File size: 63,243 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
"""Implementations of characteristic curves for musculotendon models."""

from dataclasses import dataclass

from sympy.core.expr import UnevaluatedExpr
from sympy.core.function import ArgumentIndexError, Function
from sympy.core.numbers import Float, Integer
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.hyperbolic import cosh, sinh
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.printing.precedence import PRECEDENCE


__all__ = [
    'CharacteristicCurveCollection',
    'CharacteristicCurveFunction',
    'FiberForceLengthActiveDeGroote2016',
    'FiberForceLengthPassiveDeGroote2016',
    'FiberForceLengthPassiveInverseDeGroote2016',
    'FiberForceVelocityDeGroote2016',
    'FiberForceVelocityInverseDeGroote2016',
    'TendonForceLengthDeGroote2016',
    'TendonForceLengthInverseDeGroote2016',
]


class CharacteristicCurveFunction(Function):
    """Base class for all musculotendon characteristic curve functions."""

    @classmethod
    def eval(cls):
        msg = (
            f'Cannot directly instantiate {cls.__name__!r}, instances of '
            f'characteristic curves must be of a concrete subclass.'

        )
        raise TypeError(msg)

    def _print_code(self, printer):
        """Print code for the function defining the curve using a printer.

        Explanation
        ===========

        The order of operations may need to be controlled as constant folding
        the numeric terms within the equations of a musculotendon
        characteristic curve can sometimes results in a numerically-unstable
        expression.

        Parameters
        ==========

        printer : Printer
            The printer to be used to print a string representation of the
            characteristic curve as valid code in the target language.

        """
        return printer._print(printer.parenthesize(
            self.doit(deep=False, evaluate=False), PRECEDENCE['Atom'],
        ))

    _ccode = _print_code
    _cupycode = _print_code
    _cxxcode = _print_code
    _fcode = _print_code
    _jaxcode = _print_code
    _lambdacode = _print_code
    _mpmathcode = _print_code
    _octave = _print_code
    _pythoncode = _print_code
    _numpycode = _print_code
    _scipycode = _print_code


class TendonForceLengthDeGroote2016(CharacteristicCurveFunction):
    r"""Tendon force-length curve based on De Groote et al., 2016 [1]_.

    Explanation
    ===========

    Gives the normalized tendon force produced as a function of normalized
    tendon length.

    The function is defined by the equation:

    $fl^T = c_0 \exp{c_3 \left( \tilde{l}^T - c_1 \right)} - c_2$

    with constant values of $c_0 = 0.2$, $c_1 = 0.995$, $c_2 = 0.25$, and
    $c_3 = 33.93669377311689$.

    While it is possible to change the constant values, these were carefully
    selected in the original publication to give the characteristic curve
    specific and required properties. For example, the function produces no
    force when the tendon is in an unstrained state. It also produces a force
    of 1 normalized unit when the tendon is under a 5% strain.

    Examples
    ========

    The preferred way to instantiate :class:`TendonForceLengthDeGroote2016` is using
    the :meth:`~.with_defaults` constructor because this will automatically
    populate the constants within the characteristic curve equation with the
    floating point values from the original publication. This constructor takes
    a single argument corresponding to normalized tendon length. We'll create a
    :class:`~.Symbol` called ``l_T_tilde`` to represent this.

    >>> from sympy import Symbol
    >>> from sympy.physics.biomechanics import TendonForceLengthDeGroote2016
    >>> l_T_tilde = Symbol('l_T_tilde')
    >>> fl_T = TendonForceLengthDeGroote2016.with_defaults(l_T_tilde)
    >>> fl_T
    TendonForceLengthDeGroote2016(l_T_tilde, 0.2, 0.995, 0.25,
    33.93669377311689)

    It's also possible to populate the four constants with your own values too.

    >>> from sympy import symbols
    >>> c0, c1, c2, c3 = symbols('c0 c1 c2 c3')
    >>> fl_T = TendonForceLengthDeGroote2016(l_T_tilde, c0, c1, c2, c3)
    >>> fl_T
    TendonForceLengthDeGroote2016(l_T_tilde, c0, c1, c2, c3)

    You don't just have to use symbols as the arguments, it's also possible to
    use expressions. Let's create a new pair of symbols, ``l_T`` and
    ``l_T_slack``, representing tendon length and tendon slack length
    respectively. We can then represent ``l_T_tilde`` as an expression, the
    ratio of these.

    >>> l_T, l_T_slack = symbols('l_T l_T_slack')
    >>> l_T_tilde = l_T/l_T_slack
    >>> fl_T = TendonForceLengthDeGroote2016.with_defaults(l_T_tilde)
    >>> fl_T
    TendonForceLengthDeGroote2016(l_T/l_T_slack, 0.2, 0.995, 0.25,
    33.93669377311689)

    To inspect the actual symbolic expression that this function represents,
    we can call the :meth:`~.doit` method on an instance. We'll use the keyword
    argument ``evaluate=False`` as this will keep the expression in its
    canonical form and won't simplify any constants.

    >>> fl_T.doit(evaluate=False)
    -0.25 + 0.2*exp(33.93669377311689*(l_T/l_T_slack - 0.995))

    The function can also be differentiated. We'll differentiate with respect
    to l_T using the ``diff`` method on an instance with the single positional
    argument ``l_T``.

    >>> fl_T.diff(l_T)
    6.787338754623378*exp(33.93669377311689*(l_T/l_T_slack - 0.995))/l_T_slack

    References
    ==========

    .. [1] De Groote, F., Kinney, A. L., Rao, A. V., & Fregly, B. J., Evaluation
           of direct collocation optimal control problem formulations for
           solving the muscle redundancy problem, Annals of biomedical
           engineering, 44(10), (2016) pp. 2922-2936

    """

    @classmethod
    def with_defaults(cls, l_T_tilde):
        r"""Recommended constructor that will use the published constants.

        Explanation
        ===========

        Returns a new instance of the tendon force-length function using the
        four constant values specified in the original publication.

        These have the values:

        $c_0 = 0.2$
        $c_1 = 0.995$
        $c_2 = 0.25$
        $c_3 = 33.93669377311689$

        Parameters
        ==========

        l_T_tilde : Any (sympifiable)
            Normalized tendon length.

        """
        c0 = Float('0.2')
        c1 = Float('0.995')
        c2 = Float('0.25')
        c3 = Float('33.93669377311689')
        return cls(l_T_tilde, c0, c1, c2, c3)

    @classmethod
    def eval(cls, l_T_tilde, c0, c1, c2, c3):
        """Evaluation of basic inputs.

        Parameters
        ==========

        l_T_tilde : Any (sympifiable)
            Normalized tendon length.
        c0 : Any (sympifiable)
            The first constant in the characteristic equation. The published
            value is ``0.2``.
        c1 : Any (sympifiable)
            The second constant in the characteristic equation. The published
            value is ``0.995``.
        c2 : Any (sympifiable)
            The third constant in the characteristic equation. The published
            value is ``0.25``.
        c3 : Any (sympifiable)
            The fourth constant in the characteristic equation. The published
            value is ``33.93669377311689``.

        """
        pass

    def _eval_evalf(self, prec):
        """Evaluate the expression numerically using ``evalf``."""
        return self.doit(deep=False, evaluate=False)._eval_evalf(prec)

    def doit(self, deep=True, evaluate=True, **hints):
        """Evaluate the expression defining the function.

        Parameters
        ==========

        deep : bool
            Whether ``doit`` should be recursively called. Default is ``True``.
        evaluate : bool.
            Whether the SymPy expression should be evaluated as it is
            constructed. If ``False``, then no constant folding will be
            conducted which will leave the expression in a more numerically-
            stable for values of ``l_T_tilde`` that correspond to a sensible
            operating range for a musculotendon. Default is ``True``.
        **kwargs : dict[str, Any]
            Additional keyword argument pairs to be recursively passed to
            ``doit``.

