File size: 58,275 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
"""Implementations of musculotendon models.

Musculotendon models are a critical component of biomechanical models, one that
differentiates them from pure multibody systems. Musculotendon models produce a
force dependent on their level of activation, their length, and their
extension velocity. Length- and extension velocity-dependent force production
are governed by force-length and force-velocity characteristics.
These are normalized functions that are dependent on the musculotendon's state
and are specific to a given musculotendon model.

"""

from abc import abstractmethod
from enum import IntEnum, unique

from sympy.core.numbers import Float, Integer
from sympy.core.symbol import Symbol, symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.matrices.dense import MutableDenseMatrix as Matrix, diag, eye, zeros
from sympy.physics.biomechanics.activation import ActivationBase
from sympy.physics.biomechanics.curve import (
    CharacteristicCurveCollection,
    FiberForceLengthActiveDeGroote2016,
    FiberForceLengthPassiveDeGroote2016,
    FiberForceLengthPassiveInverseDeGroote2016,
    FiberForceVelocityDeGroote2016,
    FiberForceVelocityInverseDeGroote2016,
    TendonForceLengthDeGroote2016,
    TendonForceLengthInverseDeGroote2016,
)
from sympy.physics.biomechanics._mixin import _NamedMixin
from sympy.physics.mechanics.actuator import ForceActuator
from sympy.physics.vector.functions import dynamicsymbols


__all__ = [
    'MusculotendonBase',
    'MusculotendonDeGroote2016',
    'MusculotendonFormulation',
]


@unique
class MusculotendonFormulation(IntEnum):
    """Enumeration of types of musculotendon dynamics formulations.

    Explanation
    ===========

    An (integer) enumeration is used as it allows for clearer selection of the
    different formulations of musculotendon dynamics.

    Members
    =======

    RIGID_TENDON : 0
        A rigid tendon model.
    FIBER_LENGTH_EXPLICIT : 1
        An explicit elastic tendon model with the muscle fiber length (l_M) as
        the state variable.
    TENDON_FORCE_EXPLICIT : 2
        An explicit elastic tendon model with the tendon force (F_T) as the
        state variable.
    FIBER_LENGTH_IMPLICIT : 3
        An implicit elastic tendon model with the muscle fiber length (l_M) as
        the state variable and the muscle fiber velocity as an additional input
        variable.
    TENDON_FORCE_IMPLICIT : 4
        An implicit elastic tendon model with the tendon force (F_T) as the
        state variable as the muscle fiber velocity as an additional input
        variable.

    """

    RIGID_TENDON = 0
    FIBER_LENGTH_EXPLICIT = 1
    TENDON_FORCE_EXPLICIT = 2
    FIBER_LENGTH_IMPLICIT = 3
    TENDON_FORCE_IMPLICIT = 4

    def __str__(self):
        """Returns a string representation of the enumeration value.

        Notes
        =====

        This hard coding is required due to an incompatibility between the
        ``IntEnum`` implementations in Python 3.10 and Python 3.11
        (https://github.com/python/cpython/issues/84247). From Python 3.11
        onwards, the ``__str__`` method uses ``int.__str__``, whereas prior it
        used ``Enum.__str__``. Once Python 3.11 becomes the minimum version
        supported by SymPy, this method override can be removed.

        """
        return str(self.value)


_DEFAULT_MUSCULOTENDON_FORMULATION = MusculotendonFormulation.RIGID_TENDON


class MusculotendonBase(ForceActuator, _NamedMixin):
    r"""Abstract base class for all musculotendon classes to inherit from.

    Explanation
    ===========

    A musculotendon generates a contractile force based on its activation,
    length, and shortening velocity. This abstract base class is to be inherited
    by all musculotendon subclasses that implement different characteristic
    musculotendon curves. Characteristic musculotendon curves are required for
    the tendon force-length, passive fiber force-length, active fiber force-
    length, and fiber force-velocity relationships.

    Parameters
    ==========

    name : str
        The name identifier associated with the musculotendon. This name is used
        as a suffix when automatically generated symbols are instantiated. It
        must be a string of nonzero length.
    pathway : PathwayBase
        The pathway that the actuator follows. This must be an instance of a
        concrete subclass of ``PathwayBase``, e.g. ``LinearPathway``.
    activation_dynamics : ActivationBase
        The activation dynamics that will be modeled within the musculotendon.
        This must be an instance of a concrete subclass of ``ActivationBase``,
        e.g. ``FirstOrderActivationDeGroote2016``.
    musculotendon_dynamics : MusculotendonFormulation | int
        The formulation of musculotendon dynamics that should be used
        internally, i.e. rigid or elastic tendon model, the choice of
        musculotendon state etc. This must be a member of the integer
        enumeration ``MusculotendonFormulation`` or an integer that can be cast
        to a member. To use a rigid tendon formulation, set this to
        ``MusculotendonFormulation.RIGID_TENDON`` (or the integer value ``0``,
        which will be cast to the enumeration member). There are four possible
        formulations for an elastic tendon model. To use an explicit formulation
        with the fiber length as the state, set this to
        ``MusculotendonFormulation.FIBER_LENGTH_EXPLICIT`` (or the integer value
        ``1``). To use an explicit formulation with the tendon force as the
        state, set this to ``MusculotendonFormulation.TENDON_FORCE_EXPLICIT``
        (or the integer value ``2``). To use an implicit formulation with the
        fiber length as the state, set this to
        ``MusculotendonFormulation.FIBER_LENGTH_IMPLICIT`` (or the integer value
        ``3``). To use an implicit formulation with the tendon force as the
        state, set this to ``MusculotendonFormulation.TENDON_FORCE_IMPLICIT``
        (or the integer value ``4``). The default is
        ``MusculotendonFormulation.RIGID_TENDON``, which corresponds to a rigid
        tendon formulation.
    tendon_slack_length : Expr | None
        The length of the tendon when the musculotendon is in its unloaded
        state. In a rigid tendon model the tendon length is the tendon slack
        length. In all musculotendon models, tendon slack length is used to
        normalize tendon length to give
        :math:`\tilde{l}^T = \frac{l^T}{l^T_{slack}}`.
    peak_isometric_force : Expr | None
        The maximum force that the muscle fiber can produce when it is
        undergoing an isometric contraction (no lengthening velocity). In all
        musculotendon models, peak isometric force is used to normalized tendon
        and muscle fiber force to give
        :math:`\tilde{F}^T = \frac{F^T}{F^M_{max}}`.
    optimal_fiber_length : Expr | None
        The muscle fiber length at which the muscle fibers produce no passive
        force and their maximum active force. In all musculotendon models,
        optimal fiber length is used to normalize muscle fiber length to give
        :math:`\tilde{l}^M = \frac{l^M}{l^M_{opt}}`.
    maximal_fiber_velocity : Expr | None
        The fiber velocity at which, during muscle fiber shortening, the muscle
        fibers are unable to produce any active force. In all musculotendon
        models, maximal fiber velocity is used to normalize muscle fiber
        extension velocity to give :math:`\tilde{v}^M = \frac{v^M}{v^M_{max}}`.
    optimal_pennation_angle : Expr | None
        The pennation angle when muscle fiber length equals the optimal fiber
        length.
    fiber_damping_coefficient : Expr | None
        The coefficient of damping to be used in the damping element in the
        muscle fiber model.
    with_defaults : bool
        Whether ``with_defaults`` alternate constructors should be used when
        automatically constructing child classes. Default is ``False``.

