File size: 25,521 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
r"""Activation dynamics for musclotendon models.

Musculotendon models are able to produce active force when they are activated,
which is when a chemical process has taken place within the muscle fibers
causing them to voluntarily contract. Biologically this chemical process (the
diffusion of :math:`\textrm{Ca}^{2+}` ions) is not the input in the system,
electrical signals from the nervous system are. These are termed excitations.
Activation dynamics, which relates the normalized excitation level to the
normalized activation level, can be modeled by the models present in this
module.

"""

from abc import ABC, abstractmethod
from functools import cached_property

from sympy.core.symbol import Symbol
from sympy.core.numbers import Float, Integer, Rational
from sympy.functions.elementary.hyperbolic import tanh
from sympy.matrices.dense import MutableDenseMatrix as Matrix, zeros
from sympy.physics.biomechanics._mixin import _NamedMixin
from sympy.physics.mechanics import dynamicsymbols


__all__ = [
    'ActivationBase',
    'FirstOrderActivationDeGroote2016',
    'ZerothOrderActivation',
]


class ActivationBase(ABC, _NamedMixin):
    """Abstract base class for all activation dynamics classes to inherit from.

    Notes
    =====

    Instances of this class cannot be directly instantiated by users. However,
    it can be used to created custom activation dynamics types through
    subclassing.

    """

    def __init__(self, name):
        """Initializer for ``ActivationBase``."""
        self.name = str(name)

        # Symbols
        self._e = dynamicsymbols(f"e_{name}")
        self._a = dynamicsymbols(f"a_{name}")

    @classmethod
    @abstractmethod
    def with_defaults(cls, name):
        """Alternate constructor that provides recommended defaults for
        constants."""
        pass

    @property
    def excitation(self):
        """Dynamic symbol representing excitation.

        Explanation
        ===========

        The alias ``e`` can also be used to access the same attribute.

        """
        return self._e

    @property
    def e(self):
        """Dynamic symbol representing excitation.

        Explanation
        ===========

        The alias ``excitation`` can also be used to access the same attribute.

        """
        return self._e

    @property
    def activation(self):
        """Dynamic symbol representing activation.

        Explanation
        ===========

        The alias ``a`` can also be used to access the same attribute.

        """
        return self._a

    @property
    def a(self):
        """Dynamic symbol representing activation.

        Explanation
        ===========

        The alias ``activation`` can also be used to access the same attribute.

        """
        return self._a

    @property
    @abstractmethod
    def order(self):
        """Order of the (differential) equation governing activation."""
        pass

    @property
    @abstractmethod
    def state_vars(self):
        """Ordered column matrix of functions of time that represent the state
        variables.

        Explanation
        ===========

        The alias ``x`` can also be used to access the same attribute.

        """
        pass

    @property
    @abstractmethod
    def x(self):
        """Ordered column matrix of functions of time that represent the state
        variables.

        Explanation
        ===========

        The alias ``state_vars`` can also be used to access the same attribute.

        """
        pass

    @property
    @abstractmethod
    def input_vars(self):
        """Ordered column matrix of functions of time that represent the input
        variables.

        Explanation
        ===========

        The alias ``r`` can also be used to access the same attribute.

        """
        pass

    @property
    @abstractmethod
    def r(self):
        """Ordered column matrix of functions of time that represent the input
        variables.

        Explanation
        ===========

        The alias ``input_vars`` can also be used to access the same attribute.

        """
        pass

    @property
    @abstractmethod
    def constants(self):
        """Ordered column matrix of non-time varying symbols present in ``M``
        and ``F``.

        Only symbolic constants are returned. If a numeric type (e.g. ``Float``)
        has been used instead of ``Symbol`` for a constant then that attribute
        will not be included in the matrix returned by this property. This is
        because the primary use of this property attribute is to provide an
        ordered sequence of the still-free symbols that require numeric values
        during code generation.

        Explanation
        ===========

        The alias ``p`` can also be used to access the same attribute.

        """
        pass

    @property
    @abstractmethod
    def p(self):
        """Ordered column matrix of non-time varying symbols present in ``M``
        and ``F``.

        Only symbolic constants are returned. If a numeric type (e.g. ``Float``)
        has been used instead of ``Symbol`` for a constant then that attribute
        will not be included in the matrix returned by this property. This is
        because the primary use of this property attribute is to provide an
        ordered sequence of the still-free symbols that require numeric values
        during code generation.

