File size: 32,847 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
from sympy.core.numbers import I, pi
from sympy.functions.elementary.exponential import (exp, log)
from sympy.polys.partfrac import apart
from sympy.core.symbol import Dummy
from sympy.external import import_module
from sympy.functions import arg, Abs
from sympy.integrals.laplace import _fast_inverse_laplace
from sympy.physics.control.lti import SISOLinearTimeInvariant
from sympy.plotting.series import LineOver1DRangeSeries
from sympy.polys.polytools import Poly
from sympy.printing.latex import latex

__all__ = ['pole_zero_numerical_data', 'pole_zero_plot',
    'step_response_numerical_data', 'step_response_plot',
    'impulse_response_numerical_data', 'impulse_response_plot',
    'ramp_response_numerical_data', 'ramp_response_plot',
    'bode_magnitude_numerical_data', 'bode_phase_numerical_data',
    'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot']

matplotlib = import_module(
        'matplotlib', import_kwargs={'fromlist': ['pyplot']},
        catch=(RuntimeError,))

numpy = import_module('numpy')

if matplotlib:
    plt = matplotlib.pyplot

if numpy:
    np = numpy  # Matplotlib already has numpy as a compulsory dependency. No need to install it separately.


def _check_system(system):
    """Function to check whether the dynamical system passed for plots is
    compatible or not."""
    if not isinstance(system, SISOLinearTimeInvariant):
        raise NotImplementedError("Only SISO LTI systems are currently supported.")
    sys = system.to_expr()
    len_free_symbols = len(sys.free_symbols)
    if len_free_symbols > 1:
        raise ValueError("Extra degree of freedom found. Make sure"
            " that there are no free symbols in the dynamical system other"
            " than the variable of Laplace transform.")
    if sys.has(exp):
        # Should test that exp is not part of a constant, in which case
        # no exception is required, compare exp(s) with s*exp(1)
        raise NotImplementedError("Time delay terms are not supported.")


def pole_zero_numerical_data(system):
    """
    Returns the numerical data of poles and zeros of the system.
    It is internally used by ``pole_zero_plot`` to get the data
    for plotting poles and zeros. Users can use this data to further
    analyse the dynamics of the system or plot using a different
    backend/plotting-module.

    Parameters
    ==========

    system : SISOLinearTimeInvariant
        The system for which the pole-zero data is to be computed.

    Returns
    =======

    tuple : (zeros, poles)
        zeros = Zeros of the system. NumPy array of complex numbers.
        poles = Poles of the system. NumPy array of complex numbers.

    Raises
    ======

    NotImplementedError
        When a SISO LTI system is not passed.

        When time delay terms are present in the system.

    ValueError
        When more than one free symbol is present in the system.
        The only variable in the transfer function should be
        the variable of the Laplace transform.

    Examples
    ========

    >>> from sympy.abc import s
    >>> from sympy.physics.control.lti import TransferFunction
    >>> from sympy.physics.control.control_plots import pole_zero_numerical_data
    >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
    >>> pole_zero_numerical_data(tf1)   # doctest: +SKIP
    ([-0.+1.j  0.-1.j], [-2. +0.j        -0.5+0.8660254j -0.5-0.8660254j -1. +0.j       ])

    See Also
    ========

    pole_zero_plot

    """
    _check_system(system)
    system = system.doit()  # Get the equivalent TransferFunction object.

    num_poly = Poly(system.num, system.var).all_coeffs()
    den_poly = Poly(system.den, system.var).all_coeffs()

    num_poly = np.array(num_poly, dtype=np.complex128)
    den_poly = np.array(den_poly, dtype=np.complex128)

    zeros = np.roots(num_poly)
    poles = np.roots(den_poly)

    return zeros, poles


def pole_zero_plot(system, pole_color='blue', pole_markersize=10,
    zero_color='orange', zero_markersize=7, grid=True, show_axes=True,
    show=True, **kwargs):
    r"""
    Returns the Pole-Zero plot (also known as PZ Plot or PZ Map) of a system.

    A Pole-Zero plot is a graphical representation of a system's poles and
    zeros. It is plotted on a complex plane, with circular markers representing
    the system's zeros and 'x' shaped markers representing the system's poles.

