File size: 43,484 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
"""Transform a string with Python-like source code into SymPy expression. """

from tokenize import (generate_tokens, untokenize, TokenError,
    NUMBER, STRING, NAME, OP, ENDMARKER, ERRORTOKEN, NEWLINE)

from keyword import iskeyword

import ast
import unicodedata
from io import StringIO
import builtins
import types
from typing import Tuple as tTuple, Dict as tDict, Any, Callable, \
    List, Optional, Union as tUnion

from sympy.assumptions.ask import AssumptionKeys
from sympy.core.basic import Basic
from sympy.core import Symbol
from sympy.core.function import Function
from sympy.utilities.misc import func_name
from sympy.functions.elementary.miscellaneous import Max, Min


null = ''

TOKEN = tTuple[int, str]
DICT = tDict[str, Any]
TRANS = Callable[[List[TOKEN], DICT, DICT], List[TOKEN]]

def _token_splittable(token_name: str) -> bool:
    """
    Predicate for whether a token name can be split into multiple tokens.

    A token is splittable if it does not contain an underscore character and
    it is not the name of a Greek letter. This is used to implicitly convert
    expressions like 'xyz' into 'x*y*z'.
    """
    if '_' in token_name:
        return False
    try:
        return not unicodedata.lookup('GREEK SMALL LETTER ' + token_name)
    except KeyError:
        return len(token_name) > 1


def _token_callable(token: TOKEN, local_dict: DICT, global_dict: DICT, nextToken=None):
    """
    Predicate for whether a token name represents a callable function.

    Essentially wraps ``callable``, but looks up the token name in the
    locals and globals.
    """
    func = local_dict.get(token[1])
    if not func:
        func = global_dict.get(token[1])
    return callable(func) and not isinstance(func, Symbol)


def _add_factorial_tokens(name: str, result: List[TOKEN]) -> List[TOKEN]:
    if result == [] or result[-1][1] == '(':
        raise TokenError()

    beginning = [(NAME, name), (OP, '(')]
    end = [(OP, ')')]

    diff = 0
    length = len(result)

    for index, token in enumerate(result[::-1]):
        toknum, tokval = token
        i = length - index - 1

        if tokval == ')':
            diff += 1
        elif tokval == '(':
            diff -= 1

        if diff == 0:
            if i - 1 >= 0 and result[i - 1][0] == NAME:
                return result[:i - 1] + beginning + result[i - 1:] + end
            else:
                return result[:i] + beginning + result[i:] + end

    return result


class ParenthesisGroup(List[TOKEN]):
    """List of tokens representing an expression in parentheses."""
    pass


class AppliedFunction:
    """
    A group of tokens representing a function and its arguments.

    `exponent` is for handling the shorthand sin^2, ln^2, etc.
    """
    def __init__(self, function: TOKEN, args: ParenthesisGroup, exponent=None):
        if exponent is None:
            exponent = []
        self.function = function
        self.args = args
        self.exponent = exponent
        self.items = ['function', 'args', 'exponent']

    def expand(self) -> List[TOKEN]:
        """Return a list of tokens representing the function"""
        return [self.function, *self.args]

    def __getitem__(self, index):
        return getattr(self, self.items[index])

    def __repr__(self):
        return "AppliedFunction(%s, %s, %s)" % (self.function, self.args,
                                                self.exponent)


def _flatten(result: List[tUnion[TOKEN, AppliedFunction]]):
    result2: List[TOKEN] = []
    for tok in result:
        if isinstance(tok, AppliedFunction):
            result2.extend(tok.expand())
        else:
            result2.append(tok)
    return result2


def _group_parentheses(recursor: TRANS):
    def _inner(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
        """Group tokens between parentheses with ParenthesisGroup.

        Also processes those tokens recursively.

        """
        result: List[tUnion[TOKEN, ParenthesisGroup]] = []
        stacks: List[ParenthesisGroup] = []
        stacklevel = 0
        for token in tokens:
            if token[0] == OP:
                if token[1] == '(':
                    stacks.append(ParenthesisGroup([]))
                    stacklevel += 1
                elif token[1] == ')':
                    stacks[-1].append(token)
                    stack = stacks.pop()

                    if len(stacks) > 0:
                        # We don't recurse here since the upper-level stack
                        # would reprocess these tokens
                        stacks[-1].extend(stack)
                    else:
                        # Recurse here to handle nested parentheses
                        # Strip off the outer parentheses to avoid an infinite loop
                        inner = stack[1:-1]
                        inner = recursor(inner,
                                         local_dict,
                                         global_dict)
                        parenGroup = [stack[0]] + inner + [stack[-1]]
                        result.append(ParenthesisGroup(parenGroup))
                    stacklevel -= 1
                    continue
            if stacklevel:
                stacks[-1].append(token)
            else:
                result.append(token)
        if stacklevel:
            raise TokenError("Mismatched parentheses")
        return result
    return _inner


def _apply_functions(tokens: List[tUnion[TOKEN, ParenthesisGroup]], local_dict: DICT, global_dict: DICT):
    """Convert a NAME token + ParenthesisGroup into an AppliedFunction.