    """

    def __init__(
        self,
        name,
        pathway,
        activation_dynamics,
        *,
        musculotendon_dynamics=_DEFAULT_MUSCULOTENDON_FORMULATION,
        tendon_slack_length=None,
        peak_isometric_force=None,
        optimal_fiber_length=None,
        maximal_fiber_velocity=None,
        optimal_pennation_angle=None,
        fiber_damping_coefficient=None,
        with_defaults=False,
    ):
        self.name = name

        # Supply a placeholder force to the super initializer, this will be
        # replaced later
        super().__init__(Symbol('F'), pathway)

        # Activation dynamics
        if not isinstance(activation_dynamics, ActivationBase):
            msg = (
                f'Can\'t set attribute `activation_dynamics` to '
                f'{activation_dynamics} as it must be of type '
                f'`ActivationBase`, not {type(activation_dynamics)}.'
            )
            raise TypeError(msg)
        self._activation_dynamics = activation_dynamics
        self._child_objects = (self._activation_dynamics, )

        # Constants
        if tendon_slack_length is not None:
            self._l_T_slack = tendon_slack_length
        else:
            self._l_T_slack = Symbol(f'l_T_slack_{self.name}')
        if peak_isometric_force is not None:
            self._F_M_max = peak_isometric_force
        else:
            self._F_M_max = Symbol(f'F_M_max_{self.name}')
        if optimal_fiber_length is not None:
            self._l_M_opt = optimal_fiber_length
        else:
            self._l_M_opt = Symbol(f'l_M_opt_{self.name}')
        if maximal_fiber_velocity is not None:
            self._v_M_max = maximal_fiber_velocity
        else:
            self._v_M_max = Symbol(f'v_M_max_{self.name}')
        if optimal_pennation_angle is not None:
            self._alpha_opt = optimal_pennation_angle
        else:
            self._alpha_opt = Symbol(f'alpha_opt_{self.name}')
        if fiber_damping_coefficient is not None:
            self._beta = fiber_damping_coefficient
        else:
            self._beta = Symbol(f'beta_{self.name}')

        # Musculotendon dynamics
        self._with_defaults = with_defaults
        if musculotendon_dynamics == MusculotendonFormulation.RIGID_TENDON:
            self._rigid_tendon_musculotendon_dynamics()
        elif musculotendon_dynamics == MusculotendonFormulation.FIBER_LENGTH_EXPLICIT:
            self._fiber_length_explicit_musculotendon_dynamics()
        elif musculotendon_dynamics == MusculotendonFormulation.TENDON_FORCE_EXPLICIT:
            self._tendon_force_explicit_musculotendon_dynamics()
        elif musculotendon_dynamics == MusculotendonFormulation.FIBER_LENGTH_IMPLICIT:
            self._fiber_length_implicit_musculotendon_dynamics()
        elif musculotendon_dynamics == MusculotendonFormulation.TENDON_FORCE_IMPLICIT:
            self._tendon_force_implicit_musculotendon_dynamics()
        else:
            msg = (
                f'Musculotendon dynamics {repr(musculotendon_dynamics)} '
                f'passed to `musculotendon_dynamics` was of type '
                f'{type(musculotendon_dynamics)}, must be '
                f'{MusculotendonFormulation}.'
            )
            raise TypeError(msg)
        self._musculotendon_dynamics = musculotendon_dynamics

        # Must override the placeholder value in `self._force` now that the
        # actual force has been calculated by
        # `self._<MUSCULOTENDON FORMULATION>_musculotendon_dynamics`.
        # Note that `self._force` assumes forces are expansile, musculotendon
        # forces are contractile hence the minus sign preceeding `self._F_T`
        # (the tendon force).
        self._force = -self._F_T

    @classmethod
    def with_defaults(
        cls,
        name,
        pathway,
        activation_dynamics,
        *,
        musculotendon_dynamics=_DEFAULT_MUSCULOTENDON_FORMULATION,
        tendon_slack_length=None,
        peak_isometric_force=None,
        optimal_fiber_length=None,
        maximal_fiber_velocity=Float('10.0'),
        optimal_pennation_angle=Float('0.0'),
        fiber_damping_coefficient=Float('0.1'),
    ):
        r"""Recommended constructor that will use the published constants.

        Explanation
        ===========

        Returns a new instance of the musculotendon class using recommended
        values for ``v_M_max``, ``alpha_opt``, and ``beta``. The values are:

            :math:`v^M_{max} = 10`
            :math:`\alpha_{opt} = 0`
            :math:`\beta = \frac{1}{10}`

        The musculotendon curves are also instantiated using the constants from
        the original publication.

        Parameters
        ==========

        name : str
            The name identifier associated with the musculotendon. This name is
            used as a suffix when automatically generated symbols are
            instantiated. It must be a string of nonzero length.
        pathway : PathwayBase
            The pathway that the actuator follows. This must be an instance of a
            concrete subclass of ``PathwayBase``, e.g. ``LinearPathway``.
        activation_dynamics : ActivationBase
            The activation dynamics that will be modeled within the
            musculotendon. This must be an instance of a concrete subclass of
            ``ActivationBase``, e.g. ``FirstOrderActivationDeGroote2016``.
        musculotendon_dynamics : MusculotendonFormulation | int
            The formulation of musculotendon dynamics that should be used
            internally, i.e. rigid or elastic tendon model, the choice of
            musculotendon state etc. This must be a member of the integer
            enumeration ``MusculotendonFormulation`` or an integer that can be
            cast to a member. To use a rigid tendon formulation, set this to
            ``MusculotendonFormulation.RIGID_TENDON`` (or the integer value
            ``0``, which will be cast to the enumeration member). There are four
            possible formulations for an elastic tendon model. To use an
            explicit formulation with the fiber length as the state, set this to
            ``MusculotendonFormulation.FIBER_LENGTH_EXPLICIT`` (or the integer
            value ``1``). To use an explicit formulation with the tendon force
            as the state, set this to
            ``MusculotendonFormulation.TENDON_FORCE_EXPLICIT`` (or the integer
            value ``2``). To use an implicit formulation with the fiber length
            as the state, set this to
            ``MusculotendonFormulation.FIBER_LENGTH_IMPLICIT`` (or the integer
            value ``3``). To use an implicit formulation with the tendon force
            as the state, set this to
            ``MusculotendonFormulation.TENDON_FORCE_IMPLICIT`` (or the integer
            value ``4``). The default is
            ``MusculotendonFormulation.RIGID_TENDON``, which corresponds to a
            rigid tendon formulation.
        tendon_slack_length : Expr | None
            The length of the tendon when the musculotendon is in its unloaded
            state. In a rigid tendon model the tendon length is the tendon slack
            length. In all musculotendon models, tendon slack length is used to
            normalize tendon length to give
            :math:`\tilde{l}^T = \frac{l^T}{l^T_{slack}}`.
        peak_isometric_force : Expr | None
            The maximum force that the muscle fiber can produce when it is
            undergoing an isometric contraction (no lengthening velocity). In
            all musculotendon models, peak isometric force is used to normalized
            tendon and muscle fiber force to give
            :math:`\tilde{F}^T = \frac{F^T}{F^M_{max}}`.
        optimal_fiber_length : Expr | None
            The muscle fiber length at which the muscle fibers produce no
            passive force and their maximum active force. In all musculotendon
            models, optimal fiber length is used to normalize muscle fiber
            length to give :math:`\tilde{l}^M = \frac{l^M}{l^M_{opt}}`.
        maximal_fiber_velocity : Expr | None
            The fiber velocity at which, during muscle fiber shortening, the
            muscle fibers are unable to produce any active force. In all
            musculotendon models, maximal fiber velocity is used to normalize
            muscle fiber extension velocity to give
            :math:`\tilde{v}^M = \frac{v^M}{v^M_{max}}`.
        optimal_pennation_angle : Expr | None
            The pennation angle when muscle fiber length equals the optimal
            fiber length.
        fiber_damping_coefficient : Expr | None
            The coefficient of damping to be used in the damping element in the
            muscle fiber model.