        """
        l_T_tilde, *constants = self.args
        if deep:
            hints['evaluate'] = evaluate
            l_T_tilde = l_T_tilde.doit(deep=deep, **hints)
            c0, c1, c2, c3 = [c.doit(deep=deep, **hints) for c in constants]
        else:
            c0, c1, c2, c3 = constants

        if evaluate:
            return c0*exp(c3*(l_T_tilde - c1)) - c2

        return c0*exp(c3*UnevaluatedExpr(l_T_tilde - c1)) - c2

    def fdiff(self, argindex=1):
        """Derivative of the function with respect to a single argument.

        Parameters
        ==========

        argindex : int
            The index of the function's arguments with respect to which the
            derivative should be taken. Argument indexes start at ``1``.
            Default is ``1``.

        """
        l_T_tilde, c0, c1, c2, c3 = self.args
        if argindex == 1:
            return c0*c3*exp(c3*UnevaluatedExpr(l_T_tilde - c1))
        elif argindex == 2:
            return exp(c3*UnevaluatedExpr(l_T_tilde - c1))
        elif argindex == 3:
            return -c0*c3*exp(c3*UnevaluatedExpr(l_T_tilde - c1))
        elif argindex == 4:
            return Integer(-1)
        elif argindex == 5:
            return c0*(l_T_tilde - c1)*exp(c3*UnevaluatedExpr(l_T_tilde - c1))

        raise ArgumentIndexError(self, argindex)

    def inverse(self, argindex=1):
        """Inverse function.

        Parameters
        ==========

        argindex : int
            Value to start indexing the arguments at. Default is ``1``.

        """
        return TendonForceLengthInverseDeGroote2016

    def _latex(self, printer):
        """Print a LaTeX representation of the function defining the curve.

        Parameters
        ==========

        printer : Printer
            The printer to be used to print the LaTeX string representation.

        """
        l_T_tilde = self.args[0]
        _l_T_tilde = printer._print(l_T_tilde)
        return r'\operatorname{fl}^T \left( %s \right)' % _l_T_tilde


class TendonForceLengthInverseDeGroote2016(CharacteristicCurveFunction):
    r"""Inverse tendon force-length curve based on De Groote et al., 2016 [1]_.

    Explanation
    ===========

    Gives the normalized tendon length that produces a specific normalized
    tendon force.

    The function is defined by the equation:

    ${fl^T}^{-1} = frac{\log{\frac{fl^T + c_2}{c_0}}}{c_3} + c_1$

    with constant values of $c_0 = 0.2$, $c_1 = 0.995$, $c_2 = 0.25$, and
    $c_3 = 33.93669377311689$. This function is the exact analytical inverse
    of the related tendon force-length curve ``TendonForceLengthDeGroote2016``.

    While it is possible to change the constant values, these were carefully
    selected in the original publication to give the characteristic curve
    specific and required properties. For example, the function produces no
    force when the tendon is in an unstrained state. It also produces a force
    of 1 normalized unit when the tendon is under a 5% strain.

    Examples
    ========

    The preferred way to instantiate :class:`TendonForceLengthInverseDeGroote2016` is
    using the :meth:`~.with_defaults` constructor because this will automatically
    populate the constants within the characteristic curve equation with the
    floating point values from the original publication. This constructor takes
    a single argument corresponding to normalized tendon force-length, which is
    equal to the tendon force. We'll create a :class:`~.Symbol` called ``fl_T`` to
    represent this.

    >>> from sympy import Symbol
    >>> from sympy.physics.biomechanics import TendonForceLengthInverseDeGroote2016
    >>> fl_T = Symbol('fl_T')
    >>> l_T_tilde = TendonForceLengthInverseDeGroote2016.with_defaults(fl_T)
    >>> l_T_tilde
    TendonForceLengthInverseDeGroote2016(fl_T, 0.2, 0.995, 0.25,
    33.93669377311689)

    It's also possible to populate the four constants with your own values too.

    >>> from sympy import symbols
    >>> c0, c1, c2, c3 = symbols('c0 c1 c2 c3')
    >>> l_T_tilde = TendonForceLengthInverseDeGroote2016(fl_T, c0, c1, c2, c3)
    >>> l_T_tilde
    TendonForceLengthInverseDeGroote2016(fl_T, c0, c1, c2, c3)

    To inspect the actual symbolic expression that this function represents,
    we can call the :meth:`~.doit` method on an instance. We'll use the keyword
    argument ``evaluate=False`` as this will keep the expression in its
    canonical form and won't simplify any constants.

    >>> l_T_tilde.doit(evaluate=False)
    c1 + log((c2 + fl_T)/c0)/c3

    The function can also be differentiated. We'll differentiate with respect
    to l_T using the ``diff`` method on an instance with the single positional
    argument ``l_T``.

    >>> l_T_tilde.diff(fl_T)
    1/(c3*(c2 + fl_T))

    References
    ==========

    .. [1] De Groote, F., Kinney, A. L., Rao, A. V., & Fregly, B. J., Evaluation
           of direct collocation optimal control problem formulations for
           solving the muscle redundancy problem, Annals of biomedical
           engineering, 44(10), (2016) pp. 2922-2936

    """

    @classmethod
    def with_defaults(cls, fl_T):
        r"""Recommended constructor that will use the published constants.

        Explanation
        ===========

        Returns a new instance of the inverse tendon force-length function
        using the four constant values specified in the original publication.

        These have the values:

        $c_0 = 0.2$
        $c_1 = 0.995$
        $c_2 = 0.25$
        $c_3 = 33.93669377311689$

        Parameters
        ==========

        fl_T : Any (sympifiable)
            Normalized tendon force as a function of tendon length.

        """
        c0 = Float('0.2')
        c1 = Float('0.995')
        c2 = Float('0.25')
        c3 = Float('33.93669377311689')
        return cls(fl_T, c0, c1, c2, c3)

    @classmethod
    def eval(cls, fl_T, c0, c1, c2, c3):
        """Evaluation of basic inputs.

        Parameters
        ==========

        fl_T : Any (sympifiable)
            Normalized tendon force as a function of tendon length.
        c0 : Any (sympifiable)
            The first constant in the characteristic equation. The published
            value is ``0.2``.
        c1 : Any (sympifiable)
            The second constant in the characteristic equation. The published
            value is ``0.995``.
        c2 : Any (sympifiable)
            The third constant in the characteristic equation. The published
            value is ``0.25``.
        c3 : Any (sympifiable)
            The fourth constant in the characteristic equation. The published
            value is ``33.93669377311689``.

        """
        pass

    def _eval_evalf(self, prec):
        """Evaluate the expression numerically using ``evalf``."""
        return self.doit(deep=False, evaluate=False)._eval_evalf(prec)

    def doit(self, deep=True, evaluate=True, **hints):
        """Evaluate the expression defining the function.

        Parameters
        ==========

        deep : bool
            Whether ``doit`` should be recursively called. Default is ``True``.
        evaluate : bool.
            Whether the SymPy expression should be evaluated as it is
            constructed. If ``False``, then no constant folding will be
            conducted which will leave the expression in a more numerically-
            stable for values of ``l_T_tilde`` that correspond to a sensible
            operating range for a musculotendon. Default is ``True``.
        **kwargs : dict[str, Any]
            Additional keyword argument pairs to be recursively passed to
            ``doit``.

        """
        fl_T, *constants = self.args
        if deep:
            hints['evaluate'] = evaluate
            fl_T = fl_T.doit(deep=deep, **hints)
            c0, c1, c2, c3 = [c.doit(deep=deep, **hints) for c in constants]
        else:
            c0, c1, c2, c3 = constants

        if evaluate:
            return log((fl_T + c2)/c0)/c3 + c1

        return log(UnevaluatedExpr((fl_T + c2)/c0))/c3 + c1

    def fdiff(self, argindex=1):
        """Derivative of the function with respect to a single argument.

        Parameters
        ==========

        argindex : int
            The index of the function's arguments with respect to which the
            derivative should be taken. Argument indexes start at ``1``.
            Default is ``1``.