    Note that ParenthesisGroups, if not applied to any function, are
    converted back into lists of tokens.

    """
    result: List[tUnion[TOKEN, AppliedFunction]] = []
    symbol = None
    for tok in tokens:
        if isinstance(tok, ParenthesisGroup):
            if symbol and _token_callable(symbol, local_dict, global_dict):
                result[-1] = AppliedFunction(symbol, tok)
                symbol = None
            else:
                result.extend(tok)
        elif tok[0] == NAME:
            symbol = tok
            result.append(tok)
        else:
            symbol = None
            result.append(tok)
    return result


def _implicit_multiplication(tokens: List[tUnion[TOKEN, AppliedFunction]], local_dict: DICT, global_dict: DICT):
    """Implicitly adds '*' tokens.

    Cases:

    - Two AppliedFunctions next to each other ("sin(x)cos(x)")

    - AppliedFunction next to an open parenthesis ("sin x (cos x + 1)")

    - A close parenthesis next to an AppliedFunction ("(x+2)sin x")\

    - A close parenthesis next to an open parenthesis ("(x+2)(x+3)")

    - AppliedFunction next to an implicitly applied function ("sin(x)cos x")

    """
    result: List[tUnion[TOKEN, AppliedFunction]] = []
    skip = False
    for tok, nextTok in zip(tokens, tokens[1:]):
        result.append(tok)
        if skip:
            skip = False
            continue
        if tok[0] == OP and tok[1] == '.' and nextTok[0] == NAME:
            # Dotted name. Do not do implicit multiplication
            skip = True
            continue
        if isinstance(tok, AppliedFunction):
            if isinstance(nextTok, AppliedFunction):
                result.append((OP, '*'))
            elif nextTok == (OP, '('):
                # Applied function followed by an open parenthesis
                if tok.function[1] == "Function":
                    tok.function = (tok.function[0], 'Symbol')
                result.append((OP, '*'))
            elif nextTok[0] == NAME:
                # Applied function followed by implicitly applied function
                result.append((OP, '*'))
        else:
            if tok == (OP, ')'):
                if isinstance(nextTok, AppliedFunction):
                    # Close parenthesis followed by an applied function
                    result.append((OP, '*'))
                elif nextTok[0] == NAME:
                    # Close parenthesis followed by an implicitly applied function
                    result.append((OP, '*'))
                elif nextTok == (OP, '('):
                    # Close parenthesis followed by an open parenthesis
                    result.append((OP, '*'))
            elif tok[0] == NAME and not _token_callable(tok, local_dict, global_dict):
                if isinstance(nextTok, AppliedFunction) or \
                    (nextTok[0] == NAME and _token_callable(nextTok, local_dict, global_dict)):
                    # Constant followed by (implicitly applied) function
                    result.append((OP, '*'))
                elif nextTok == (OP, '('):
                    # Constant followed by parenthesis
                    result.append((OP, '*'))
                elif nextTok[0] == NAME:
                    # Constant followed by constant
                    result.append((OP, '*'))
    if tokens:
        result.append(tokens[-1])
    return result


def _implicit_application(tokens: List[tUnion[TOKEN, AppliedFunction]], local_dict: DICT, global_dict: DICT):
    """Adds parentheses as needed after functions."""
    result: List[tUnion[TOKEN, AppliedFunction]] = []
    appendParen = 0  # number of closing parentheses to add
    skip = 0  # number of tokens to delay before adding a ')' (to
              # capture **, ^, etc.)
    exponentSkip = False  # skipping tokens before inserting parentheses to
                          # work with function exponentiation
    for tok, nextTok in zip(tokens, tokens[1:]):
        result.append(tok)
        if (tok[0] == NAME and nextTok[0] not in [OP, ENDMARKER, NEWLINE]):
            if _token_callable(tok, local_dict, global_dict, nextTok):  # type: ignore
                result.append((OP, '('))
                appendParen += 1
        # name followed by exponent - function exponentiation
        elif (tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**'):
            if _token_callable(tok, local_dict, global_dict):  # type: ignore
                exponentSkip = True
        elif exponentSkip:
            # if the last token added was an applied function (i.e. the
            # power of the function exponent) OR a multiplication (as
            # implicit multiplication would have added an extraneous
            # multiplication)
            if (isinstance(tok, AppliedFunction)
                or (tok[0] == OP and tok[1] == '*')):
                # don't add anything if the next token is a multiplication
                # or if there's already a parenthesis (if parenthesis, still
                # stop skipping tokens)
                if not (nextTok[0] == OP and nextTok[1] == '*'):
                    if not(nextTok[0] == OP and nextTok[1] == '('):
                        result.append((OP, '('))
                        appendParen += 1
                    exponentSkip = False
        elif appendParen:
            if nextTok[0] == OP and nextTok[1] in ('^', '**', '*'):
                skip = 1
                continue
            if skip:
                skip -= 1
                continue
            result.append((OP, ')'))
            appendParen -= 1

    if tokens:
        result.append(tokens[-1])

    if appendParen:
        result.extend([(OP, ')')] * appendParen)
    return result


def function_exponentiation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
    """Allows functions to be exponentiated, e.g. ``cos**2(x)``.