        """
        return cls(
            name,
            pathway,
            activation_dynamics=activation_dynamics,
            musculotendon_dynamics=musculotendon_dynamics,
            tendon_slack_length=tendon_slack_length,
            peak_isometric_force=peak_isometric_force,
            optimal_fiber_length=optimal_fiber_length,
            maximal_fiber_velocity=maximal_fiber_velocity,
            optimal_pennation_angle=optimal_pennation_angle,
            fiber_damping_coefficient=fiber_damping_coefficient,
            with_defaults=True,
        )

    @abstractmethod
    def curves(cls):
        """Return a ``CharacteristicCurveCollection`` of the curves related to
        the specific model."""
        pass

    @property
    def tendon_slack_length(self):
        r"""Symbol or value corresponding to the tendon slack length constant.

        Explanation
        ===========

        The length of the tendon when the musculotendon is in its unloaded
        state. In a rigid tendon model the tendon length is the tendon slack
        length. In all musculotendon models, tendon slack length is used to
        normalize tendon length to give
        :math:`\tilde{l}^T = \frac{l^T}{l^T_{slack}}`.

        The alias ``l_T_slack`` can also be used to access the same attribute.

        """
        return self._l_T_slack

    @property
    def l_T_slack(self):
        r"""Symbol or value corresponding to the tendon slack length constant.

        Explanation
        ===========

        The length of the tendon when the musculotendon is in its unloaded
        state. In a rigid tendon model the tendon length is the tendon slack
        length. In all musculotendon models, tendon slack length is used to
        normalize tendon length to give
        :math:`\tilde{l}^T = \frac{l^T}{l^T_{slack}}`.

        The alias ``tendon_slack_length`` can also be used to access the same
        attribute.

        """
        return self._l_T_slack

    @property
    def peak_isometric_force(self):
        r"""Symbol or value corresponding to the peak isometric force constant.

        Explanation
        ===========

        The maximum force that the muscle fiber can produce when it is
        undergoing an isometric contraction (no lengthening velocity). In all
        musculotendon models, peak isometric force is used to normalized tendon
        and muscle fiber force to give
        :math:`\tilde{F}^T = \frac{F^T}{F^M_{max}}`.

        The alias ``F_M_max`` can also be used to access the same attribute.

        """
        return self._F_M_max

    @property
    def F_M_max(self):
        r"""Symbol or value corresponding to the peak isometric force constant.

        Explanation
        ===========

        The maximum force that the muscle fiber can produce when it is
        undergoing an isometric contraction (no lengthening velocity). In all
        musculotendon models, peak isometric force is used to normalized tendon
        and muscle fiber force to give
        :math:`\tilde{F}^T = \frac{F^T}{F^M_{max}}`.

        The alias ``peak_isometric_force`` can also be used to access the same
        attribute.

        """
        return self._F_M_max

    @property
    def optimal_fiber_length(self):
        r"""Symbol or value corresponding to the optimal fiber length constant.

        Explanation
        ===========

        The muscle fiber length at which the muscle fibers produce no passive
        force and their maximum active force. In all musculotendon models,
        optimal fiber length is used to normalize muscle fiber length to give
        :math:`\tilde{l}^M = \frac{l^M}{l^M_{opt}}`.

        The alias ``l_M_opt`` can also be used to access the same attribute.

        """
        return self._l_M_opt

    @property
    def l_M_opt(self):
        r"""Symbol or value corresponding to the optimal fiber length constant.

        Explanation
        ===========

        The muscle fiber length at which the muscle fibers produce no passive
        force and their maximum active force. In all musculotendon models,
        optimal fiber length is used to normalize muscle fiber length to give
        :math:`\tilde{l}^M = \frac{l^M}{l^M_{opt}}`.

        The alias ``optimal_fiber_length`` can also be used to access the same
        attribute.

        """
        return self._l_M_opt

    @property
    def maximal_fiber_velocity(self):
        r"""Symbol or value corresponding to the maximal fiber velocity constant.

        Explanation
        ===========

        The fiber velocity at which, during muscle fiber shortening, the muscle
        fibers are unable to produce any active force. In all musculotendon
        models, maximal fiber velocity is used to normalize muscle fiber
        extension velocity to give :math:`\tilde{v}^M = \frac{v^M}{v^M_{max}}`.

        The alias ``v_M_max`` can also be used to access the same attribute.

        """
        return self._v_M_max

    @property
    def v_M_max(self):
        r"""Symbol or value corresponding to the maximal fiber velocity constant.

        Explanation
        ===========

        The fiber velocity at which, during muscle fiber shortening, the muscle
        fibers are unable to produce any active force. In all musculotendon
        models, maximal fiber velocity is used to normalize muscle fiber
        extension velocity to give :math:`\tilde{v}^M = \frac{v^M}{v^M_{max}}`.

        The alias ``maximal_fiber_velocity`` can also be used to access the same
        attribute.

        """
        return self._v_M_max

    @property
    def optimal_pennation_angle(self):
        """Symbol or value corresponding to the optimal pennation angle
        constant.

        Explanation
        ===========

        The pennation angle when muscle fiber length equals the optimal fiber
        length.

        The alias ``alpha_opt`` can also be used to access the same attribute.

        """
        return self._alpha_opt

    @property
    def alpha_opt(self):
        """Symbol or value corresponding to the optimal pennation angle
        constant.

        Explanation
        ===========

        The pennation angle when muscle fiber length equals the optimal fiber
        length.

        The alias ``optimal_pennation_angle`` can also be used to access the
        same attribute.