        """
        fl_T, c0, c1, c2, c3 = self.args
        if argindex == 1:
            return 1/(c3*(fl_T + c2))
        elif argindex == 2:
            return -1/(c0*c3)
        elif argindex == 3:
            return Integer(1)
        elif argindex == 4:
            return 1/(c3*(fl_T + c2))
        elif argindex == 5:
            return -log(UnevaluatedExpr((fl_T + c2)/c0))/c3**2

        raise ArgumentIndexError(self, argindex)

    def inverse(self, argindex=1):
        """Inverse function.

        Parameters
        ==========

        argindex : int
            Value to start indexing the arguments at. Default is ``1``.

        """
        return TendonForceLengthDeGroote2016

    def _latex(self, printer):
        """Print a LaTeX representation of the function defining the curve.

        Parameters
        ==========

        printer : Printer
            The printer to be used to print the LaTeX string representation.

        """
        fl_T = self.args[0]
        _fl_T = printer._print(fl_T)
        return r'\left( \operatorname{fl}^T \right)^{-1} \left( %s \right)' % _fl_T


class FiberForceLengthPassiveDeGroote2016(CharacteristicCurveFunction):
    r"""Passive muscle fiber force-length curve based on De Groote et al., 2016
    [1]_.

    Explanation
    ===========

    The function is defined by the equation:

    $fl^M_{pas} = \frac{\frac{\exp{c_1 \left(\tilde{l^M} - 1\right)}}{c_0} - 1}{\exp{c_1} - 1}$

    with constant values of $c_0 = 0.6$ and $c_1 = 4.0$.

    While it is possible to change the constant values, these were carefully
    selected in the original publication to give the characteristic curve
    specific and required properties. For example, the function produces a
    passive fiber force very close to 0 for all normalized fiber lengths
    between 0 and 1.

    Examples
    ========

    The preferred way to instantiate :class:`FiberForceLengthPassiveDeGroote2016` is
    using the :meth:`~.with_defaults` constructor because this will automatically
    populate the constants within the characteristic curve equation with the
    floating point values from the original publication. This constructor takes
    a single argument corresponding to normalized muscle fiber length. We'll
    create a :class:`~.Symbol` called ``l_M_tilde`` to represent this.

    >>> from sympy import Symbol
    >>> from sympy.physics.biomechanics import FiberForceLengthPassiveDeGroote2016
    >>> l_M_tilde = Symbol('l_M_tilde')
    >>> fl_M = FiberForceLengthPassiveDeGroote2016.with_defaults(l_M_tilde)
    >>> fl_M
    FiberForceLengthPassiveDeGroote2016(l_M_tilde, 0.6, 4.0)

    It's also possible to populate the two constants with your own values too.

    >>> from sympy import symbols
    >>> c0, c1 = symbols('c0 c1')
    >>> fl_M = FiberForceLengthPassiveDeGroote2016(l_M_tilde, c0, c1)
    >>> fl_M
    FiberForceLengthPassiveDeGroote2016(l_M_tilde, c0, c1)

    You don't just have to use symbols as the arguments, it's also possible to
    use expressions. Let's create a new pair of symbols, ``l_M`` and
    ``l_M_opt``, representing muscle fiber length and optimal muscle fiber
    length respectively. We can then represent ``l_M_tilde`` as an expression,
    the ratio of these.

    >>> l_M, l_M_opt = symbols('l_M l_M_opt')
    >>> l_M_tilde = l_M/l_M_opt
    >>> fl_M = FiberForceLengthPassiveDeGroote2016.with_defaults(l_M_tilde)
    >>> fl_M
    FiberForceLengthPassiveDeGroote2016(l_M/l_M_opt, 0.6, 4.0)

    To inspect the actual symbolic expression that this function represents,
    we can call the :meth:`~.doit` method on an instance. We'll use the keyword
    argument ``evaluate=False`` as this will keep the expression in its
    canonical form and won't simplify any constants.

    >>> fl_M.doit(evaluate=False)
    0.0186573603637741*(-1 + exp(6.66666666666667*(l_M/l_M_opt - 1)))

    The function can also be differentiated. We'll differentiate with respect
    to l_M using the ``diff`` method on an instance with the single positional
    argument ``l_M``.

    >>> fl_M.diff(l_M)
    0.12438240242516*exp(6.66666666666667*(l_M/l_M_opt - 1))/l_M_opt

    References
    ==========

    .. [1] De Groote, F., Kinney, A. L., Rao, A. V., & Fregly, B. J., Evaluation
           of direct collocation optimal control problem formulations for
           solving the muscle redundancy problem, Annals of biomedical
           engineering, 44(10), (2016) pp. 2922-2936

    """

    @classmethod
    def with_defaults(cls, l_M_tilde):
        r"""Recommended constructor that will use the published constants.

        Explanation
        ===========

        Returns a new instance of the muscle fiber passive force-length
        function using the four constant values specified in the original
        publication.

        These have the values:

        $c_0 = 0.6$
        $c_1 = 4.0$

        Parameters
        ==========

        l_M_tilde : Any (sympifiable)
            Normalized muscle fiber length.

        """
        c0 = Float('0.6')
        c1 = Float('4.0')
        return cls(l_M_tilde, c0, c1)

    @classmethod
    def eval(cls, l_M_tilde, c0, c1):
        """Evaluation of basic inputs.

        Parameters
        ==========

        l_M_tilde : Any (sympifiable)
            Normalized muscle fiber length.
        c0 : Any (sympifiable)
            The first constant in the characteristic equation. The published
            value is ``0.6``.
        c1 : Any (sympifiable)
            The second constant in the characteristic equation. The published
            value is ``4.0``.

        """
        pass

    def _eval_evalf(self, prec):
        """Evaluate the expression numerically using ``evalf``."""
        return self.doit(deep=False, evaluate=False)._eval_evalf(prec)

    def doit(self, deep=True, evaluate=True, **hints):
        """Evaluate the expression defining the function.

        Parameters
        ==========

        deep : bool
            Whether ``doit`` should be recursively called. Default is ``True``.
        evaluate : bool.
            Whether the SymPy expression should be evaluated as it is
            constructed. If ``False``, then no constant folding will be
            conducted which will leave the expression in a more numerically-
            stable for values of ``l_T_tilde`` that correspond to a sensible
            operating range for a musculotendon. Default is ``True``.
        **kwargs : dict[str, Any]
            Additional keyword argument pairs to be recursively passed to
            ``doit``.

        """
        l_M_tilde, *constants = self.args
        if deep:
            hints['evaluate'] = evaluate
            l_M_tilde = l_M_tilde.doit(deep=deep, **hints)
            c0, c1 = [c.doit(deep=deep, **hints) for c in constants]
        else:
            c0, c1 = constants

        if evaluate:
            return (exp((c1*(l_M_tilde - 1))/c0) - 1)/(exp(c1) - 1)

        return (exp((c1*UnevaluatedExpr(l_M_tilde - 1))/c0) - 1)/(exp(c1) - 1)

    def fdiff(self, argindex=1):
        """Derivative of the function with respect to a single argument.

        Parameters
        ==========

        argindex : int
            The index of the function's arguments with respect to which the
            derivative should be taken. Argument indexes start at ``1``.
            Default is ``1``.

        """
        l_M_tilde, c0, c1 = self.args
        if argindex == 1:
            return c1*exp(c1*UnevaluatedExpr(l_M_tilde - 1)/c0)/(c0*(exp(c1) - 1))
        elif argindex == 2:
            return (
                -c1*exp(c1*UnevaluatedExpr(l_M_tilde - 1)/c0)
                *UnevaluatedExpr(l_M_tilde - 1)/(c0**2*(exp(c1) - 1))
            )
        elif argindex == 3:
            return (
                -exp(c1)*(-1 + exp(c1*UnevaluatedExpr(l_M_tilde - 1)/c0))/(exp(c1) - 1)**2
                + exp(c1*UnevaluatedExpr(l_M_tilde - 1)/c0)*(l_M_tilde - 1)/(c0*(exp(c1) - 1))
            )

        raise ArgumentIndexError(self, argindex)

    def inverse(self, argindex=1):
        """Inverse function.