    Parameters
    ==========

    system : SISOLinearTimeInvariant type systems
        The system for which the pole-zero plot is to be computed.
    pole_color : str, tuple, optional
        The color of the pole points on the plot. Default color
        is blue. The color can be provided as a matplotlib color string,
        or a 3-tuple of floats each in the 0-1 range.
    pole_markersize : Number, optional
        The size of the markers used to mark the poles in the plot.
        Default pole markersize is 10.
    zero_color : str, tuple, optional
        The color of the zero points on the plot. Default color
        is orange. The color can be provided as a matplotlib color string,
        or a 3-tuple of floats each in the 0-1 range.
    zero_markersize : Number, optional
        The size of the markers used to mark the zeros in the plot.
        Default zero markersize is 7.
    grid : boolean, optional
        If ``True``, the plot will have a grid. Defaults to True.
    show_axes : boolean, optional
        If ``True``, the coordinate axes will be shown. Defaults to False.
    show : boolean, optional
        If ``True``, the plot will be displayed otherwise
        the equivalent matplotlib ``plot`` object will be returned.
        Defaults to True.

    Examples
    ========

    .. plot::
        :context: close-figs
        :format: doctest
        :include-source: True

        >>> from sympy.abc import s
        >>> from sympy.physics.control.lti import TransferFunction
        >>> from sympy.physics.control.control_plots import pole_zero_plot
        >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
        >>> pole_zero_plot(tf1)   # doctest: +SKIP

    See Also
    ========

    pole_zero_numerical_data

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Pole%E2%80%93zero_plot

    """
    zeros, poles = pole_zero_numerical_data(system)

    zero_real = np.real(zeros)
    zero_imag = np.imag(zeros)

    pole_real = np.real(poles)
    pole_imag = np.imag(poles)

    plt.plot(pole_real, pole_imag, 'x', mfc='none',
        markersize=pole_markersize, color=pole_color)
    plt.plot(zero_real, zero_imag, 'o', markersize=zero_markersize,
        color=zero_color)
    plt.xlabel('Real Axis')
    plt.ylabel('Imaginary Axis')
    plt.title(f'Poles and Zeros of ${latex(system)}$', pad=20)

    if grid:
        plt.grid()
    if show_axes:
        plt.axhline(0, color='black')
        plt.axvline(0, color='black')
    if show:
        plt.show()
        return

    return plt


def step_response_numerical_data(system, prec=8, lower_limit=0,
    upper_limit=10, **kwargs):
    """
    Returns the numerical values of the points in the step response plot
    of a SISO continuous-time system. By default, adaptive sampling
    is used. If the user wants to instead get an uniformly
    sampled response, then ``adaptive`` kwarg should be passed ``False``
    and ``n`` must be passed as additional kwargs.
    Refer to the parameters of class :class:`sympy.plotting.series.LineOver1DRangeSeries`
    for more details.

    Parameters
    ==========

    system : SISOLinearTimeInvariant
        The system for which the unit step response data is to be computed.
    prec : int, optional
        The decimal point precision for the point coordinate values.
        Defaults to 8.
    lower_limit : Number, optional
        The lower limit of the plot range. Defaults to 0.
    upper_limit : Number, optional
        The upper limit of the plot range. Defaults to 10.
    kwargs :
        Additional keyword arguments are passed to the underlying
        :class:`sympy.plotting.series.LineOver1DRangeSeries` class.

    Returns
    =======

    tuple : (x, y)
        x = Time-axis values of the points in the step response. NumPy array.
        y = Amplitude-axis values of the points in the step response. NumPy array.

    Raises
    ======

    NotImplementedError
        When a SISO LTI system is not passed.

        When time delay terms are present in the system.

    ValueError
        When more than one free symbol is present in the system.
        The only variable in the transfer function should be
        the variable of the Laplace transform.

        When ``lower_limit`` parameter is less than 0.

    Examples
    ========

    >>> from sympy.abc import s
    >>> from sympy.physics.control.lti import TransferFunction
    >>> from sympy.physics.control.control_plots import step_response_numerical_data
    >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
    >>> step_response_numerical_data(tf1)   # doctest: +SKIP
    ([0.0, 0.025413462339411542, 0.0484508722725343, ... , 9.670250533855183, 9.844291913708725, 10.0],
    [0.0, 0.023844582399907256, 0.042894276802320226, ..., 6.828770759094287e-12, 6.456457160755703e-12])

    See Also
    ========

    step_response_plot

    """
    if lower_limit < 0:
        raise ValueError("Lower limit of time must be greater "
            "than or equal to zero.")
    _check_system(system)
    _x = Dummy("x")
    expr = system.to_expr()/(system.var)
    expr = apart(expr, system.var, full=True)
    _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
    return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
        **kwargs).get_points()


def step_response_plot(system, color='b', prec=8, lower_limit=0,
    upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
    r"""
    Returns the unit step response of a continuous-time system. It is
    the response of the system when the input signal is a step function.