        """
        return self._alpha_opt

    @property
    def fiber_damping_coefficient(self):
        """Symbol or value corresponding to the fiber damping coefficient
        constant.

        Explanation
        ===========

        The coefficient of damping to be used in the damping element in the
        muscle fiber model.

        The alias ``beta`` can also be used to access the same attribute.

        """
        return self._beta

    @property
    def beta(self):
        """Symbol or value corresponding to the fiber damping coefficient
        constant.

        Explanation
        ===========

        The coefficient of damping to be used in the damping element in the
        muscle fiber model.

        The alias ``fiber_damping_coefficient`` can also be used to access the
        same attribute.

        """
        return self._beta

    @property
    def activation_dynamics(self):
        """Activation dynamics model governing this musculotendon's activation.

        Explanation
        ===========

        Returns the instance of a subclass of ``ActivationBase`` that governs
        the relationship between excitation and activation that is used to
        represent the activation dynamics of this musculotendon.

        """
        return self._activation_dynamics

    @property
    def excitation(self):
        """Dynamic symbol representing excitation.

        Explanation
        ===========

        The alias ``e`` can also be used to access the same attribute.

        """
        return self._activation_dynamics._e

    @property
    def e(self):
        """Dynamic symbol representing excitation.

        Explanation
        ===========

        The alias ``excitation`` can also be used to access the same attribute.

        """
        return self._activation_dynamics._e

    @property
    def activation(self):
        """Dynamic symbol representing activation.

        Explanation
        ===========

        The alias ``a`` can also be used to access the same attribute.

        """
        return self._activation_dynamics._a

    @property
    def a(self):
        """Dynamic symbol representing activation.

        Explanation
        ===========

        The alias ``activation`` can also be used to access the same attribute.

        """
        return self._activation_dynamics._a

    @property
    def musculotendon_dynamics(self):
        """The choice of rigid or type of elastic tendon musculotendon dynamics.

        Explanation
        ===========

        The formulation of musculotendon dynamics that should be used
        internally, i.e. rigid or elastic tendon model, the choice of
        musculotendon state etc. This must be a member of the integer
        enumeration ``MusculotendonFormulation`` or an integer that can be cast
        to a member. To use a rigid tendon formulation, set this to
        ``MusculotendonFormulation.RIGID_TENDON`` (or the integer value ``0``,
        which will be cast to the enumeration member). There are four possible
        formulations for an elastic tendon model. To use an explicit formulation
        with the fiber length as the state, set this to
        ``MusculotendonFormulation.FIBER_LENGTH_EXPLICIT`` (or the integer value
        ``1``). To use an explicit formulation with the tendon force as the
        state, set this to ``MusculotendonFormulation.TENDON_FORCE_EXPLICIT``
        (or the integer value ``2``). To use an implicit formulation with the
        fiber length as the state, set this to
        ``MusculotendonFormulation.FIBER_LENGTH_IMPLICIT`` (or the integer value
        ``3``). To use an implicit formulation with the tendon force as the
        state, set this to ``MusculotendonFormulation.TENDON_FORCE_IMPLICIT``
        (or the integer value ``4``). The default is
        ``MusculotendonFormulation.RIGID_TENDON``, which corresponds to a rigid
        tendon formulation.

        """
        return self._musculotendon_dynamics

    def _rigid_tendon_musculotendon_dynamics(self):
        """Rigid tendon musculotendon."""
        self._l_MT = self.pathway.length
        self._v_MT = self.pathway.extension_velocity
        self._l_T = self._l_T_slack
        self._l_T_tilde = Integer(1)
        self._l_M = sqrt((self._l_MT - self._l_T)**2 + (self._l_M_opt*sin(self._alpha_opt))**2)
        self._l_M_tilde = self._l_M/self._l_M_opt
        self._v_M = self._v_MT*(self._l_MT - self._l_T_slack)/self._l_M
        self._v_M_tilde = self._v_M/self._v_M_max
        if self._with_defaults:
            self._fl_T = self.curves.tendon_force_length.with_defaults(self._l_T_tilde)
            self._fl_M_pas = self.curves.fiber_force_length_passive.with_defaults(self._l_M_tilde)
            self._fl_M_act = self.curves.fiber_force_length_active.with_defaults(self._l_M_tilde)
            self._fv_M = self.curves.fiber_force_velocity.with_defaults(self._v_M_tilde)
        else:
            fl_T_constants = symbols(f'c_0:4_fl_T_{self.name}')
            self._fl_T = self.curves.tendon_force_length(self._l_T_tilde, *fl_T_constants)
            fl_M_pas_constants = symbols(f'c_0:2_fl_M_pas_{self.name}')
            self._fl_M_pas = self.curves.fiber_force_length_passive(self._l_M_tilde, *fl_M_pas_constants)
            fl_M_act_constants = symbols(f'c_0:12_fl_M_act_{self.name}')
            self._fl_M_act = self.curves.fiber_force_length_active(self._l_M_tilde, *fl_M_act_constants)
            fv_M_constants = symbols(f'c_0:4_fv_M_{self.name}')
            self._fv_M = self.curves.fiber_force_velocity(self._v_M_tilde, *fv_M_constants)
        self._F_M_tilde = self.a*self._fl_M_act*self._fv_M + self._fl_M_pas + self._beta*self._v_M_tilde
        self._F_T_tilde = self._F_M_tilde
        self._F_M = self._F_M_tilde*self._F_M_max
        self._cos_alpha = cos(self._alpha_opt)
        self._F_T = self._F_M*self._cos_alpha

        # Containers
        self._state_vars = zeros(0, 1)
        self._input_vars = zeros(0, 1)
        self._state_eqns = zeros(0, 1)
        self._curve_constants = Matrix(
            fl_T_constants
            + fl_M_pas_constants
            + fl_M_act_constants
            + fv_M_constants
        ) if not self._with_defaults else zeros(0, 1)