        Parameters
        ==========

        argindex : int
            Value to start indexing the arguments at. Default is ``1``.

        """
        return FiberForceLengthPassiveInverseDeGroote2016

    def _latex(self, printer):
        """Print a LaTeX representation of the function defining the curve.

        Parameters
        ==========

        printer : Printer
            The printer to be used to print the LaTeX string representation.

        """
        l_M_tilde = self.args[0]
        _l_M_tilde = printer._print(l_M_tilde)
        return r'\operatorname{fl}^M_{pas} \left( %s \right)' % _l_M_tilde


class FiberForceLengthPassiveInverseDeGroote2016(CharacteristicCurveFunction):
    r"""Inverse passive muscle fiber force-length curve based on De Groote et
    al., 2016 [1]_.

    Explanation
    ===========

    Gives the normalized muscle fiber length that produces a specific normalized
    passive muscle fiber force.

    The function is defined by the equation:

    ${fl^M_{pas}}^{-1} = \frac{c_0 \log{\left(\exp{c_1} - 1\right)fl^M_pas + 1}}{c_1} + 1$

    with constant values of $c_0 = 0.6$ and $c_1 = 4.0$. This function is the
    exact analytical inverse of the related tendon force-length curve
    ``FiberForceLengthPassiveDeGroote2016``.

    While it is possible to change the constant values, these were carefully
    selected in the original publication to give the characteristic curve
    specific and required properties. For example, the function produces a
    passive fiber force very close to 0 for all normalized fiber lengths
    between 0 and 1.

    Examples
    ========

    The preferred way to instantiate
    :class:`FiberForceLengthPassiveInverseDeGroote2016` is using the
    :meth:`~.with_defaults` constructor because this will automatically populate the
    constants within the characteristic curve equation with the floating point
    values from the original publication. This constructor takes a single
    argument corresponding to the normalized passive muscle fiber length-force
    component of the muscle fiber force. We'll create a :class:`~.Symbol` called
    ``fl_M_pas`` to represent this.

    >>> from sympy import Symbol
    >>> from sympy.physics.biomechanics import FiberForceLengthPassiveInverseDeGroote2016
    >>> fl_M_pas = Symbol('fl_M_pas')
    >>> l_M_tilde = FiberForceLengthPassiveInverseDeGroote2016.with_defaults(fl_M_pas)
    >>> l_M_tilde
    FiberForceLengthPassiveInverseDeGroote2016(fl_M_pas, 0.6, 4.0)

    It's also possible to populate the two constants with your own values too.

    >>> from sympy import symbols
    >>> c0, c1 = symbols('c0 c1')
    >>> l_M_tilde = FiberForceLengthPassiveInverseDeGroote2016(fl_M_pas, c0, c1)
    >>> l_M_tilde
    FiberForceLengthPassiveInverseDeGroote2016(fl_M_pas, c0, c1)

    To inspect the actual symbolic expression that this function represents,
    we can call the :meth:`~.doit` method on an instance. We'll use the keyword
    argument ``evaluate=False`` as this will keep the expression in its
    canonical form and won't simplify any constants.

    >>> l_M_tilde.doit(evaluate=False)
    c0*log(1 + fl_M_pas*(exp(c1) - 1))/c1 + 1

    The function can also be differentiated. We'll differentiate with respect
    to fl_M_pas using the ``diff`` method on an instance with the single positional
    argument ``fl_M_pas``.

    >>> l_M_tilde.diff(fl_M_pas)
    c0*(exp(c1) - 1)/(c1*(fl_M_pas*(exp(c1) - 1) + 1))

    References
    ==========

    .. [1] De Groote, F., Kinney, A. L., Rao, A. V., & Fregly, B. J., Evaluation
           of direct collocation optimal control problem formulations for
           solving the muscle redundancy problem, Annals of biomedical
           engineering, 44(10), (2016) pp. 2922-2936

    """

    @classmethod
    def with_defaults(cls, fl_M_pas):
        r"""Recommended constructor that will use the published constants.

        Explanation
        ===========

        Returns a new instance of the inverse muscle fiber passive force-length
        function using the four constant values specified in the original
        publication.

        These have the values:

        $c_0 = 0.6$
        $c_1 = 4.0$

        Parameters
        ==========

        fl_M_pas : Any (sympifiable)
            Normalized passive muscle fiber force as a function of muscle fiber
            length.

        """
        c0 = Float('0.6')
        c1 = Float('4.0')
        return cls(fl_M_pas, c0, c1)

    @classmethod
    def eval(cls, fl_M_pas, c0, c1):
        """Evaluation of basic inputs.

        Parameters
        ==========

        fl_M_pas : Any (sympifiable)
            Normalized passive muscle fiber force.
        c0 : Any (sympifiable)
            The first constant in the characteristic equation. The published
            value is ``0.6``.
        c1 : Any (sympifiable)
            The second constant in the characteristic equation. The published
            value is ``4.0``.

        """
        pass

    def _eval_evalf(self, prec):
        """Evaluate the expression numerically using ``evalf``."""
        return self.doit(deep=False, evaluate=False)._eval_evalf(prec)

    def doit(self, deep=True, evaluate=True, **hints):
        """Evaluate the expression defining the function.

        Parameters
        ==========

        deep : bool
            Whether ``doit`` should be recursively called. Default is ``True``.
        evaluate : bool.
            Whether the SymPy expression should be evaluated as it is
            constructed. If ``False``, then no constant folding will be
            conducted which will leave the expression in a more numerically-
            stable for values of ``l_T_tilde`` that correspond to a sensible
            operating range for a musculotendon. Default is ``True``.
        **kwargs : dict[str, Any]
            Additional keyword argument pairs to be recursively passed to
            ``doit``.

        """
        fl_M_pas, *constants = self.args
        if deep:
            hints['evaluate'] = evaluate
            fl_M_pas = fl_M_pas.doit(deep=deep, **hints)
            c0, c1 = [c.doit(deep=deep, **hints) for c in constants]
        else:
            c0, c1 = constants

        if evaluate:
            return c0*log(fl_M_pas*(exp(c1) - 1) + 1)/c1 + 1

        return c0*log(UnevaluatedExpr(fl_M_pas*(exp(c1) - 1)) + 1)/c1 + 1

    def fdiff(self, argindex=1):
        """Derivative of the function with respect to a single argument.

        Parameters
        ==========

        argindex : int
            The index of the function's arguments with respect to which the
            derivative should be taken. Argument indexes start at ``1``.
            Default is ``1``.

        """
        fl_M_pas, c0, c1 = self.args
        if argindex == 1:
            return c0*(exp(c1) - 1)/(c1*(fl_M_pas*(exp(c1) - 1) + 1))
        elif argindex == 2:
            return log(fl_M_pas*(exp(c1) - 1) + 1)/c1
        elif argindex == 3:
            return (
                c0*fl_M_pas*exp(c1)/(c1*(fl_M_pas*(exp(c1) - 1) + 1))
                - c0*log(fl_M_pas*(exp(c1) - 1) + 1)/c1**2
            )

        raise ArgumentIndexError(self, argindex)

    def inverse(self, argindex=1):
        """Inverse function.

        Parameters
        ==========

        argindex : int
            Value to start indexing the arguments at. Default is ``1``.

        """
        return FiberForceLengthPassiveDeGroote2016

    def _latex(self, printer):
        """Print a LaTeX representation of the function defining the curve.

        Parameters
        ==========

        printer : Printer
            The printer to be used to print the LaTeX string representation.