    Parameters
    ==========

    system : SISOLinearTimeInvariant type
        The LTI SISO system for which the Step Response is to be computed.
    color : str, tuple, optional
        The color of the line. Default is Blue.
    show : boolean, optional
        If ``True``, the plot will be displayed otherwise
        the equivalent matplotlib ``plot`` object will be returned.
        Defaults to True.
    lower_limit : Number, optional
        The lower limit of the plot range. Defaults to 0.
    upper_limit : Number, optional
        The upper limit of the plot range. Defaults to 10.
    prec : int, optional
        The decimal point precision for the point coordinate values.
        Defaults to 8.
    show_axes : boolean, optional
        If ``True``, the coordinate axes will be shown. Defaults to False.
    grid : boolean, optional
        If ``True``, the plot will have a grid. Defaults to True.

    Examples
    ========

    .. plot::
        :context: close-figs
        :format: doctest
        :include-source: True

        >>> from sympy.abc import s
        >>> from sympy.physics.control.lti import TransferFunction
        >>> from sympy.physics.control.control_plots import step_response_plot
        >>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
        >>> step_response_plot(tf1)   # doctest: +SKIP

    See Also
    ========

    impulse_response_plot, ramp_response_plot

    References
    ==========

    .. [1] https://www.mathworks.com/help/control/ref/lti.step.html

    """
    x, y = step_response_numerical_data(system, prec=prec,
        lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
    plt.plot(x, y, color=color)
    plt.xlabel('Time (s)')
    plt.ylabel('Amplitude')
    plt.title(f'Unit Step Response of ${latex(system)}$', pad=20)

    if grid:
        plt.grid()
    if show_axes:
        plt.axhline(0, color='black')
        plt.axvline(0, color='black')
    if show:
        plt.show()
        return

    return plt


def impulse_response_numerical_data(system, prec=8, lower_limit=0,
    upper_limit=10, **kwargs):
    """
    Returns the numerical values of the points in the impulse response plot
    of a SISO continuous-time system. By default, adaptive sampling
    is used. If the user wants to instead get an uniformly
    sampled response, then ``adaptive`` kwarg should be passed ``False``
    and ``n`` must be passed as additional kwargs.
    Refer to the parameters of class :class:`sympy.plotting.series.LineOver1DRangeSeries`
    for more details.

    Parameters
    ==========

    system : SISOLinearTimeInvariant
        The system for which the impulse response data is to be computed.
    prec : int, optional
        The decimal point precision for the point coordinate values.
        Defaults to 8.
    lower_limit : Number, optional
        The lower limit of the plot range. Defaults to 0.
    upper_limit : Number, optional
        The upper limit of the plot range. Defaults to 10.
    kwargs :
        Additional keyword arguments are passed to the underlying
        :class:`sympy.plotting.series.LineOver1DRangeSeries` class.

    Returns
    =======

    tuple : (x, y)
        x = Time-axis values of the points in the impulse response. NumPy array.
        y = Amplitude-axis values of the points in the impulse response. NumPy array.

    Raises
    ======

    NotImplementedError
        When a SISO LTI system is not passed.

        When time delay terms are present in the system.

    ValueError
        When more than one free symbol is present in the system.
        The only variable in the transfer function should be
        the variable of the Laplace transform.

        When ``lower_limit`` parameter is less than 0.

    Examples
    ========

    >>> from sympy.abc import s
    >>> from sympy.physics.control.lti import TransferFunction
    >>> from sympy.physics.control.control_plots import impulse_response_numerical_data
    >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
    >>> impulse_response_numerical_data(tf1)   # doctest: +SKIP
    ([0.0, 0.06616480200395854,... , 9.854500743565858, 10.0],
    [0.9999999799999999, 0.7042848373025861,...,7.170748906965121e-13, -5.1901263495547205e-12])

    See Also
    ========

    impulse_response_plot

    """
    if lower_limit < 0:
        raise ValueError("Lower limit of time must be greater "
            "than or equal to zero.")
    _check_system(system)
    _x = Dummy("x")
    expr = system.to_expr()
    expr = apart(expr, system.var, full=True)
    _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
    return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
        **kwargs).get_points()


def impulse_response_plot(system, color='b', prec=8, lower_limit=0,
    upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
    r"""
    Returns the unit impulse response (Input is the Dirac-Delta Function) of a
    continuous-time system.