    def _fiber_length_explicit_musculotendon_dynamics(self):
        """Elastic tendon musculotendon using `l_M_tilde` as a state."""
        self._l_M_tilde = dynamicsymbols(f'l_M_tilde_{self.name}')
        self._l_MT = self.pathway.length
        self._v_MT = self.pathway.extension_velocity
        self._l_M = self._l_M_tilde*self._l_M_opt
        self._l_T = self._l_MT - sqrt(self._l_M**2 - (self._l_M_opt*sin(self._alpha_opt))**2)
        self._l_T_tilde = self._l_T/self._l_T_slack
        self._cos_alpha = (self._l_MT - self._l_T)/self._l_M
        if self._with_defaults:
            self._fl_T = self.curves.tendon_force_length.with_defaults(self._l_T_tilde)
            self._fl_M_pas = self.curves.fiber_force_length_passive.with_defaults(self._l_M_tilde)
            self._fl_M_act = self.curves.fiber_force_length_active.with_defaults(self._l_M_tilde)
        else:
            fl_T_constants = symbols(f'c_0:4_fl_T_{self.name}')
            self._fl_T = self.curves.tendon_force_length(self._l_T_tilde, *fl_T_constants)
            fl_M_pas_constants = symbols(f'c_0:2_fl_M_pas_{self.name}')
            self._fl_M_pas = self.curves.fiber_force_length_passive(self._l_M_tilde, *fl_M_pas_constants)
            fl_M_act_constants = symbols(f'c_0:12_fl_M_act_{self.name}')
            self._fl_M_act = self.curves.fiber_force_length_active(self._l_M_tilde, *fl_M_act_constants)
        self._F_T_tilde = self._fl_T
        self._F_T = self._F_T_tilde*self._F_M_max
        self._F_M = self._F_T/self._cos_alpha
        self._F_M_tilde = self._F_M/self._F_M_max
        self._fv_M = (self._F_M_tilde - self._fl_M_pas)/(self.a*self._fl_M_act)
        if self._with_defaults:
            self._v_M_tilde = self.curves.fiber_force_velocity_inverse.with_defaults(self._fv_M)
        else:
            fv_M_constants = symbols(f'c_0:4_fv_M_{self.name}')
            self._v_M_tilde = self.curves.fiber_force_velocity_inverse(self._fv_M, *fv_M_constants)
        self._dl_M_tilde_dt = (self._v_M_max/self._l_M_opt)*self._v_M_tilde

        self._state_vars = Matrix([self._l_M_tilde])
        self._input_vars = zeros(0, 1)
        self._state_eqns = Matrix([self._dl_M_tilde_dt])
        self._curve_constants = Matrix(
            fl_T_constants
            + fl_M_pas_constants
            + fl_M_act_constants
            + fv_M_constants
        ) if not self._with_defaults else zeros(0, 1)

    def _tendon_force_explicit_musculotendon_dynamics(self):
        """Elastic tendon musculotendon using `F_T_tilde` as a state."""
        self._F_T_tilde = dynamicsymbols(f'F_T_tilde_{self.name}')
        self._l_MT = self.pathway.length
        self._v_MT = self.pathway.extension_velocity
        self._fl_T = self._F_T_tilde
        if self._with_defaults:
            self._fl_T_inv = self.curves.tendon_force_length_inverse.with_defaults(self._fl_T)
        else:
            fl_T_constants = symbols(f'c_0:4_fl_T_{self.name}')
            self._fl_T_inv = self.curves.tendon_force_length_inverse(self._fl_T, *fl_T_constants)
        self._l_T_tilde = self._fl_T_inv
        self._l_T = self._l_T_tilde*self._l_T_slack
        self._l_M = sqrt((self._l_MT - self._l_T)**2 + (self._l_M_opt*sin(self._alpha_opt))**2)
        self._l_M_tilde = self._l_M/self._l_M_opt
        if self._with_defaults:
            self._fl_M_pas = self.curves.fiber_force_length_passive.with_defaults(self._l_M_tilde)
            self._fl_M_act = self.curves.fiber_force_length_active.with_defaults(self._l_M_tilde)
        else:
            fl_M_pas_constants = symbols(f'c_0:2_fl_M_pas_{self.name}')
            self._fl_M_pas = self.curves.fiber_force_length_passive(self._l_M_tilde, *fl_M_pas_constants)
            fl_M_act_constants = symbols(f'c_0:12_fl_M_act_{self.name}')
            self._fl_M_act = self.curves.fiber_force_length_active(self._l_M_tilde, *fl_M_act_constants)
        self._cos_alpha = (self._l_MT - self._l_T)/self._l_M
        self._F_T = self._F_T_tilde*self._F_M_max
        self._F_M = self._F_T/self._cos_alpha
        self._F_M_tilde = self._F_M/self._F_M_max
        self._fv_M = (self._F_M_tilde - self._fl_M_pas)/(self.a*self._fl_M_act)
        if self._with_defaults:
            self._fv_M_inv = self.curves.fiber_force_velocity_inverse.with_defaults(self._fv_M)
        else:
            fv_M_constants = symbols(f'c_0:4_fv_M_{self.name}')
            self._fv_M_inv = self.curves.fiber_force_velocity_inverse(self._fv_M, *fv_M_constants)
        self._v_M_tilde = self._fv_M_inv
        self._v_M = self._v_M_tilde*self._v_M_max
        self._v_T = self._v_MT - (self._v_M/self._cos_alpha)
        self._v_T_tilde = self._v_T/self._l_T_slack
        if self._with_defaults:
            self._fl_T = self.curves.tendon_force_length.with_defaults(self._l_T_tilde)
        else:
            self._fl_T = self.curves.tendon_force_length(self._l_T_tilde, *fl_T_constants)
        self._dF_T_tilde_dt = self._fl_T.diff(dynamicsymbols._t).subs({self._l_T_tilde.diff(dynamicsymbols._t): self._v_T_tilde})

        self._state_vars = Matrix([self._F_T_tilde])
        self._input_vars = zeros(0, 1)
        self._state_eqns = Matrix([self._dF_T_tilde_dt])
        self._curve_constants = Matrix(
            fl_T_constants
            + fl_M_pas_constants
            + fl_M_act_constants
            + fv_M_constants
        ) if not self._with_defaults else zeros(0, 1)

    def _fiber_length_implicit_musculotendon_dynamics(self):
        raise NotImplementedError

    def _tendon_force_implicit_musculotendon_dynamics(self):
        raise NotImplementedError

    @property
    def state_vars(self):
        """Ordered column matrix of functions of time that represent the state
        variables.

        Explanation
        ===========

        The alias ``x`` can also be used to access the same attribute.

        """
        state_vars = [self._state_vars]
        for child in self._child_objects:
            state_vars.append(child.state_vars)
        return Matrix.vstack(*state_vars)

    @property
    def x(self):
        """Ordered column matrix of functions of time that represent the state
        variables.

        Explanation
        ===========

        The alias ``state_vars`` can also be used to access the same attribute.

        """
        state_vars = [self._state_vars]
        for child in self._child_objects:
            state_vars.append(child.state_vars)
        return Matrix.vstack(*state_vars)

    @property
    def input_vars(self):
        """Ordered column matrix of functions of time that represent the input
        variables.

        Explanation
        ===========

        The alias ``r`` can also be used to access the same attribute.

        """
        input_vars = [self._input_vars]
        for child in self._child_objects:
            input_vars.append(child.input_vars)
        return Matrix.vstack(*input_vars)

    @property
    def r(self):
        """Ordered column matrix of functions of time that represent the input
        variables.

        Explanation
        ===========

        The alias ``input_vars`` can also be used to access the same attribute.

        """
        input_vars = [self._input_vars]
        for child in self._child_objects:
            input_vars.append(child.input_vars)
        return Matrix.vstack(*input_vars)

    @property
    def constants(self):
        """Ordered column matrix of non-time varying symbols present in ``M``
        and ``F``.

        Explanation
        ===========

        Only symbolic constants are returned. If a numeric type (e.g. ``Float``)
        has been used instead of ``Symbol`` for a constant then that attribute
        will not be included in the matrix returned by this property. This is
        because the primary use of this property attribute is to provide an
        ordered sequence of the still-free symbols that require numeric values
        during code generation.