        Explanation
        ===========

        The alias ``constants`` can also be used to access the same attribute.

        """
        pass

    @property
    @abstractmethod
    def M(self):
        """Ordered square matrix of coefficients on the LHS of ``M x' = F``.

        Explanation
        ===========

        The square matrix that forms part of the LHS of the linear system of
        ordinary differential equations governing the activation dynamics:

        ``M(x, r, t, p) x' = F(x, r, t, p)``.

        """
        pass

    @property
    @abstractmethod
    def F(self):
        """Ordered column matrix of equations on the RHS of ``M x' = F``.

        Explanation
        ===========

        The column matrix that forms the RHS of the linear system of ordinary
        differential equations governing the activation dynamics:

        ``M(x, r, t, p) x' = F(x, r, t, p)``.

        """
        pass

    @abstractmethod
    def rhs(self):
        """

        Explanation
        ===========

        The solution to the linear system of ordinary differential equations
        governing the activation dynamics:

        ``M(x, r, t, p) x' = F(x, r, t, p)``.

        """
        pass

    def __eq__(self, other):
        """Equality check for activation dynamics."""
        if type(self) != type(other):
            return False
        if self.name != other.name:
            return False
        return True

    def __repr__(self):
        """Default representation of activation dynamics."""
        return f'{self.__class__.__name__}({self.name!r})'


class ZerothOrderActivation(ActivationBase):
    """Simple zeroth-order activation dynamics mapping excitation to
    activation.

    Explanation
    ===========

    Zeroth-order activation dynamics are useful in instances where you want to
    reduce the complexity of your musculotendon dynamics as they simple map
    exictation to activation. As a result, no additional state equations are
    introduced to your system. They also remove a potential source of delay
    between the input and dynamics of your system as no (ordinary) differential
    equations are involed.

    """

    def __init__(self, name):
        """Initializer for ``ZerothOrderActivation``.

        Parameters
        ==========

        name : str
            The name identifier associated with the instance. Must be a string
            of length at least 1.

        """
        super().__init__(name)

        # Zeroth-order activation dynamics has activation equal excitation so
        # overwrite the symbol for activation with the excitation symbol.
        self._a = self._e

    @classmethod
    def with_defaults(cls, name):
        """Alternate constructor that provides recommended defaults for
        constants.

        Explanation
        ===========

        As this concrete class doesn't implement any constants associated with
        its dynamics, this ``classmethod`` simply creates a standard instance
        of ``ZerothOrderActivation``. An implementation is provided to ensure
        a consistent interface between all ``ActivationBase`` concrete classes.

        """
        return cls(name)

    @property
    def order(self):
        """Order of the (differential) equation governing activation."""
        return 0

    @property
    def state_vars(self):
        """Ordered column matrix of functions of time that represent the state
        variables.

        Explanation
        ===========

        As zeroth-order activation dynamics simply maps excitation to
        activation, this class has no associated state variables and so this
        property return an empty column ``Matrix`` with shape (0, 1).

        The alias ``x`` can also be used to access the same attribute.

        """
        return zeros(0, 1)

    @property
    def x(self):
        """Ordered column matrix of functions of time that represent the state
        variables.

        Explanation
        ===========

        As zeroth-order activation dynamics simply maps excitation to
        activation, this class has no associated state variables and so this
        property return an empty column ``Matrix`` with shape (0, 1).

        The alias ``state_vars`` can also be used to access the same attribute.

        """
        return zeros(0, 1)

    @property
    def input_vars(self):
        """Ordered column matrix of functions of time that represent the input
        variables.

        Explanation
        ===========

        Excitation is the only input in zeroth-order activation dynamics and so
        this property returns a column ``Matrix`` with one entry, ``e``, and
        shape (1, 1).

        The alias ``r`` can also be used to access the same attribute.

        """
        return Matrix([self._e])

    @property
    def r(self):
        """Ordered column matrix of functions of time that represent the input
        variables.

        Explanation
        ===========

        Excitation is the only input in zeroth-order activation dynamics and so
        this property returns a column ``Matrix`` with one entry, ``e``, and
        shape (1, 1).