    Parameters
    ==========

    system : SISOLinearTimeInvariant type
        The LTI SISO system for which the Impulse Response is to be computed.
    color : str, tuple, optional
        The color of the line. Default is Blue.
    show : boolean, optional
        If ``True``, the plot will be displayed otherwise
        the equivalent matplotlib ``plot`` object will be returned.
        Defaults to True.
    lower_limit : Number, optional
        The lower limit of the plot range. Defaults to 0.
    upper_limit : Number, optional
        The upper limit of the plot range. Defaults to 10.
    prec : int, optional
        The decimal point precision for the point coordinate values.
        Defaults to 8.
    show_axes : boolean, optional
        If ``True``, the coordinate axes will be shown. Defaults to False.
    grid : boolean, optional
        If ``True``, the plot will have a grid. Defaults to True.

    Examples
    ========

    .. plot::
        :context: close-figs
        :format: doctest
        :include-source: True

        >>> from sympy.abc import s
        >>> from sympy.physics.control.lti import TransferFunction
        >>> from sympy.physics.control.control_plots import impulse_response_plot
        >>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s)
        >>> impulse_response_plot(tf1)   # doctest: +SKIP

    See Also
    ========

    step_response_plot, ramp_response_plot

    References
    ==========

    .. [1] https://www.mathworks.com/help/control/ref/dynamicsystem.impulse.html

    """
    x, y = impulse_response_numerical_data(system, prec=prec,
        lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
    plt.plot(x, y, color=color)
    plt.xlabel('Time (s)')
    plt.ylabel('Amplitude')
    plt.title(f'Impulse Response of ${latex(system)}$', pad=20)

    if grid:
        plt.grid()
    if show_axes:
        plt.axhline(0, color='black')
        plt.axvline(0, color='black')
    if show:
        plt.show()
        return

    return plt


def ramp_response_numerical_data(system, slope=1, prec=8,
    lower_limit=0, upper_limit=10, **kwargs):
    """
    Returns the numerical values of the points in the ramp response plot
    of a SISO continuous-time system. By default, adaptive sampling
    is used. If the user wants to instead get an uniformly
    sampled response, then ``adaptive`` kwarg should be passed ``False``
    and ``n`` must be passed as additional kwargs.
    Refer to the parameters of class :class:`sympy.plotting.series.LineOver1DRangeSeries`
    for more details.

    Parameters
    ==========

    system : SISOLinearTimeInvariant
        The system for which the ramp response data is to be computed.
    slope : Number, optional
        The slope of the input ramp function. Defaults to 1.
    prec : int, optional
        The decimal point precision for the point coordinate values.
        Defaults to 8.
    lower_limit : Number, optional
        The lower limit of the plot range. Defaults to 0.
    upper_limit : Number, optional
        The upper limit of the plot range. Defaults to 10.
    kwargs :
        Additional keyword arguments are passed to the underlying
        :class:`sympy.plotting.series.LineOver1DRangeSeries` class.

    Returns
    =======

    tuple : (x, y)
        x = Time-axis values of the points in the ramp response plot. NumPy array.
        y = Amplitude-axis values of the points in the ramp response plot. NumPy array.

    Raises
    ======

    NotImplementedError
        When a SISO LTI system is not passed.

        When time delay terms are present in the system.

    ValueError
        When more than one free symbol is present in the system.
        The only variable in the transfer function should be
        the variable of the Laplace transform.

        When ``lower_limit`` parameter is less than 0.

        When ``slope`` is negative.

    Examples
    ========

    >>> from sympy.abc import s
    >>> from sympy.physics.control.lti import TransferFunction
    >>> from sympy.physics.control.control_plots import ramp_response_numerical_data
    >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s)
    >>> ramp_response_numerical_data(tf1)   # doctest: +SKIP
    (([0.0, 0.12166980856813935,..., 9.861246379582118, 10.0],
    [1.4504508011325967e-09, 0.006046440489058766,..., 0.12499999999568202, 0.12499999999661349]))

    See Also
    ========

    ramp_response_plot

    """
    if slope < 0:
        raise ValueError("Slope must be greater than or equal"
            " to zero.")
    if lower_limit < 0:
        raise ValueError("Lower limit of time must be greater "
            "than or equal to zero.")
    _check_system(system)
    _x = Dummy("x")
    expr = (slope*system.to_expr())/((system.var)**2)
    expr = apart(expr, system.var, full=True)
    _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec)
    return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit),
        **kwargs).get_points()


def ramp_response_plot(system, slope=1, color='b', prec=8, lower_limit=0,
    upper_limit=10, show_axes=False, grid=True, show=True, **kwargs):
    r"""
    Returns the ramp response of a continuous-time system.