        """
        fl_M_pas = self.args[0]
        _fl_M_pas = printer._print(fl_M_pas)
        return r'\left( \operatorname{fl}^M_{pas} \right)^{-1} \left( %s \right)' % _fl_M_pas


class FiberForceLengthActiveDeGroote2016(CharacteristicCurveFunction):
    r"""Active muscle fiber force-length curve based on De Groote et al., 2016
    [1]_.

    Explanation
    ===========

    The function is defined by the equation:

    $fl_{\text{act}}^M = c_0 \exp\left(-\frac{1}{2}\left(\frac{\tilde{l}^M - c_1}{c_2 + c_3 \tilde{l}^M}\right)^2\right)
    + c_4 \exp\left(-\frac{1}{2}\left(\frac{\tilde{l}^M - c_5}{c_6 + c_7 \tilde{l}^M}\right)^2\right)
    + c_8 \exp\left(-\frac{1}{2}\left(\frac{\tilde{l}^M - c_9}{c_{10} + c_{11} \tilde{l}^M}\right)^2\right)$

    with constant values of $c0 = 0.814$, $c1 = 1.06$, $c2 = 0.162$,
    $c3 = 0.0633$, $c4 = 0.433$, $c5 = 0.717$, $c6 = -0.0299$, $c7 = 0.2$,
    $c8 = 0.1$, $c9 = 1.0$, $c10 = 0.354$, and $c11 = 0.0$.

    While it is possible to change the constant values, these were carefully
    selected in the original publication to give the characteristic curve
    specific and required properties. For example, the function produces a
    active fiber force of 1 at a normalized fiber length of 1, and an active
    fiber force of 0 at normalized fiber lengths of 0 and 2.

    Examples
    ========

    The preferred way to instantiate :class:`FiberForceLengthActiveDeGroote2016` is
    using the :meth:`~.with_defaults` constructor because this will automatically
    populate the constants within the characteristic curve equation with the
    floating point values from the original publication. This constructor takes
    a single argument corresponding to normalized muscle fiber length. We'll
    create a :class:`~.Symbol` called ``l_M_tilde`` to represent this.

    >>> from sympy import Symbol
    >>> from sympy.physics.biomechanics import FiberForceLengthActiveDeGroote2016
    >>> l_M_tilde = Symbol('l_M_tilde')
    >>> fl_M = FiberForceLengthActiveDeGroote2016.with_defaults(l_M_tilde)
    >>> fl_M
    FiberForceLengthActiveDeGroote2016(l_M_tilde, 0.814, 1.06, 0.162, 0.0633,
    0.433, 0.717, -0.0299, 0.2, 0.1, 1.0, 0.354, 0.0)

    It's also possible to populate the two constants with your own values too.

    >>> from sympy import symbols
    >>> c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11 = symbols('c0:12')
    >>> fl_M = FiberForceLengthActiveDeGroote2016(l_M_tilde, c0, c1, c2, c3,
    ...     c4, c5, c6, c7, c8, c9, c10, c11)
    >>> fl_M
    FiberForceLengthActiveDeGroote2016(l_M_tilde, c0, c1, c2, c3, c4, c5, c6,
    c7, c8, c9, c10, c11)

    You don't just have to use symbols as the arguments, it's also possible to
    use expressions. Let's create a new pair of symbols, ``l_M`` and
    ``l_M_opt``, representing muscle fiber length and optimal muscle fiber
    length respectively. We can then represent ``l_M_tilde`` as an expression,
    the ratio of these.

    >>> l_M, l_M_opt = symbols('l_M l_M_opt')
    >>> l_M_tilde = l_M/l_M_opt
    >>> fl_M = FiberForceLengthActiveDeGroote2016.with_defaults(l_M_tilde)
    >>> fl_M
    FiberForceLengthActiveDeGroote2016(l_M/l_M_opt, 0.814, 1.06, 0.162, 0.0633,
    0.433, 0.717, -0.0299, 0.2, 0.1, 1.0, 0.354, 0.0)

    To inspect the actual symbolic expression that this function represents,
    we can call the :meth:`~.doit` method on an instance. We'll use the keyword
    argument ``evaluate=False`` as this will keep the expression in its
    canonical form and won't simplify any constants.

    >>> fl_M.doit(evaluate=False)
    0.814*exp(-19.0519737844841*(l_M/l_M_opt
    - 1.06)**2/(0.390740740740741*l_M/l_M_opt + 1)**2)
    + 0.433*exp(-12.5*(l_M/l_M_opt - 0.717)**2/(l_M/l_M_opt - 0.1495)**2)
    + 0.1*exp(-3.98991349867535*(l_M/l_M_opt - 1.0)**2)

    The function can also be differentiated. We'll differentiate with respect
    to l_M using the ``diff`` method on an instance with the single positional
    argument ``l_M``.

    >>> fl_M.diff(l_M)
    ((-0.79798269973507*l_M/l_M_opt
    + 0.79798269973507)*exp(-3.98991349867535*(l_M/l_M_opt - 1.0)**2)
    + (10.825*(-l_M/l_M_opt + 0.717)/(l_M/l_M_opt - 0.1495)**2
    + 10.825*(l_M/l_M_opt - 0.717)**2/(l_M/l_M_opt
    - 0.1495)**3)*exp(-12.5*(l_M/l_M_opt - 0.717)**2/(l_M/l_M_opt - 0.1495)**2)
    + (31.0166133211401*(-l_M/l_M_opt + 1.06)/(0.390740740740741*l_M/l_M_opt
    + 1)**2 + 13.6174190361677*(0.943396226415094*l_M/l_M_opt
    - 1)**2/(0.390740740740741*l_M/l_M_opt
    + 1)**3)*exp(-21.4067977442463*(0.943396226415094*l_M/l_M_opt
    - 1)**2/(0.390740740740741*l_M/l_M_opt + 1)**2))/l_M_opt

    References
    ==========

    .. [1] De Groote, F., Kinney, A. L., Rao, A. V., & Fregly, B. J., Evaluation
           of direct collocation optimal control problem formulations for
           solving the muscle redundancy problem, Annals of biomedical
           engineering, 44(10), (2016) pp. 2922-2936

    """

    @classmethod
    def with_defaults(cls, l_M_tilde):
        r"""Recommended constructor that will use the published constants.

        Explanation
        ===========

        Returns a new instance of the inverse muscle fiber act force-length
        function using the four constant values specified in the original
        publication.

        These have the values:

        $c0 = 0.814$
        $c1 = 1.06$
        $c2 = 0.162$
        $c3 = 0.0633$
        $c4 = 0.433$
        $c5 = 0.717$
        $c6 = -0.0299$
        $c7 = 0.2$
        $c8 = 0.1$
        $c9 = 1.0$
        $c10 = 0.354$
        $c11 = 0.0$

        Parameters
        ==========

        fl_M_act : Any (sympifiable)
            Normalized passive muscle fiber force as a function of muscle fiber
            length.

        """
        c0 = Float('0.814')
        c1 = Float('1.06')
        c2 = Float('0.162')
        c3 = Float('0.0633')
        c4 = Float('0.433')
        c5 = Float('0.717')
        c6 = Float('-0.0299')
        c7 = Float('0.2')
        c8 = Float('0.1')
        c9 = Float('1.0')
        c10 = Float('0.354')
        c11 = Float('0.0')
        return cls(l_M_tilde, c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11)

    @classmethod
    def eval(cls, l_M_tilde, c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11):
        """Evaluation of basic inputs.