        The alias ``p`` can also be used to access the same attribute.

        """
        musculotendon_constants = [
            self._l_T_slack,
            self._F_M_max,
            self._l_M_opt,
            self._v_M_max,
            self._alpha_opt,
            self._beta,
        ]
        musculotendon_constants = [
            c for c in musculotendon_constants if not c.is_number
        ]
        constants = [
            Matrix(musculotendon_constants)
            if musculotendon_constants
            else zeros(0, 1)
        ]
        for child in self._child_objects:
            constants.append(child.constants)
        constants.append(self._curve_constants)
        return Matrix.vstack(*constants)

    @property
    def p(self):
        """Ordered column matrix of non-time varying symbols present in ``M``
        and ``F``.

        Explanation
        ===========

        Only symbolic constants are returned. If a numeric type (e.g. ``Float``)
        has been used instead of ``Symbol`` for a constant then that attribute
        will not be included in the matrix returned by this property. This is
        because the primary use of this property attribute is to provide an
        ordered sequence of the still-free symbols that require numeric values
        during code generation.

        The alias ``constants`` can also be used to access the same attribute.

        """
        musculotendon_constants = [
            self._l_T_slack,
            self._F_M_max,
            self._l_M_opt,
            self._v_M_max,
            self._alpha_opt,
            self._beta,
        ]
        musculotendon_constants = [
            c for c in musculotendon_constants if not c.is_number
        ]
        constants = [
            Matrix(musculotendon_constants)
            if musculotendon_constants
            else zeros(0, 1)
        ]
        for child in self._child_objects:
            constants.append(child.constants)
        constants.append(self._curve_constants)
        return Matrix.vstack(*constants)

    @property
    def M(self):
        """Ordered square matrix of coefficients on the LHS of ``M x' = F``.

        Explanation
        ===========

        The square matrix that forms part of the LHS of the linear system of
        ordinary differential equations governing the activation dynamics:

        ``M(x, r, t, p) x' = F(x, r, t, p)``.

        As zeroth-order activation dynamics have no state variables, this
        linear system has dimension 0 and therefore ``M`` is an empty square
        ``Matrix`` with shape (0, 0).

        """
        M = [eye(len(self._state_vars))]
        for child in self._child_objects:
            M.append(child.M)
        return diag(*M)

    @property
    def F(self):
        """Ordered column matrix of equations on the RHS of ``M x' = F``.

        Explanation
        ===========

        The column matrix that forms the RHS of the linear system of ordinary
        differential equations governing the activation dynamics:

        ``M(x, r, t, p) x' = F(x, r, t, p)``.

        As zeroth-order activation dynamics have no state variables, this
        linear system has dimension 0 and therefore ``F`` is an empty column
        ``Matrix`` with shape (0, 1).

        """
        F = [self._state_eqns]
        for child in self._child_objects:
            F.append(child.F)
        return Matrix.vstack(*F)

    def rhs(self):
        """Ordered column matrix of equations for the solution of ``M x' = F``.

        Explanation
        ===========

        The solution to the linear system of ordinary differential equations
        governing the activation dynamics:

        ``M(x, r, t, p) x' = F(x, r, t, p)``.

        As zeroth-order activation dynamics have no state variables, this
        linear has dimension 0 and therefore this method returns an empty
        column ``Matrix`` with shape (0, 1).

        """
        is_explicit = (
            MusculotendonFormulation.FIBER_LENGTH_EXPLICIT,
            MusculotendonFormulation.TENDON_FORCE_EXPLICIT,
        )
        if self.musculotendon_dynamics is MusculotendonFormulation.RIGID_TENDON:
            child_rhs = [child.rhs() for child in self._child_objects]
            return Matrix.vstack(*child_rhs)
        elif self.musculotendon_dynamics in is_explicit:
            rhs = self._state_eqns
            child_rhs = [child.rhs() for child in self._child_objects]
            return Matrix.vstack(rhs, *child_rhs)
        return self.M.solve(self.F)

    def __repr__(self):
        """Returns a string representation to reinstantiate the model."""
        return (
            f'{self.__class__.__name__}({self.name!r}, '
            f'pathway={self.pathway!r}, '
            f'activation_dynamics={self.activation_dynamics!r}, '
            f'musculotendon_dynamics={self.musculotendon_dynamics}, '
            f'tendon_slack_length={self._l_T_slack!r}, '
            f'peak_isometric_force={self._F_M_max!r}, '
            f'optimal_fiber_length={self._l_M_opt!r}, '
            f'maximal_fiber_velocity={self._v_M_max!r}, '
            f'optimal_pennation_angle={self._alpha_opt!r}, '
            f'fiber_damping_coefficient={self._beta!r})'
        )

    def __str__(self):
        """Returns a string representation of the expression for musculotendon
        force."""
        return str(self.force)


class MusculotendonDeGroote2016(MusculotendonBase):
    r"""Musculotendon model using the curves of De Groote et al., 2016 [1]_.

    Examples
    ========

    This class models the musculotendon actuator parametrized by the
    characteristic curves described in De Groote et al., 2016 [1]_. Like all
    musculotendon models in SymPy's biomechanics module, it requires a pathway
    to define its line of action. We'll begin by creating a simple
    ``LinearPathway`` between two points that our musculotendon will follow.
    We'll create a point ``O`` to represent the musculotendon's origin and
    another ``I`` to represent its insertion.

    >>> from sympy import symbols
    >>> from sympy.physics.mechanics import (LinearPathway, Point,
    ...     ReferenceFrame, dynamicsymbols)

    >>> N = ReferenceFrame('N')
    >>> O, I = O, P = symbols('O, I', cls=Point)
    >>> q, u = dynamicsymbols('q, u', real=True)
    >>> I.set_pos(O, q*N.x)
    >>> O.set_vel(N, 0)
    >>> I.set_vel(N, u*N.x)
    >>> pathway = LinearPathway(O, I)
    >>> pathway.attachments
    (O, I)
    >>> pathway.length
    Abs(q(t))
    >>> pathway.extension_velocity
    sign(q(t))*Derivative(q(t), t)

    A musculotendon also takes an instance of an activation dynamics model as
    this will be used to provide symbols for the activation in the formulation
    of the musculotendon dynamics. We'll use an instance of
    ``FirstOrderActivationDeGroote2016`` to represent first-order activation
    dynamics. Note that a single name argument needs to be provided as SymPy
    will use this as a suffix.

    >>> from sympy.physics.biomechanics import FirstOrderActivationDeGroote2016

    >>> activation = FirstOrderActivationDeGroote2016('muscle')
    >>> activation.x
    Matrix([[a_muscle(t)]])
    >>> activation.r
    Matrix([[e_muscle(t)]])
    >>> activation.p
    Matrix([
    [tau_a_muscle],
    [tau_d_muscle],
    [    b_muscle]])
    >>> activation.rhs()
    Matrix([[((1/2 - tanh(b_muscle*(-a_muscle(t) + e_muscle(t)))/2)*(3*...]])

