind the algorithm is to use some well-known identities,
    i.e., for contractions enclosing an even number of `\gamma` matrices

    `\gamma^\mu \gamma_{a_1} \cdots \gamma_{a_{2N}} \gamma_\mu = 2 (\gamma_{a_{2N}} \gamma_{a_1} \cdots \gamma_{a_{2N-1}} + \gamma_{a_{2N-1}} \cdots \gamma_{a_1} \gamma_{a_{2N}} )`

    for an odd number of `\gamma` matrices

    `\gamma^\mu \gamma_{a_1} \cdots \gamma_{a_{2N+1}} \gamma_\mu = -2 \gamma_{a_{2N+1}} \gamma_{a_{2N}} \cdots \gamma_{a_{1}}`

    Instead of repeatedly applying these identities to cancel out all contracted indices,
    it is possible to recognize the links that would result from such an operation,
    the problem is thus reduced to a simple rearrangement of free gamma matrices.

    Examples
    ========

    When using, always remember that the original expression coefficient
    has to be handled separately

    >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex
    >>> from sympy.physics.hep.gamma_matrices import kahane_simplify
    >>> from sympy.tensor.tensor import tensor_indices
    >>> i0, i1, i2 = tensor_indices('i0:3', LorentzIndex)
    >>> ta = G(i0)*G(-i0)
    >>> kahane_simplify(ta)
    Matrix([
    [4, 0, 0, 0],
    [0, 4, 0, 0],
    [0, 0, 4, 0],
    [0, 0, 0, 4]])
    >>> tb = G(i0)*G(i1)*G(-i0)
    >>> kahane_simplify(tb)
    -2*GammaMatrix(i1)
    >>> t = G(i0)*G(-i0)
    >>> kahane_simplify(t)
    Matrix([
    [4, 0, 0, 0],
    [0, 4, 0, 0],
    [0, 0, 4, 0],
    [0, 0, 0, 4]])
    >>> t = G(i0)*G(-i0)
    >>> kahane_simplify(t)
    Matrix([
    [4, 0, 0, 0],
    [0, 4, 0, 0],
    [0, 0, 4, 0],
    [0, 0, 0, 4]])

    If there are no contractions, the same expression is returned

    >>> tc = G(i0)*G(i1)
    >>> kahane_simplify(tc)
    GammaMatrix(i0)*GammaMatrix(i1)

    References
    ==========

    [1] Algorithm for Reducing Contracted Products of gamma Matrices,
    Joseph Kahane, Journal of Mathematical Physics, Vol. 9, No. 10, October 1968.
    """

    if isinstance(expression, Mul):
        return expression
    if isinstance(expression, TensAdd):
        return TensAdd(*[kahane_simplify(arg) for arg in expression.args])

    if isinstance(expression, Tensor):
        return expression

    assert isinstance(expression, TensMul)

    gammas = expression.args

    for gamma in gammas:
        assert gamma.component == GammaMatrix

    free = expression.free
    # spinor_free = [_ for _ in expression.free_in_args if _[1] != 0]

    # if len(spinor_free) == 2:
    #     spinor_free.sort(key=lambda x: x[2])
    #     assert spinor_free[0][1] == 1 and spinor_free[-1][1] == 2
    #     assert spinor_free[0][2] == 0
    # elif spinor_free:
    #     raise ValueError('spinor indices do not match')

    dum = []
    for dum_pair in expression.dum:
        if expression.index_types[dum_pair[0]] == LorentzIndex:
            dum.append((dum_pair[0], dum_pair[1]))

    dum = sorted(dum)

    if len(dum) == 0:  # or GammaMatrixHead:
        # no contractions in `expression`, just return it.
        return expression

    # find the `first_dum_pos`, i.e. the position of the first contracted
    # gamma matrix, Kahane's algorithm as described in his paper requires the
    # gamma matrix expression to start with a contracted gamma matrix, this is
    # a workaround which ignores possible initial free indices, and re-adds
    # them later.

    first_dum_pos = min(map(min, dum))

    # for p1, p2, a1, a2 in expression.dum_in_args:
    #     if p1 != 0 or p2 != 0:
    #         # only Lorentz indices, skip Dirac indices:
    #         continue
    #     first_dum_pos = min(p1, p2)
    #     break

    total_number = len(free) + len(dum)*2
    number_of_contractions = len(dum)

    free_pos = [None]*total_number
    for i in free:
        free_pos[i[1]] = i[0]