        The alias ``input_vars`` can also be used to access the same attribute.

        """
        return Matrix([self._e])

    @property
    def constants(self):
        """Ordered column matrix of non-time varying symbols present in ``M``
        and ``F``.

        Only symbolic constants are returned. If a numeric type (e.g. ``Float``)
        has been used instead of ``Symbol`` for a constant then that attribute
        will not be included in the matrix returned by this property. This is
        because the primary use of this property attribute is to provide an
        ordered sequence of the still-free symbols that require numeric values
        during code generation.

        Explanation
        ===========

        As zeroth-order activation dynamics simply maps excitation to
        activation, this class has no associated constants and so this property
        return an empty column ``Matrix`` with shape (0, 1).

        The alias ``p`` can also be used to access the same attribute.

        """
        return zeros(0, 1)

    @property
    def p(self):
        """Ordered column matrix of non-time varying symbols present in ``M``
        and ``F``.

        Only symbolic constants are returned. If a numeric type (e.g. ``Float``)
        has been used instead of ``Symbol`` for a constant then that attribute
        will not be included in the matrix returned by this property. This is
        because the primary use of this property attribute is to provide an
        ordered sequence of the still-free symbols that require numeric values
        during code generation.

        Explanation
        ===========

        As zeroth-order activation dynamics simply maps excitation to
        activation, this class has no associated constants and so this property
        return an empty column ``Matrix`` with shape (0, 1).

        The alias ``constants`` can also be used to access the same attribute.

        """
        return zeros(0, 1)

    @property
    def M(self):
        """Ordered square matrix of coefficients on the LHS of ``M x' = F``.

        Explanation
        ===========

        The square matrix that forms part of the LHS of the linear system of
        ordinary differential equations governing the activation dynamics:

        ``M(x, r, t, p) x' = F(x, r, t, p)``.

        As zeroth-order activation dynamics have no state variables, this
        linear system has dimension 0 and therefore ``M`` is an empty square
        ``Matrix`` with shape (0, 0).

        """
        return Matrix([])

    @property
    def F(self):
        """Ordered column matrix of equations on the RHS of ``M x' = F``.

        Explanation
        ===========

        The column matrix that forms the RHS of the linear system of ordinary
        differential equations governing the activation dynamics:

        ``M(x, r, t, p) x' = F(x, r, t, p)``.

        As zeroth-order activation dynamics have no state variables, this
        linear system has dimension 0 and therefore ``F`` is an empty column
        ``Matrix`` with shape (0, 1).

        """
        return zeros(0, 1)

    def rhs(self):
        """Ordered column matrix of equations for the solution of ``M x' = F``.

        Explanation
        ===========

        The solution to the linear system of ordinary differential equations
        governing the activation dynamics:

        ``M(x, r, t, p) x' = F(x, r, t, p)``.

        As zeroth-order activation dynamics have no state variables, this
        linear has dimension 0 and therefore this method returns an empty
        column ``Matrix`` with shape (0, 1).

        """
        return zeros(0, 1)


class FirstOrderActivationDeGroote2016(ActivationBase):
    r"""First-order activation dynamics based on De Groote et al., 2016 [1]_.

    Explanation
    ===========

    Gives the first-order activation dynamics equation for the rate of change
    of activation with respect to time as a function of excitation and
    activation.

    The function is defined by the equation:

    .. math::

        \frac{da}{dt} = \left(\frac{\frac{1}{2} + a0}{\tau_a \left(\frac{1}{2}
            + \frac{3a}{2}\right)} + \frac{\left(\frac{1}{2}
            + \frac{3a}{2}\right) \left(\frac{1}{2} - a0\right)}{\tau_d}\right)
            \left(e - a\right)

    where

    .. math::

        a0 = \frac{\tanh{\left(b \left(e - a\right) \right)}}{2}

    with constant values of :math:`tau_a = 0.015`, :math:`tau_d = 0.060`, and
    :math:`b = 10`.

    References
    ==========

    .. [1] De Groote, F., Kinney, A. L., Rao, A. V., & Fregly, B. J., Evaluation
           of direct collocation optimal control problem formulations for
           solving the muscle redundancy problem, Annals of biomedical
           engineering, 44(10), (2016) pp. 2922-2936

    """

    def __init__(self,
        name,
        activation_time_constant=None,
        deactivation_time_constant=None,
        smoothing_rate=None,
    ):
        """Initializer for ``FirstOrderActivationDeGroote2016``.