    The musculotendon class requires symbols or values to be passed to represent
    the constants in the musculotendon dynamics. We'll use SymPy's ``symbols``
    function to create symbols for the maximum isometric force ``F_M_max``,
    optimal fiber length ``l_M_opt``, tendon slack length ``l_T_slack``, maximum
    fiber velocity ``v_M_max``, optimal pennation angle ``alpha_opt, and fiber
    damping coefficient ``beta``.

    >>> F_M_max = symbols('F_M_max', real=True)
    >>> l_M_opt = symbols('l_M_opt', real=True)
    >>> l_T_slack = symbols('l_T_slack', real=True)
    >>> v_M_max = symbols('v_M_max', real=True)
    >>> alpha_opt = symbols('alpha_opt', real=True)
    >>> beta = symbols('beta', real=True)

    We can then import the class ``MusculotendonDeGroote2016`` from the
    biomechanics module and create an instance by passing in the various objects
    we have previously instantiated. By default, a musculotendon model with
    rigid tendon musculotendon dynamics will be created.

    >>> from sympy.physics.biomechanics import MusculotendonDeGroote2016

    >>> rigid_tendon_muscle = MusculotendonDeGroote2016(
    ...     'muscle',
    ...     pathway,
    ...     activation,
    ...     tendon_slack_length=l_T_slack,
    ...     peak_isometric_force=F_M_max,
    ...     optimal_fiber_length=l_M_opt,
    ...     maximal_fiber_velocity=v_M_max,
    ...     optimal_pennation_angle=alpha_opt,
    ...     fiber_damping_coefficient=beta,
    ... )

    We can inspect the various properties of the musculotendon, including
    getting the symbolic expression describing the force it produces using its
    ``force`` attribute.

    >>> rigid_tendon_muscle.force
    -F_M_max*(beta*(-l_T_slack + Abs(q(t)))*sign(q(t))*Derivative(q(t), t)...

    When we created the musculotendon object, we passed in an instance of an
    activation dynamics object that governs the activation within the
    musculotendon. SymPy makes a design choice here that the activation dynamics
    instance will be treated as a child object of the musculotendon dynamics.
    Therefore, if we want to inspect the state and input variables associated
    with the musculotendon model, we will also be returned the state and input
    variables associated with the child object, or the activation dynamics in
    this case. As the musculotendon model that we created here uses rigid tendon
    dynamics, no additional states or inputs relating to the musculotendon are
    introduces. Consequently, the model has a single state associated with it,
    the activation, and a single input associated with it, the excitation. The
    states and inputs can be inspected using the ``x`` and ``r`` attributes
    respectively. Note that both ``x`` and ``r`` have the alias attributes of
    ``state_vars`` and ``input_vars``.

    >>> rigid_tendon_muscle.x
    Matrix([[a_muscle(t)]])
    >>> rigid_tendon_muscle.r
    Matrix([[e_muscle(t)]])

    To see which constants are symbolic in the musculotendon model, we can use
    the ``p`` or ``constants`` attribute. This returns a ``Matrix`` populated
    by the constants that are represented by a ``Symbol`` rather than a numeric
    value.

    >>> rigid_tendon_muscle.p
    Matrix([
    [           l_T_slack],
    [             F_M_max],
    [             l_M_opt],
    [             v_M_max],
    [           alpha_opt],
    [                beta],
    [        tau_a_muscle],
    [        tau_d_muscle],
    [            b_muscle],
    [     c_0_fl_T_muscle],
    [     c_1_fl_T_muscle],
    [     c_2_fl_T_muscle],
    [     c_3_fl_T_muscle],
    [ c_0_fl_M_pas_muscle],
    [ c_1_fl_M_pas_muscle],
    [ c_0_fl_M_act_muscle],
    [ c_1_fl_M_act_muscle],
    [ c_2_fl_M_act_muscle],
    [ c_3_fl_M_act_muscle],
    [ c_4_fl_M_act_muscle],
    [ c_5_fl_M_act_muscle],
    [ c_6_fl_M_act_muscle],
    [ c_7_fl_M_act_muscle],
    [ c_8_fl_M_act_muscle],
    [ c_9_fl_M_act_muscle],
    [c_10_fl_M_act_muscle],
    [c_11_fl_M_act_muscle],
    [     c_0_fv_M_muscle],
    [     c_1_fv_M_muscle],
    [     c_2_fv_M_muscle],
    [     c_3_fv_M_muscle]])

    Finally, we can call the ``rhs`` method to return a ``Matrix`` that
    contains as its elements the righthand side of the ordinary differential
    equations corresponding to each of the musculotendon's states. Like the
    method with the same name on the ``Method`` classes in SymPy's mechanics
    module, this returns a column vector where the number of rows corresponds to
    the number of states. For our example here, we have a single state, the
    dynamic symbol ``a_muscle(t)``, so the returned value is a 1-by-1
    ``Matrix``.

    >>> rigid_tendon_muscle.rhs()
    Matrix([[((1/2 - tanh(b_muscle*(-a_muscle(t) + e_muscle(t)))/2)*(3*...]])

    The musculotendon class supports elastic tendon musculotendon models in
    addition to rigid tendon ones. You can choose to either use the fiber length
    or tendon force as an additional state. You can also specify whether an
    explicit or implicit formulation should be used. To select a formulation,
    pass a member of the ``MusculotendonFormulation`` enumeration to the
    ``musculotendon_dynamics`` parameter when calling the constructor. This
    enumeration is an ``IntEnum``, so you can also pass an integer, however it
    is recommended to use the enumeration as it is clearer which formulation you
    are actually selecting. Below, we'll use the ``FIBER_LENGTH_EXPLICIT``
    member to create a musculotendon with an elastic tendon that will use the
    (normalized) muscle fiber length as an additional state and will produce
    the governing ordinary differential equation in explicit form.

    >>> from sympy.physics.biomechanics import MusculotendonFormulation

    >>> elastic_tendon_muscle = MusculotendonDeGroote2016(
    ...     'muscle',
    ...     pathway,
    ...     activation,
    ...     musculotendon_dynamics=MusculotendonFormulation.FIBER_LENGTH_EXPLICIT,
    ...     tendon_slack_length=l_T_slack,
    ...     peak_isometric_force=F_M_max,
    ...     optimal_fiber_length=l_M_opt,
    ...     maximal_fiber_velocity=v_M_max,
    ...     optimal_pennation_angle=alpha_opt,
    ...     fiber_damping_coefficient=beta,
    ... )