    Ramp function is defined as the straight line
    passing through origin ($f(x) = mx$). The slope of
    the ramp function can be varied by the user and
    the default value is 1.

    Parameters
    ==========

    system : SISOLinearTimeInvariant type
        The LTI SISO system for which the Ramp Response is to be computed.
    slope : Number, optional
        The slope of the input ramp function. Defaults to 1.
    color : str, tuple, optional
        The color of the line. Default is Blue.
    show : boolean, optional
        If ``True``, the plot will be displayed otherwise
        the equivalent matplotlib ``plot`` object will be returned.
        Defaults to True.
    lower_limit : Number, optional
        The lower limit of the plot range. Defaults to 0.
    upper_limit : Number, optional
        The upper limit of the plot range. Defaults to 10.
    prec : int, optional
        The decimal point precision for the point coordinate values.
        Defaults to 8.
    show_axes : boolean, optional
        If ``True``, the coordinate axes will be shown. Defaults to False.
    grid : boolean, optional
        If ``True``, the plot will have a grid. Defaults to True.

    Examples
    ========

    .. plot::
        :context: close-figs
        :format: doctest
        :include-source: True

        >>> from sympy.abc import s
        >>> from sympy.physics.control.lti import TransferFunction
        >>> from sympy.physics.control.control_plots import ramp_response_plot
        >>> tf1 = TransferFunction(s, (s+4)*(s+8), s)
        >>> ramp_response_plot(tf1, upper_limit=2)   # doctest: +SKIP

    See Also
    ========

    step_response_plot, impulse_response_plot

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Ramp_function

    """
    x, y = ramp_response_numerical_data(system, slope=slope, prec=prec,
        lower_limit=lower_limit, upper_limit=upper_limit, **kwargs)
    plt.plot(x, y, color=color)
    plt.xlabel('Time (s)')
    plt.ylabel('Amplitude')
    plt.title(f'Ramp Response of ${latex(system)}$ [Slope = {slope}]', pad=20)

    if grid:
        plt.grid()
    if show_axes:
        plt.axhline(0, color='black')
        plt.axvline(0, color='black')
    if show:
        plt.show()
        return

    return plt


def bode_magnitude_numerical_data(system, initial_exp=-5, final_exp=5, freq_unit='rad/sec', **kwargs):
    """
    Returns the numerical data of the Bode magnitude plot of the system.
    It is internally used by ``bode_magnitude_plot`` to get the data
    for plotting Bode magnitude plot. Users can use this data to further
    analyse the dynamics of the system or plot using a different
    backend/plotting-module.

    Parameters
    ==========

    system : SISOLinearTimeInvariant
        The system for which the data is to be computed.
    initial_exp : Number, optional
        The initial exponent of 10 of the semilog plot. Defaults to -5.
    final_exp : Number, optional
        The final exponent of 10 of the semilog plot. Defaults to 5.
    freq_unit : string, optional
        User can choose between ``'rad/sec'`` (radians/second) and ``'Hz'`` (Hertz) as frequency units.

    Returns
    =======

    tuple : (x, y)
        x = x-axis values of the Bode magnitude plot.
        y = y-axis values of the Bode magnitude plot.

    Raises
    ======

    NotImplementedError
        When a SISO LTI system is not passed.

        When time delay terms are present in the system.

    ValueError
        When more than one free symbol is present in the system.
        The only variable in the transfer function should be
        the variable of the Laplace transform.

        When incorrect frequency units are given as input.

    Examples
    ========

    >>> from sympy.abc import s
    >>> from sympy.physics.control.lti import TransferFunction
    >>> from sympy.physics.control.control_plots import bode_magnitude_numerical_data
    >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
    >>> bode_magnitude_numerical_data(tf1)   # doctest: +SKIP
    ([1e-05, 1.5148378120533502e-05,..., 68437.36188804005, 100000.0],
    [-6.020599914256786, -6.0205999155219505,..., -193.4117304087953, -200.00000000260573])

    See Also
    ========

    bode_magnitude_plot, bode_phase_numerical_data

    """
    _check_system(system)
    expr = system.to_expr()
    freq_units = ('rad/sec', 'Hz')
    if freq_unit not in freq_units:
        raise ValueError('Only "rad/sec" and "Hz" are accepted frequency units.')