        Parameters
        ==========
        activation time constant : Symbol | Number | None
            The value of the activation time constant governing the delay
            between excitation and activation when excitation exceeds
            activation.
        deactivation time constant : Symbol | Number | None
            The value of the deactivation time constant governing the delay
            between excitation and activation when activation exceeds
            excitation.
        smoothing_rate : Symbol | Number | None
            The slope of the hyperbolic tangent function used to smooth between
            the switching of the equations where excitation exceed activation
            and where activation exceeds excitation. The recommended value to
            use is ``10``, but values between ``0.1`` and ``100`` can be used.

        """
        super().__init__(name)

        # Symbols
        self.activation_time_constant = activation_time_constant
        self.deactivation_time_constant = deactivation_time_constant
        self.smoothing_rate = smoothing_rate

    @classmethod
    def with_defaults(cls, name):
        r"""Alternate constructor that will use the published constants.

        Explanation
        ===========

        Returns an instance of ``FirstOrderActivationDeGroote2016`` using the
        three constant values specified in the original publication.

        These have the values:

        :math:`tau_a = 0.015`
        :math:`tau_d = 0.060`
        :math:`b = 10`

        """
        tau_a = Float('0.015')
        tau_d = Float('0.060')
        b = Float('10.0')
        return cls(name, tau_a, tau_d, b)

    @property
    def activation_time_constant(self):
        """Delay constant for activation.

        Explanation
        ===========

        The alias ```tau_a`` can also be used to access the same attribute.

        """
        return self._tau_a

    @activation_time_constant.setter
    def activation_time_constant(self, tau_a):
        if hasattr(self, '_tau_a'):
            msg = (
                f'Can\'t set attribute `activation_time_constant` to '
                f'{repr(tau_a)} as it is immutable and already has value '
                f'{self._tau_a}.'
            )
            raise AttributeError(msg)
        self._tau_a = Symbol(f'tau_a_{self.name}') if tau_a is None else tau_a

    @property
    def tau_a(self):
        """Delay constant for activation.

        Explanation
        ===========

        The alias ``activation_time_constant`` can also be used to access the
        same attribute.

        """
        return self._tau_a

    @property
    def deactivation_time_constant(self):
        """Delay constant for deactivation.

        Explanation
        ===========

        The alias ``tau_d`` can also be used to access the same attribute.

        """
        return self._tau_d

    @deactivation_time_constant.setter
    def deactivation_time_constant(self, tau_d):
        if hasattr(self, '_tau_d'):
            msg = (
                f'Can\'t set attribute `deactivation_time_constant` to '
                f'{repr(tau_d)} as it is immutable and already has value '
                f'{self._tau_d}.'
            )
            raise AttributeError(msg)
        self._tau_d = Symbol(f'tau_d_{self.name}') if tau_d is None else tau_d

    @property
    def tau_d(self):
        """Delay constant for deactivation.

        Explanation
        ===========

        The alias ``deactivation_time_constant`` can also be used to access the
        same attribute.

        """
        return self._tau_d

    @property
    def smoothing_rate(self):
        """Smoothing constant for the hyperbolic tangent term.

        Explanation
        ===========

        The alias ``b`` can also be used to access the same attribute.

        """
        return self._b

    @smoothing_rate.setter
    def smoothing_rate(self, b):
        if hasattr(self, '_b'):
            msg = (
                f'Can\'t set attribute `smoothing_rate` to {b!r} as it is '
                f'immutable and already has value {self._b!r}.'
            )
            raise AttributeError(msg)
        self._b = Symbol(f'b_{self.name}') if b is None else b

    @property
    def b(self):
        """Smoothing constant for the hyperbolic tangent term.

        Explanation
        ===========

        The alias ``smoothing_rate`` can also be used to access the same
        attribute.

        """
        return self._b

    @property
    def order(self):
        """Order of the (differential) equation governing activation."""
        return 1

    @property
    def state_vars(self):
        """Ordered column matrix of functions of time that represent the state
        variables.

        Explanation
        ===========

        The alias ``x`` can also be used to access the same attribute.