    # `index_is_free` is a list of booleans, to identify index position
    # and whether that index is free or dummy.
    index_is_free = [False]*total_number

    for i, indx in enumerate(free):
        index_is_free[indx[1]] = True

    # `links` is a dictionary containing the graph described in Kahane's paper,
    # to every key correspond one or two values, representing the linked indices.
    # All values in `links` are integers, negative numbers are used in the case
    # where it is necessary to insert gamma matrices between free indices, in
    # order to make Kahane's algorithm work (see paper).
    links = {i: [] for i in range(first_dum_pos, total_number)}

    # `cum_sign` is a step variable to mark the sign of every index, see paper.
    cum_sign = -1
    # `cum_sign_list` keeps storage for all `cum_sign` (every index).
    cum_sign_list = [None]*total_number
    block_free_count = 0

    # multiply `resulting_coeff` by the coefficient parameter, the rest
    # of the algorithm ignores a scalar coefficient.
    resulting_coeff = S.One

    # initialize a list of lists of indices. The outer list will contain all
    # additive tensor expressions, while the inner list will contain the
    # free indices (rearranged according to the algorithm).
    resulting_indices = [[]]

    # start to count the `connected_components`, which together with the number
    # of contractions, determines a -1 or +1 factor to be multiplied.
    connected_components = 1

    # First loop: here we fill `cum_sign_list`, and draw the links
    # among consecutive indices (they are stored in `links`). Links among
    # non-consecutive indices will be drawn later.
    for i, is_free in enumerate(index_is_free):
        # if `expression` starts with free indices, they are ignored here;
        # they are later added as they are to the beginning of all
        # `resulting_indices` list of lists of indices.
        if i < first_dum_pos:
            continue

        if is_free:
            block_free_count += 1
            # if previous index was free as well, draw an arch in `links`.
            if block_free_count > 1:
                links[i - 1].append(i)
                links[i].append(i - 1)
        else:
            # Change the sign of the index (`cum_sign`) if the number of free
            # indices preceding it is even.
            cum_sign *= 1 if (block_free_count % 2) else -1
            if block_free_count == 0 and i != first_dum_pos:
                # check if there are two consecutive dummy indices:
                # in this case create virtual indices with negative position,
                # these "virtual" indices represent the insertion of two
                # gamma^0 matrices to separate consecutive dummy indices, as
                # Kahane's algorithm requires dummy indices to be separated by
                # free indices. The product of two gamma^0 matrices is unity,
                # so the new expression being examined is the same as the
                # original one.
                if cum_sign == -1:
                    links[-1-i] = [-1-i+1]
                    links[-1-i+1] = [-1-i]
            if (i - cum_sign) in links:
                if i != first_dum_pos:
                    links[i].append(i - cum_sign)
                if block_free_count != 0:
                    if i - cum_sign < len(index_is_free):
                        if index_is_free[i - cum_sign]:
                            links[i - cum_sign].append(i)
            block_free_count = 0

        cum_sign_list[i] = cum_sign

    # The previous loop has only created links between consecutive free indices,
    # it is necessary to properly create links among dummy (contracted) indices,
    # according to the rules described in Kahane's paper. There is only one exception
    # to Kahane's rules: the negative indices, which handle the case of some
    # consecutive free indices (Kahane's paper just describes dummy indices
    # separated by free indices, hinting that free indices can be added without
    # altering the expression result).
    for i in dum:
        # get the positions of the two contracted indices:
        pos1 = i[0]
        pos2 = i[1]

        # create Kahane's upper links, i.e. the upper arcs between dummy
        # (i.e. contracted) indices:
        links[pos1].append(pos2)
        links[pos2].append(pos1)

        # create Kahane's lower links, this corresponds to the arcs below
        # the line described in the paper:

        # first we move `pos1` and `pos2` according to the sign of the indices:
        linkpos1 = pos1 + cum_sign_list[pos1]
        linkpos2 = pos2 + cum_sign_list[pos2]

        # otherwise, perform some checks before creating the lower arcs:

        # make sure we are not exceeding the total number of indices:
        if linkpos1 >= total_number:
            continue
        if linkpos2 >= total_number:
            continue

        # make sure we are not below the first dummy index in `expression`:
        if linkpos1 < first_dum_pos:
            continue
        if linkpos2 < first_dum_pos:
            continue