        Parameters
        ==========

        l_M_tilde : Any (sympifiable)
            Normalized muscle fiber length.
        c0 : Any (sympifiable)
            The first constant in the characteristic equation. The published
            value is ``0.814``.
        c1 : Any (sympifiable)
            The second constant in the characteristic equation. The published
            value is ``1.06``.
        c2 : Any (sympifiable)
            The third constant in the characteristic equation. The published
            value is ``0.162``.
        c3 : Any (sympifiable)
            The fourth constant in the characteristic equation. The published
            value is ``0.0633``.
        c4 : Any (sympifiable)
            The fifth constant in the characteristic equation. The published
            value is ``0.433``.
        c5 : Any (sympifiable)
            The sixth constant in the characteristic equation. The published
            value is ``0.717``.
        c6 : Any (sympifiable)
            The seventh constant in the characteristic equation. The published
            value is ``-0.0299``.
        c7 : Any (sympifiable)
            The eighth constant in the characteristic equation. The published
            value is ``0.2``.
        c8 : Any (sympifiable)
            The ninth constant in the characteristic equation. The published
            value is ``0.1``.
        c9 : Any (sympifiable)
            The tenth constant in the characteristic equation. The published
            value is ``1.0``.
        c10 : Any (sympifiable)
            The eleventh constant in the characteristic equation. The published
            value is ``0.354``.
        c11 : Any (sympifiable)
            The tweflth constant in the characteristic equation. The published
            value is ``0.0``.

        """
        pass

    def _eval_evalf(self, prec):
        """Evaluate the expression numerically using ``evalf``."""
        return self.doit(deep=False, evaluate=False)._eval_evalf(prec)

    def doit(self, deep=True, evaluate=True, **hints):
        """Evaluate the expression defining the function.

        Parameters
        ==========

        deep : bool
            Whether ``doit`` should be recursively called. Default is ``True``.
        evaluate : bool.
            Whether the SymPy expression should be evaluated as it is
            constructed. If ``False``, then no constant folding will be
            conducted which will leave the expression in a more numerically-
            stable for values of ``l_M_tilde`` that correspond to a sensible
            operating range for a musculotendon. Default is ``True``.
        **kwargs : dict[str, Any]
            Additional keyword argument pairs to be recursively passed to
            ``doit``.

        """
        l_M_tilde, *constants = self.args
        if deep:
            hints['evaluate'] = evaluate
            l_M_tilde = l_M_tilde.doit(deep=deep, **hints)
            constants = [c.doit(deep=deep, **hints) for c in constants]
        c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11 = constants

        if evaluate:
            return (
                c0*exp(-(((l_M_tilde - c1)/(c2 + c3*l_M_tilde))**2)/2)
                + c4*exp(-(((l_M_tilde - c5)/(c6 + c7*l_M_tilde))**2)/2)
                + c8*exp(-(((l_M_tilde - c9)/(c10 + c11*l_M_tilde))**2)/2)
            )

        return (
            c0*exp(-((UnevaluatedExpr(l_M_tilde - c1)/(c2 + c3*l_M_tilde))**2)/2)
            + c4*exp(-((UnevaluatedExpr(l_M_tilde - c5)/(c6 + c7*l_M_tilde))**2)/2)
            + c8*exp(-((UnevaluatedExpr(l_M_tilde - c9)/(c10 + c11*l_M_tilde))**2)/2)
        )

    def fdiff(self, argindex=1):
        """Derivative of the function with respect to a single argument.

        Parameters
        ==========

        argindex : int
            The index of the function's arguments with respect to which the
            derivative should be taken. Argument indexes start at ``1``.
            Default is ``1``.

        """
        l_M_tilde, c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11 = self.args
        if argindex == 1:
            return (
                c0*(
                    c3*(l_M_tilde - c1)**2/(c2 + c3*l_M_tilde)**3
                    + (c1 - l_M_tilde)/((c2 + c3*l_M_tilde)**2)
                )*exp(-(l_M_tilde - c1)**2/(2*(c2 + c3*l_M_tilde)**2))
                + c4*(
                    c7*(l_M_tilde - c5)**2/(c6 + c7*l_M_tilde)**3
                    + (c5 - l_M_tilde)/((c6 + c7*l_M_tilde)**2)
                )*exp(-(l_M_tilde - c5)**2/(2*(c6 + c7*l_M_tilde)**2))
                + c8*(
                    c11*(l_M_tilde - c9)**2/(c10 + c11*l_M_tilde)**3
                    + (c9 - l_M_tilde)/((c10 + c11*l_M_tilde)**2)
                )*exp(-(l_M_tilde - c9)**2/(2*(c10 + c11*l_M_tilde)**2))
            )
        elif argindex == 2:
            return exp(-(l_M_tilde - c1)**2/(2*(c2 + c3*l_M_tilde)**2))
        elif argindex == 3:
            return (
                c0*(l_M_tilde - c1)/(c2 + c3*l_M_tilde)**2
                *exp(-(l_M_tilde - c1)**2 /(2*(c2 + c3*l_M_tilde)**2))
            )
        elif argindex == 4:
            return (
                c0*(l_M_tilde - c1)**2/(c2 + c3*l_M_tilde)**3
                *exp(-(l_M_tilde - c1)**2/(2*(c2 + c3*l_M_tilde)**2))
            )
        elif argindex == 5:
            return (
                c0*l_M_tilde*(l_M_tilde - c1)**2/(c2 + c3*l_M_tilde)**3
                *exp(-(l_M_tilde - c1)**2/(2*(c2 + c3*l_M_tilde)**2))
            )
        elif argindex == 6:
            return exp(-(l_M_tilde - c5)**2/(2*(c6 + c7*l_M_tilde)**2))
        elif argindex == 7:
            return (
                c4*(l_M_tilde - c5)/(c6 + c7*l_M_tilde)**2
                *exp(-(l_M_tilde - c5)**2 /(2*(c6 + c7*l_M_tilde)**2))
            )
        elif argindex == 8:
            return (
                c4*(l_M_tilde - c5)**2/(c6 + c7*l_M_tilde)**3
                *exp(-(l_M_tilde - c5)**2/(2*(c6 + c7*l_M_tilde)**2))
            )
        elif argindex == 9:
            return (
                c4*l_M_tilde*(l_M_tilde - c5)**2/(c6 + c7*l_M_tilde)**3
                *exp(-(l_M_tilde - c5)**2/(2*(c6 + c7*l_M_tilde)**2))
            )
        elif argindex == 10:
            return exp(-(l_M_tilde - c9)**2/(2*(c10 + c11*l_M_tilde)**2))
        elif argindex == 11:
            return (
                c8*(l_M_tilde - c9)/(c10 + c11*l_M_tilde)**2
                *exp(-(l_M_tilde - c9)**2 /(2*(c10 + c11*l_M_tilde)**2))
            )
        elif argindex == 12:
            return (
                c8*(l_M_tilde - c9)**2/(c10 + c11*l_M_tilde)**3
                *exp(-(l_M_tilde - c9)**2/(2*(c10 + c11*l_M_tilde)**2))
            )
        elif argindex == 13:
            return (
                c8*l_M_tilde*(l_M_tilde - c9)**2/(c10 + c11*l_M_tilde)**3
                *exp(-(l_M_tilde - c9)**2/(2*(c10 + c11*l_M_tilde)**2))
            )

        raise ArgumentIndexError(self, argindex)

    def _latex(self, printer):
        """Print a LaTeX representation of the function defining the curve.

        Parameters
        ==========

        printer : Printer
            The printer to be used to print the LaTeX string representation.

        """
        l_M_tilde = self.args[0]
        _l_M_tilde = printer._print(l_M_tilde)
        return r'\operatorname{fl}^M_{act} \left( %s \right)' % _l_M_tilde


class FiberForceVelocityDeGroote2016(CharacteristicCurveFunction):
    r"""Muscle fiber force-velocity curve based on De Groote et al., 2016 [1]_.

    Explanation
    ===========

    Gives the normalized muscle fiber force produced as a function of
    normalized tendon velocity.

    The function is defined by the equation:

    $fv^M = c_0 \log{\left(c_1 \tilde{v}_m + c_2\right) + \sqrt{\left(c_1 \tilde{v}_m + c_2\right)^2 + 1}} + c_3$

    with constant values of $c_0 = -0.318$, $c_1 = -8.149$, $c_2 = -0.374$, and
    $c_3 = 0.886$.