    _w = Dummy("w", real=True)
    if freq_unit == 'Hz':
        repl = I*_w*2*pi
    else:
        repl = I*_w
    w_expr = expr.subs({system.var: repl})

    mag = 20*log(Abs(w_expr), 10)

    x, y = LineOver1DRangeSeries(mag,
        (_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points()

    return x, y


def bode_magnitude_plot(system, initial_exp=-5, final_exp=5,
    color='b', show_axes=False, grid=True, show=True, freq_unit='rad/sec', **kwargs):
    r"""
    Returns the Bode magnitude plot of a continuous-time system.

    See ``bode_plot`` for all the parameters.
    """
    x, y = bode_magnitude_numerical_data(system, initial_exp=initial_exp,
        final_exp=final_exp, freq_unit=freq_unit)
    plt.plot(x, y, color=color, **kwargs)
    plt.xscale('log')


    plt.xlabel('Frequency (%s) [Log Scale]' % freq_unit)
    plt.ylabel('Magnitude (dB)')
    plt.title(f'Bode Plot (Magnitude) of ${latex(system)}$', pad=20)

    if grid:
        plt.grid(True)
    if show_axes:
        plt.axhline(0, color='black')
        plt.axvline(0, color='black')
    if show:
        plt.show()
        return

    return plt


def bode_phase_numerical_data(system, initial_exp=-5, final_exp=5, freq_unit='rad/sec', phase_unit='rad', phase_unwrap = True, **kwargs):
    """
    Returns the numerical data of the Bode phase plot of the system.
    It is internally used by ``bode_phase_plot`` to get the data
    for plotting Bode phase plot. Users can use this data to further
    analyse the dynamics of the system or plot using a different
    backend/plotting-module.

    Parameters
    ==========

    system : SISOLinearTimeInvariant
        The system for which the Bode phase plot data is to be computed.
    initial_exp : Number, optional
        The initial exponent of 10 of the semilog plot. Defaults to -5.
    final_exp : Number, optional
        The final exponent of 10 of the semilog plot. Defaults to 5.
    freq_unit : string, optional
        User can choose between ``'rad/sec'`` (radians/second) and '``'Hz'`` (Hertz) as frequency units.
    phase_unit : string, optional
        User can choose between ``'rad'`` (radians) and ``'deg'`` (degree) as phase units.
    phase_unwrap : bool, optional
        Set to ``True`` by default.

    Returns
    =======

    tuple : (x, y)
        x = x-axis values of the Bode phase plot.
        y = y-axis values of the Bode phase plot.

    Raises
    ======

    NotImplementedError
        When a SISO LTI system is not passed.

        When time delay terms are present in the system.

    ValueError
        When more than one free symbol is present in the system.
        The only variable in the transfer function should be
        the variable of the Laplace transform.

        When incorrect frequency or phase units are given as input.

    Examples
    ========

    >>> from sympy.abc import s
    >>> from sympy.physics.control.lti import TransferFunction
    >>> from sympy.physics.control.control_plots import bode_phase_numerical_data
    >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s)
    >>> bode_phase_numerical_data(tf1)   # doctest: +SKIP
    ([1e-05, 1.4472354033813751e-05, 2.035581932165858e-05,..., 47577.3248186011, 67884.09326036123, 100000.0],
    [-2.5000000000291665e-05, -3.6180885085e-05, -5.08895483066e-05,...,-3.1415085799262523, -3.14155265358979])

    See Also
    ========

    bode_magnitude_plot, bode_phase_numerical_data

    """
    _check_system(system)
    expr = system.to_expr()
    freq_units = ('rad/sec', 'Hz')
    phase_units = ('rad', 'deg')
    if freq_unit not in freq_units:
        raise ValueError('Only "rad/sec" and "Hz" are accepted frequency units.')
    if phase_unit not in phase_units:
        raise ValueError('Only "rad" and "deg" are accepted phase units.')