        # check if the previous loop created "virtual" indices between dummy
        # indices, in such a case relink `linkpos1` and `linkpos2`:
        if (-1-linkpos1) in links:
            linkpos1 = -1-linkpos1
        if (-1-linkpos2) in links:
            linkpos2 = -1-linkpos2

        # move only if not next to free index:
        if linkpos1 >= 0 and not index_is_free[linkpos1]:
            linkpos1 = pos1

        if linkpos2 >=0 and not index_is_free[linkpos2]:
            linkpos2 = pos2

        # create the lower arcs:
        if linkpos2 not in links[linkpos1]:
            links[linkpos1].append(linkpos2)
        if linkpos1 not in links[linkpos2]:
            links[linkpos2].append(linkpos1)

    # This loop starts from the `first_dum_pos` index (first dummy index)
    # walks through the graph deleting the visited indices from `links`,
    # it adds a gamma matrix for every free index in encounters, while it
    # completely ignores dummy indices and virtual indices.
    pointer = first_dum_pos
    previous_pointer = 0
    while True:
        if pointer in links:
            next_ones = links.pop(pointer)
        else:
            break

        if previous_pointer in next_ones:
            next_ones.remove(previous_pointer)

        previous_pointer = pointer

        if next_ones:
            pointer = next_ones[0]
        else:
            break

        if pointer == previous_pointer:
            break
        if pointer >=0 and free_pos[pointer] is not None:
            for ri in resulting_indices:
                ri.append(free_pos[pointer])

    # The following loop removes the remaining connected components in `links`.
    # If there are free indices inside a connected component, it gives a
    # contribution to the resulting expression given by the factor
    # `gamma_a gamma_b ... gamma_z + gamma_z ... gamma_b gamma_a`, in Kahanes's
    # paper represented as  {gamma_a, gamma_b, ... , gamma_z},
    # virtual indices are ignored. The variable `connected_components` is
    # increased by one for every connected component this loop encounters.

    # If the connected component has virtual and dummy indices only
    # (no free indices), it contributes to `resulting_indices` by a factor of two.
    # The multiplication by two is a result of the
    # factor {gamma^0, gamma^0} = 2 I, as it appears in Kahane's paper.
    # Note: curly brackets are meant as in the paper, as a generalized
    # multi-element anticommutator!

    while links:
        connected_components += 1
        pointer = min(links.keys())
        previous_pointer = pointer
        # the inner loop erases the visited indices from `links`, and it adds
        # all free indices to `prepend_indices` list, virtual indices are
        # ignored.
        prepend_indices = []
        while True:
            if pointer in links:
                next_ones = links.pop(pointer)
            else:
                break

            if previous_pointer in next_ones:
                if len(next_ones) > 1:
                    next_ones.remove(previous_pointer)

            previous_pointer = pointer

            if next_ones:
                pointer = next_ones[0]

            if pointer >= first_dum_pos and free_pos[pointer] is not None:
                prepend_indices.insert(0, free_pos[pointer])
        # if `prepend_indices` is void, it means there are no free indices
        # in the loop (and it can be shown that there must be a virtual index),
        # loops of virtual indices only contribute by a factor of two:
        if len(prepend_indices) == 0:
            resulting_coeff *= 2
        # otherwise, add the free indices in `prepend_indices` to
        # the `resulting_indices`:
        else:
            expr1 = prepend_indices
            expr2 = list(reversed(prepend_indices))
            resulting_indices = [expri + ri for ri in resulting_indices for expri in (expr1, expr2)]

    # sign correction, as described in Kahane's paper:
    resulting_coeff *= -1 if (number_of_contractions - connected_components + 1) % 2 else 1
    # power of two factor, as described in Kahane's paper:
    resulting_coeff *= 2**(number_of_contractions)

    # If `first_dum_pos` is not zero, it means that there are trailing free gamma
    # matrices in front of `expression`, so multiply by them:
    resulting_indices = [ free_pos[0:first_dum_pos] + ri for ri in resulting_indices ]

    resulting_expr = S.Zero
    for i in resulting_indices:
        temp_expr = S.One
        for j in i:
            temp_expr *= GammaMatrix(j)
        resulting_expr += temp_expr

    t = resulting_coeff * resulting_expr
    t1 = None
    if isinstance(t, TensAdd):
        t1 = t.args[0]
    elif isinstance(t, TensMul):
        t1 = t
    if t1:
        pass
    else:
        t = eye(4)*t
    return t