        """
        return Matrix([self._a])

    @property
    def x(self):
        """Ordered column matrix of functions of time that represent the state
        variables.

        Explanation
        ===========

        The alias ``state_vars`` can also be used to access the same attribute.

        """
        return Matrix([self._a])

    @property
    def input_vars(self):
        """Ordered column matrix of functions of time that represent the input
        variables.

        Explanation
        ===========

        The alias ``r`` can also be used to access the same attribute.

        """
        return Matrix([self._e])

    @property
    def r(self):
        """Ordered column matrix of functions of time that represent the input
        variables.

        Explanation
        ===========

        The alias ``input_vars`` can also be used to access the same attribute.

        """
        return Matrix([self._e])

    @property
    def constants(self):
        """Ordered column matrix of non-time varying symbols present in ``M``
        and ``F``.

        Only symbolic constants are returned. If a numeric type (e.g. ``Float``)
        has been used instead of ``Symbol`` for a constant then that attribute
        will not be included in the matrix returned by this property. This is
        because the primary use of this property attribute is to provide an
        ordered sequence of the still-free symbols that require numeric values
        during code generation.

        Explanation
        ===========

        The alias ``p`` can also be used to access the same attribute.

        """
        constants = [self._tau_a, self._tau_d, self._b]
        symbolic_constants = [c for c in constants if not c.is_number]
        return Matrix(symbolic_constants) if symbolic_constants else zeros(0, 1)

    @property
    def p(self):
        """Ordered column matrix of non-time varying symbols present in ``M``
        and ``F``.

        Explanation
        ===========

        Only symbolic constants are returned. If a numeric type (e.g. ``Float``)
        has been used instead of ``Symbol`` for a constant then that attribute
        will not be included in the matrix returned by this property. This is
        because the primary use of this property attribute is to provide an
        ordered sequence of the still-free symbols that require numeric values
        during code generation.

        The alias ``constants`` can also be used to access the same attribute.

        """
        constants = [self._tau_a, self._tau_d, self._b]
        symbolic_constants = [c for c in constants if not c.is_number]
        return Matrix(symbolic_constants) if symbolic_constants else zeros(0, 1)

    @property
    def M(self):
        """Ordered square matrix of coefficients on the LHS of ``M x' = F``.

        Explanation
        ===========

        The square matrix that forms part of the LHS of the linear system of
        ordinary differential equations governing the activation dynamics:

        ``M(x, r, t, p) x' = F(x, r, t, p)``.

        """
        return Matrix([Integer(1)])

    @property
    def F(self):
        """Ordered column matrix of equations on the RHS of ``M x' = F``.

        Explanation
        ===========

        The column matrix that forms the RHS of the linear system of ordinary
        differential equations governing the activation dynamics:

        ``M(x, r, t, p) x' = F(x, r, t, p)``.

        """
        return Matrix([self._da_eqn])

    def rhs(self):
        """Ordered column matrix of equations for the solution of ``M x' = F``.

        Explanation
        ===========

        The solution to the linear system of ordinary differential equations
        governing the activation dynamics:

        ``M(x, r, t, p) x' = F(x, r, t, p)``.

        """
        return Matrix([self._da_eqn])

    @cached_property
    def _da_eqn(self):
        HALF = Rational(1, 2)
        a0 = HALF * tanh(self._b * (self._e - self._a))
        a1 = (HALF + Rational(3, 2) * self._a)
        a2 = (HALF + a0) / (self._tau_a * a1)
        a3 = a1 * (HALF - a0) / self._tau_d
        activation_dynamics_equation = (a2 + a3) * (self._e - self._a)
        return activation_dynamics_equation

    def __eq__(self, other):
        """Equality check for ``FirstOrderActivationDeGroote2016``."""
        if type(self) != type(other):
            return False
        self_attrs = (self.name, self.tau_a, self.tau_d, self.b)
        other_attrs = (other.name, other.tau_a, other.tau_d, other.b)
        if self_attrs == other_attrs:
            return True
        return False

    def __repr__(self):
        """Representation of ``FirstOrderActivationDeGroote2016``."""
        return (
            f'{self.__class__.__name__}({self.name!r}, '
            f'activation_time_constant={self.tau_a!r}, '
            f'deactivation_time_constant={self.tau_d!r}, '
            f'smoothing_rate={self.b!r})'
        )