    _w = Dummy("w", real=True)
    if freq_unit == 'Hz':
        repl = I*_w*2*pi
    else:
        repl = I*_w
    w_expr = expr.subs({system.var: repl})

    if phase_unit == 'deg':
        phase = arg(w_expr)*180/pi
    else:
        phase = arg(w_expr)

    x, y = LineOver1DRangeSeries(phase,
        (_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points()

    half = None
    if phase_unwrap:
        if(phase_unit == 'rad'):
            half = pi
        elif(phase_unit == 'deg'):
            half = 180
    if half:
        unit = 2*half
        for i in range(1, len(y)):
            diff = y[i] - y[i - 1]
            if diff > half:      # Jump from -half to half
                y[i] = (y[i] - unit)
            elif diff < -half:   # Jump from half to -half
                y[i] = (y[i] + unit)

    return x, y


def bode_phase_plot(system, initial_exp=-5, final_exp=5,
    color='b', show_axes=False, grid=True, show=True, freq_unit='rad/sec', phase_unit='rad', phase_unwrap=True, **kwargs):
    r"""
    Returns the Bode phase plot of a continuous-time system.

    See ``bode_plot`` for all the parameters.
    """
    x, y = bode_phase_numerical_data(system, initial_exp=initial_exp,
        final_exp=final_exp, freq_unit=freq_unit, phase_unit=phase_unit, phase_unwrap=phase_unwrap)
    plt.plot(x, y, color=color, **kwargs)
    plt.xscale('log')

    plt.xlabel('Frequency (%s) [Log Scale]' % freq_unit)
    plt.ylabel('Phase (%s)' % phase_unit)
    plt.title(f'Bode Plot (Phase) of ${latex(system)}$', pad=20)

    if grid:
        plt.grid(True)
    if show_axes:
        plt.axhline(0, color='black')
        plt.axvline(0, color='black')
    if show:
        plt.show()
        return

    return plt


def bode_plot(system, initial_exp=-5, final_exp=5,
    grid=True, show_axes=False, show=True, freq_unit='rad/sec', phase_unit='rad', phase_unwrap=True, **kwargs):
    r"""
    Returns the Bode phase and magnitude plots of a continuous-time system.

    Parameters
    ==========

    system : SISOLinearTimeInvariant type
        The LTI SISO system for which the Bode Plot is to be computed.
    initial_exp : Number, optional
        The initial exponent of 10 of the semilog plot. Defaults to -5.
    final_exp : Number, optional
        The final exponent of 10 of the semilog plot. Defaults to 5.
    show : boolean, optional
        If ``True``, the plot will be displayed otherwise
        the equivalent matplotlib ``plot`` object will be returned.
        Defaults to True.
    prec : int, optional
        The decimal point precision for the point coordinate values.
        Defaults to 8.
    grid : boolean, optional
        If ``True``, the plot will have a grid. Defaults to True.
    show_axes : boolean, optional
        If ``True``, the coordinate axes will be shown. Defaults to False.
    freq_unit : string, optional
        User can choose between ``'rad/sec'`` (radians/second) and ``'Hz'`` (Hertz) as frequency units.
    phase_unit : string, optional
        User can choose between ``'rad'`` (radians) and ``'deg'`` (degree) as phase units.

    Examples
    ========

    .. plot::
        :context: close-figs
        :format: doctest
        :include-source: True

        >>> from sympy.abc import s
        >>> from sympy.physics.control.lti import TransferFunction
        >>> from sympy.physics.control.control_plots import bode_plot
        >>> tf1 = TransferFunction(1*s**2 + 0.1*s + 7.5, 1*s**4 + 0.12*s**3 + 9*s**2, s)
        >>> bode_plot(tf1, initial_exp=0.2, final_exp=0.7)   # doctest: +SKIP

    See Also
    ========

    bode_magnitude_plot, bode_phase_plot

    """
    plt.subplot(211)
    mag = bode_magnitude_plot(system, initial_exp=initial_exp, final_exp=final_exp,
        show=False, grid=grid, show_axes=show_axes,
        freq_unit=freq_unit, **kwargs)
    mag.title(f'Bode Plot of ${latex(system)}$', pad=20)
    mag.xlabel(None)
    plt.subplot(212)
    bode_phase_plot(system, initial_exp=initial_exp, final_exp=final_exp,
        show=False, grid=grid, show_axes=show_axes, freq_unit=freq_unit, phase_unit=phase_unit, phase_unwrap=phase_unwrap, **kwargs).title(None)

    if show:
        plt.show()
        return

    return plt