    While it is possible to change the constant values, these were carefully
    selected in the original publication to give the characteristic curve
    specific and required properties. For example, the function produces a
    normalized muscle fiber force of 1 when the muscle fibers are contracting
    isometrically (they have an extension rate of 0).

    Examples
    ========

    The preferred way to instantiate :class:`FiberForceVelocityDeGroote2016` is using
    the :meth:`~.with_defaults` constructor because this will automatically populate
    the constants within the characteristic curve equation with the floating
    point values from the original publication. This constructor takes a single
    argument corresponding to normalized muscle fiber extension velocity. We'll
    create a :class:`~.Symbol` called ``v_M_tilde`` to represent this.

    >>> from sympy import Symbol
    >>> from sympy.physics.biomechanics import FiberForceVelocityDeGroote2016
    >>> v_M_tilde = Symbol('v_M_tilde')
    >>> fv_M = FiberForceVelocityDeGroote2016.with_defaults(v_M_tilde)
    >>> fv_M
    FiberForceVelocityDeGroote2016(v_M_tilde, -0.318, -8.149, -0.374, 0.886)

    It's also possible to populate the four constants with your own values too.

    >>> from sympy import symbols
    >>> c0, c1, c2, c3 = symbols('c0 c1 c2 c3')
    >>> fv_M = FiberForceVelocityDeGroote2016(v_M_tilde, c0, c1, c2, c3)
    >>> fv_M
    FiberForceVelocityDeGroote2016(v_M_tilde, c0, c1, c2, c3)

    You don't just have to use symbols as the arguments, it's also possible to
    use expressions. Let's create a new pair of symbols, ``v_M`` and
    ``v_M_max``, representing muscle fiber extension velocity and maximum
    muscle fiber extension velocity respectively. We can then represent
    ``v_M_tilde`` as an expression, the ratio of these.

    >>> v_M, v_M_max = symbols('v_M v_M_max')
    >>> v_M_tilde = v_M/v_M_max
    >>> fv_M = FiberForceVelocityDeGroote2016.with_defaults(v_M_tilde)
    >>> fv_M
    FiberForceVelocityDeGroote2016(v_M/v_M_max, -0.318, -8.149, -0.374, 0.886)

    To inspect the actual symbolic expression that this function represents,
    we can call the :meth:`~.doit` method on an instance. We'll use the keyword
    argument ``evaluate=False`` as this will keep the expression in its
    canonical form and won't simplify any constants.

    >>> fv_M.doit(evaluate=False)
    0.886 - 0.318*log(-8.149*v_M/v_M_max - 0.374 + sqrt(1 + (-8.149*v_M/v_M_max
    - 0.374)**2))

    The function can also be differentiated. We'll differentiate with respect
    to v_M using the ``diff`` method on an instance with the single positional
    argument ``v_M``.

    >>> fv_M.diff(v_M)
    2.591382*(1 + (-8.149*v_M/v_M_max - 0.374)**2)**(-1/2)/v_M_max

    References
    ==========

    .. [1] De Groote, F., Kinney, A. L., Rao, A. V., & Fregly, B. J., Evaluation
           of direct collocation optimal control problem formulations for
           solving the muscle redundancy problem, Annals of biomedical
           engineering, 44(10), (2016) pp. 2922-2936

    """

    @classmethod
    def with_defaults(cls, v_M_tilde):
        r"""Recommended constructor that will use the published constants.

        Explanation
        ===========

        Returns a new instance of the muscle fiber force-velocity function
        using the four constant values specified in the original publication.

        These have the values:

        $c_0 = -0.318$
        $c_1 = -8.149$
        $c_2 = -0.374$
        $c_3 = 0.886$

        Parameters
        ==========

        v_M_tilde : Any (sympifiable)
            Normalized muscle fiber extension velocity.

        """
        c0 = Float('-0.318')
        c1 = Float('-8.149')
        c2 = Float('-0.374')
        c3 = Float('0.886')
        return cls(v_M_tilde, c0, c1, c2, c3)

    @classmethod
    def eval(cls, v_M_tilde, c0, c1, c2, c3):
        """Evaluation of basic inputs.

        Parameters
        ==========

        v_M_tilde : Any (sympifiable)
            Normalized muscle fiber extension velocity.
        c0 : Any (sympifiable)
            The first constant in the characteristic equation. The published
            value is ``-0.318``.
        c1 : Any (sympifiable)
            The second constant in the characteristic equation. The published
            value is ``-8.149``.
        c2 : Any (sympifiable)
            The third constant in the characteristic equation. The published
            value is ``-0.374``.
        c3 : Any (sympifiable)
            The fourth constant in the characteristic equation. The published
            value is ``0.886``.

        """
        pass

    def _eval_evalf(self, prec):
        """Evaluate the expression numerically using ``evalf``."""
        return self.doit(deep=False, evaluate=False)._eval_evalf(prec)

    def doit(self, deep=True, evaluate=True, **hints):
        """Evaluate the expression defining the function.

        Parameters
        ==========

        deep : bool
            Whether ``doit`` should be recursively called. Default is ``True``.
        evaluate : bool.
            Whether the SymPy expression should be evaluated as it is
            constructed. If ``False``, then no constant folding will be
            conducted which will leave the expression in a more numerically-
            stable for values of ``v_M_tilde`` that correspond to a sensible
            operating range for a musculotendon. Default is ``True``.
        **kwargs : dict[str, Any]
            Additional keyword argument pairs to be recursively passed to
            ``doit``.

        """
        v_M_tilde, *constants = self.args
        if deep:
            hints['evaluate'] = evaluate
            v_M_tilde = v_M_tilde.doit(deep=deep, **hints)
            c0, c1, c2, c3 = [c.doit(deep=deep, **hints) for c in constants]
        else:
            c0, c1, c2, c3 = constants

        if evaluate:
            return c0*log(c1*v_M_tilde + c2 + sqrt((c1*v_M_tilde + c2)**2 + 1)) + c3

        return c0*log(c1*v_M_tilde + c2 + sqrt(UnevaluatedExpr(c1*v_M_tilde + c2)**2 + 1)) + c3

    def fdiff(self, argindex=1):
        """Derivative of the function with respect to a single argument.

        Parameters
        ==========

        argindex : int
            The index of the function's arguments with respect to which the
            derivative should be taken. Argument indexes start at ``1``.
            Default is ``1``.

        """
        v_M_tilde, c0, c1, c2, c3 = self.args
        if argindex == 1:
            return c0*c1/sqrt(UnevaluatedExpr(c1*v_M_tilde + c2)**2 + 1)
        elif argindex == 2:
            return log(
                c1*v_M_tilde + c2
                + sqrt(UnevaluatedExpr(c1*v_M_tilde + c2)**2 + 1)
            )
        elif argindex == 3:
            return c0*v_M_tilde/sqrt(UnevaluatedExpr(c1*v_M_tilde + c2)**2 + 1)
        elif argindex == 4:
            return c0/sqrt(UnevaluatedExpr(c1*v_M_tilde + c2)**2 + 1)
        elif argindex == 5:
            return Integer(1)

        raise ArgumentIndexError(self, argindex)

    def inverse(self, argindex=1):
        """Inverse function.

        Parameters
        ==========

        argindex : int
            Value to start indexing the arguments at. Default is ``1``.

        """
        return FiberForceVelocityInverseDeGroote2016

    def _latex(self, printer):
        """Print a LaTeX representation of the function defining the curve.

        Parameters
        ==========

        printer : Printer
            The printer to be used to print the LaTeX string representation.

        """
        v_M_tilde = self.args[0]
        _v_M_tilde = printer._print(v_M_tilde)
        return r'\operatorname{fv}^M \left( %s \right)' % _v_M_tilde


class FiberForceVelocityInverseDeGroote2016(CharacteristicCurveFunction):
    r"""Inverse muscle fiber force-velocity curve based on De Groote et al.,
    2016 [1]_.

    Explanation
    ===========

    Gives the normalized muscle fiber velocity that produces a specific
    normalized muscle fiber force.