    >>> elastic_tendon_muscle.force
    -F_M_max*TendonForceLengthDeGroote2016((-sqrt(l_M_opt**2*...
    >>> elastic_tendon_muscle.x
    Matrix([
    [l_M_tilde_muscle(t)],
    [        a_muscle(t)]])
    >>> elastic_tendon_muscle.r
    Matrix([[e_muscle(t)]])
    >>> elastic_tendon_muscle.p
    Matrix([
    [           l_T_slack],
    [             F_M_max],
    [             l_M_opt],
    [             v_M_max],
    [           alpha_opt],
    [                beta],
    [        tau_a_muscle],
    [        tau_d_muscle],
    [            b_muscle],
    [     c_0_fl_T_muscle],
    [     c_1_fl_T_muscle],
    [     c_2_fl_T_muscle],
    [     c_3_fl_T_muscle],
    [ c_0_fl_M_pas_muscle],
    [ c_1_fl_M_pas_muscle],
    [ c_0_fl_M_act_muscle],
    [ c_1_fl_M_act_muscle],
    [ c_2_fl_M_act_muscle],
    [ c_3_fl_M_act_muscle],
    [ c_4_fl_M_act_muscle],
    [ c_5_fl_M_act_muscle],
    [ c_6_fl_M_act_muscle],
    [ c_7_fl_M_act_muscle],
    [ c_8_fl_M_act_muscle],
    [ c_9_fl_M_act_muscle],
    [c_10_fl_M_act_muscle],
    [c_11_fl_M_act_muscle],
    [     c_0_fv_M_muscle],
    [     c_1_fv_M_muscle],
    [     c_2_fv_M_muscle],
    [     c_3_fv_M_muscle]])
    >>> elastic_tendon_muscle.rhs()
    Matrix([
    [v_M_max*FiberForceVelocityInverseDeGroote2016((l_M_opt*...],
    [ ((1/2 - tanh(b_muscle*(-a_muscle(t) + e_muscle(t)))/2)*(3*...]])

    It is strongly recommended to use the alternate ``with_defaults``
    constructor when creating an instance because this will ensure that the
    published constants are used in the musculotendon characteristic curves.

    >>> elastic_tendon_muscle = MusculotendonDeGroote2016.with_defaults(
    ...     'muscle',
    ...     pathway,
    ...     activation,
    ...     musculotendon_dynamics=MusculotendonFormulation.FIBER_LENGTH_EXPLICIT,
    ...     tendon_slack_length=l_T_slack,
    ...     peak_isometric_force=F_M_max,
    ...     optimal_fiber_length=l_M_opt,
    ... )

    >>> elastic_tendon_muscle.x
    Matrix([
    [l_M_tilde_muscle(t)],
    [        a_muscle(t)]])
    >>> elastic_tendon_muscle.r
    Matrix([[e_muscle(t)]])
    >>> elastic_tendon_muscle.p
    Matrix([
    [   l_T_slack],
    [     F_M_max],
    [     l_M_opt],
    [tau_a_muscle],
    [tau_d_muscle],
    [    b_muscle]])

    Parameters
    ==========

    name : str
        The name identifier associated with the musculotendon. This name is used
        as a suffix when automatically generated symbols are instantiated. It
        must be a string of nonzero length.
    pathway : PathwayBase
        The pathway that the actuator follows. This must be an instance of a
        concrete subclass of ``PathwayBase``, e.g. ``LinearPathway``.
    activation_dynamics : ActivationBase
        The activation dynamics that will be modeled within the musculotendon.
        This must be an instance of a concrete subclass of ``ActivationBase``,
        e.g. ``FirstOrderActivationDeGroote2016``.
    musculotendon_dynamics : MusculotendonFormulation | int
        The formulation of musculotendon dynamics that should be used
        internally, i.e. rigid or elastic tendon model, the choice of
        musculotendon state etc. This must be a member of the integer
        enumeration ``MusculotendonFormulation`` or an integer that can be cast
        to a member. To use a rigid tendon formulation, set this to
        ``MusculotendonFormulation.RIGID_TENDON`` (or the integer value ``0``,
        which will be cast to the enumeration member). There are four possible
        formulations for an elastic tendon model. To use an explicit formulation
        with the fiber length as the state, set this to
        ``MusculotendonFormulation.FIBER_LENGTH_EXPLICIT`` (or the integer value
        ``1``). To use an explicit formulation with the tendon force as the
        state, set this to ``MusculotendonFormulation.TENDON_FORCE_EXPLICIT``
        (or the integer value ``2``). To use an implicit formulation with the
        fiber length as the state, set this to
        ``MusculotendonFormulation.FIBER_LENGTH_IMPLICIT`` (or the integer value
        ``3``). To use an implicit formulation with the tendon force as the
        state, set this to ``MusculotendonFormulation.TENDON_FORCE_IMPLICIT``
        (or the integer value ``4``). The default is
        ``MusculotendonFormulation.RIGID_TENDON``, which corresponds to a rigid
        tendon formulation.
    tendon_slack_length : Expr | None
        The length of the tendon when the musculotendon is in its unloaded
        state. In a rigid tendon model the tendon length is the tendon slack
        length. In all musculotendon models, tendon slack length is used to
        normalize tendon length to give
        :math:`\tilde{l}^T = \frac{l^T}{l^T_{slack}}`.
    peak_isometric_force : Expr | None
        The maximum force that the muscle fiber can produce when it is
        undergoing an isometric contraction (no lengthening velocity). In all
        musculotendon models, peak isometric force is used to normalized tendon
        and muscle fiber force to give
        :math:`\tilde{F}^T = \frac{F^T}{F^M_{max}}`.
    optimal_fiber_length : Expr | None
        The muscle fiber length at which the muscle fibers produce no passive
        force and their maximum active force. In all musculotendon models,
        optimal fiber length is used to normalize muscle fiber length to give
        :math:`\tilde{l}^M = \frac{l^M}{l^M_{opt}}`.
    maximal_fiber_velocity : Expr | None
        The fiber velocity at which, during muscle fiber shortening, the muscle
        fibers are unable to produce any active force. In all musculotendon
        models, maximal fiber velocity is used to normalize muscle fiber
        extension velocity to give :math:`\tilde{v}^M = \frac{v^M}{v^M_{max}}`.
    optimal_pennation_angle : Expr | None
        The pennation angle when muscle fiber length equals the optimal fiber
        length.
    fiber_damping_coefficient : Expr | None
        The coefficient of damping to be used in the damping element in the
        muscle fiber model.
    with_defaults : bool
        Whether ``with_defaults`` alternate constructors should be used when
        automatically constructing child classes. Default is ``False``.

    References
    ==========

    .. [1] De Groote, F., Kinney, A. L., Rao, A. V., & Fregly, B. J., Evaluation
           of direct collocation optimal control problem formulations for
           solving the muscle redundancy problem, Annals of biomedical
           engineering, 44(10), (2016) pp. 2922-2936

    """

    curves = CharacteristicCurveCollection(
        tendon_force_length=TendonForceLengthDeGroote2016,
        tendon_force_length_inverse=TendonForceLengthInverseDeGroote2016,
        fiber_force_length_passive=FiberForceLengthPassiveDeGroote2016,
        fiber_force_length_passive_inverse=FiberForceLengthPassiveInverseDeGroote2016,
        fiber_force_length_active=FiberForceLengthActiveDeGroote2016,
        fiber_force_velocity=FiberForceVelocityDeGroote2016,
        fiber_force_velocity_inverse=FiberForceVelocityInverseDeGroote2016,
    )