    The function is defined by the equation:

    ${fv^M}^{-1} = \frac{\sinh{\frac{fv^M - c_3}{c_0}} - c_2}{c_1}$

    with constant values of $c_0 = -0.318$, $c_1 = -8.149$, $c_2 = -0.374$, and
    $c_3 = 0.886$. This function is the exact analytical inverse of the related
    muscle fiber force-velocity curve ``FiberForceVelocityDeGroote2016``.

    While it is possible to change the constant values, these were carefully
    selected in the original publication to give the characteristic curve
    specific and required properties. For example, the function produces a
    normalized muscle fiber force of 1 when the muscle fibers are contracting
    isometrically (they have an extension rate of 0).

    Examples
    ========

    The preferred way to instantiate :class:`FiberForceVelocityInverseDeGroote2016`
    is using the :meth:`~.with_defaults` constructor because this will automatically
    populate the constants within the characteristic curve equation with the
    floating point values from the original publication. This constructor takes
    a single argument corresponding to normalized muscle fiber force-velocity
    component of the muscle fiber force. We'll create a :class:`~.Symbol` called
    ``fv_M`` to represent this.

    >>> from sympy import Symbol
    >>> from sympy.physics.biomechanics import FiberForceVelocityInverseDeGroote2016
    >>> fv_M = Symbol('fv_M')
    >>> v_M_tilde = FiberForceVelocityInverseDeGroote2016.with_defaults(fv_M)
    >>> v_M_tilde
    FiberForceVelocityInverseDeGroote2016(fv_M, -0.318, -8.149, -0.374, 0.886)

    It's also possible to populate the four constants with your own values too.

    >>> from sympy import symbols
    >>> c0, c1, c2, c3 = symbols('c0 c1 c2 c3')
    >>> v_M_tilde = FiberForceVelocityInverseDeGroote2016(fv_M, c0, c1, c2, c3)
    >>> v_M_tilde
    FiberForceVelocityInverseDeGroote2016(fv_M, c0, c1, c2, c3)

    To inspect the actual symbolic expression that this function represents,
    we can call the :meth:`~.doit` method on an instance. We'll use the keyword
    argument ``evaluate=False`` as this will keep the expression in its
    canonical form and won't simplify any constants.

    >>> v_M_tilde.doit(evaluate=False)
    (-c2 + sinh((-c3 + fv_M)/c0))/c1

    The function can also be differentiated. We'll differentiate with respect
    to fv_M using the ``diff`` method on an instance with the single positional
    argument ``fv_M``.

    >>> v_M_tilde.diff(fv_M)
    cosh((-c3 + fv_M)/c0)/(c0*c1)

    References
    ==========

    .. [1] De Groote, F., Kinney, A. L., Rao, A. V., & Fregly, B. J., Evaluation
           of direct collocation optimal control problem formulations for
           solving the muscle redundancy problem, Annals of biomedical
           engineering, 44(10), (2016) pp. 2922-2936

    """

    @classmethod
    def with_defaults(cls, fv_M):
        r"""Recommended constructor that will use the published constants.

        Explanation
        ===========

        Returns a new instance of the inverse muscle fiber force-velocity
        function using the four constant values specified in the original
        publication.

        These have the values:

        $c_0 = -0.318$
        $c_1 = -8.149$
        $c_2 = -0.374$
        $c_3 = 0.886$

        Parameters
        ==========

        fv_M : Any (sympifiable)
            Normalized muscle fiber extension velocity.

        """
        c0 = Float('-0.318')
        c1 = Float('-8.149')
        c2 = Float('-0.374')
        c3 = Float('0.886')
        return cls(fv_M, c0, c1, c2, c3)

    @classmethod
    def eval(cls, fv_M, c0, c1, c2, c3):
        """Evaluation of basic inputs.

        Parameters
        ==========

        fv_M : Any (sympifiable)
            Normalized muscle fiber force as a function of muscle fiber
            extension velocity.
        c0 : Any (sympifiable)
            The first constant in the characteristic equation. The published
            value is ``-0.318``.
        c1 : Any (sympifiable)
            The second constant in the characteristic equation. The published
            value is ``-8.149``.
        c2 : Any (sympifiable)
            The third constant in the characteristic equation. The published
            value is ``-0.374``.
        c3 : Any (sympifiable)
            The fourth constant in the characteristic equation. The published
            value is ``0.886``.

        """
        pass

    def _eval_evalf(self, prec):
        """Evaluate the expression numerically using ``evalf``."""
        return self.doit(deep=False, evaluate=False)._eval_evalf(prec)

    def doit(self, deep=True, evaluate=True, **hints):
        """Evaluate the expression defining the function.

        Parameters
        ==========

        deep : bool
            Whether ``doit`` should be recursively called. Default is ``True``.
        evaluate : bool.
            Whether the SymPy expression should be evaluated as it is
            constructed. If ``False``, then no constant folding will be
            conducted which will leave the expression in a more numerically-
            stable for values of ``fv_M`` that correspond to a sensible
            operating range for a musculotendon. Default is ``True``.
        **kwargs : dict[str, Any]
            Additional keyword argument pairs to be recursively passed to
            ``doit``.

        """
        fv_M, *constants = self.args
        if deep:
            hints['evaluate'] = evaluate
            fv_M = fv_M.doit(deep=deep, **hints)
            c0, c1, c2, c3 = [c.doit(deep=deep, **hints) for c in constants]
        else:
            c0, c1, c2, c3 = constants

        if evaluate:
            return (sinh((fv_M - c3)/c0) - c2)/c1

        return (sinh(UnevaluatedExpr(fv_M - c3)/c0) - c2)/c1

    def fdiff(self, argindex=1):
        """Derivative of the function with respect to a single argument.

        Parameters
        ==========

        argindex : int
            The index of the function's arguments with respect to which the
            derivative should be taken. Argument indexes start at ``1``.
            Default is ``1``.

        """
        fv_M, c0, c1, c2, c3 = self.args
        if argindex == 1:
            return cosh((fv_M - c3)/c0)/(c0*c1)
        elif argindex == 2:
            return (c3 - fv_M)*cosh((fv_M - c3)/c0)/(c0**2*c1)
        elif argindex == 3:
            return (c2 - sinh((fv_M - c3)/c0))/c1**2
        elif argindex == 4:
            return -1/c1
        elif argindex == 5:
            return -cosh((fv_M - c3)/c0)/(c0*c1)

        raise ArgumentIndexError(self, argindex)

    def inverse(self, argindex=1):
        """Inverse function.

        Parameters
        ==========

        argindex : int
            Value to start indexing the arguments at. Default is ``1``.

        """
        return FiberForceVelocityDeGroote2016

    def _latex(self, printer):
        """Print a LaTeX representation of the function defining the curve.

        Parameters
        ==========

        printer : Printer
            The printer to be used to print the LaTeX string representation.

        """
        fv_M = self.args[0]
        _fv_M = printer._print(fv_M)
        return r'\left( \operatorname{fv}^M \right)^{-1} \left( %s \right)' % _fv_M


@dataclass(frozen=True)
class CharacteristicCurveCollection:
    """Simple data container to group together related characteristic curves."""
    tendon_force_length: CharacteristicCurveFunction
    tendon_force_length_inverse: CharacteristicCurveFunction
    fiber_force_length_passive: CharacteristicCurveFunction
    fiber_force_length_passive_inverse: CharacteristicCurveFunction
    fiber_force_length_active: CharacteristicCurveFunction
    fiber_force_velocity: CharacteristicCurveFunction
    fiber_force_velocity_inverse: CharacteristicCurveFunction

    def __iter__(self):
        """Iterator support for ``CharacteristicCurveCollection``."""
        yield self.tendon_force_length
        yield self.tendon_force_length_inverse
        yield self.fiber_force_length_passive
        yield self.fiber_force_length_passive_inverse
        yield self.fiber_force_length_active
        yield self.fiber_force_velocity
        yield self.fiber_force_velocity_inverse