    Examples
    ========

    >>> from sympy.parsing.sympy_parser import (parse_expr,
    ... standard_transformations, function_exponentiation)
    >>> transformations = standard_transformations + (function_exponentiation,)
    >>> parse_expr('sin**4(x)', transformations=transformations)
    sin(x)**4
    """
    result: List[TOKEN] = []
    exponent: List[TOKEN] = []
    consuming_exponent = False
    level = 0
    for tok, nextTok in zip(tokens, tokens[1:]):
        if tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**':
            if _token_callable(tok, local_dict, global_dict):
                consuming_exponent = True
        elif consuming_exponent:
            if tok[0] == NAME and tok[1] == 'Function':
                tok = (NAME, 'Symbol')
            exponent.append(tok)

            # only want to stop after hitting )
            if tok[0] == nextTok[0] == OP and tok[1] == ')' and nextTok[1] == '(':
                consuming_exponent = False
            # if implicit multiplication was used, we may have )*( instead
            if tok[0] == nextTok[0] == OP and tok[1] == '*' and nextTok[1] == '(':
                consuming_exponent = False
                del exponent[-1]
            continue
        elif exponent and not consuming_exponent:
            if tok[0] == OP:
                if tok[1] == '(':
                    level += 1
                elif tok[1] == ')':
                    level -= 1
            if level == 0:
                result.append(tok)
                result.extend(exponent)
                exponent = []
                continue
        result.append(tok)
    if tokens:
        result.append(tokens[-1])
    if exponent:
        result.extend(exponent)
    return result


def split_symbols_custom(predicate: Callable[[str], bool]):
    """Creates a transformation that splits symbol names.

    ``predicate`` should return True if the symbol name is to be split.

    For instance, to retain the default behavior but avoid splitting certain
    symbol names, a predicate like this would work:


    >>> from sympy.parsing.sympy_parser import (parse_expr, _token_splittable,
    ... standard_transformations, implicit_multiplication,
    ... split_symbols_custom)
    >>> def can_split(symbol):
    ...     if symbol not in ('list', 'of', 'unsplittable', 'names'):
    ...             return _token_splittable(symbol)
    ...     return False
    ...
    >>> transformation = split_symbols_custom(can_split)
    >>> parse_expr('unsplittable', transformations=standard_transformations +
    ... (transformation, implicit_multiplication))
    unsplittable
    """
    def _split_symbols(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
        result: List[TOKEN] = []
        split = False
        split_previous=False

        for tok in tokens:
            if split_previous:
                # throw out closing parenthesis of Symbol that was split
                split_previous=False
                continue
            split_previous=False

            if tok[0] == NAME and tok[1] in ['Symbol', 'Function']:
                split = True

            elif split and tok[0] == NAME:
                symbol = tok[1][1:-1]

                if predicate(symbol):
                    tok_type = result[-2][1]  # Symbol or Function
                    del result[-2:]  # Get rid of the call to Symbol

                    i = 0
                    while i < len(symbol):
                        char = symbol[i]
                        if char in local_dict or char in global_dict:
                            result.append((NAME, "%s" % char))
                        elif char.isdigit():
                            chars = [char]
                            for i in range(i + 1, len(symbol)):
                                if not symbol[i].isdigit():
                                  i -= 1
                                  break
                                chars.append(symbol[i])
                            char = ''.join(chars)
                            result.extend([(NAME, 'Number'), (OP, '('),
                                           (NAME, "'%s'" % char), (OP, ')')])
                        else:
                            use = tok_type if i == len(symbol) else 'Symbol'
                            result.extend([(NAME, use), (OP, '('),
                                           (NAME, "'%s'" % char), (OP, ')')])
                        i += 1

                    # Set split_previous=True so will skip
                    # the closing parenthesis of the original Symbol
                    split = False
                    split_previous = True
                    continue

                else:
                    split = False

            result.append(tok)

        return result

    return _split_symbols


#: Splits symbol names for implicit multiplication.
#:
#: Intended to let expressions like ``xyz`` be parsed as ``x*y*z``. Does not
#: split Greek character names, so ``theta`` will *not* become
#: ``t*h*e*t*a``. Generally this should be used with
#: ``implicit_multiplication``.
split_symbols = split_symbols_custom(_token_splittable)


def implicit_multiplication(tokens: List[TOKEN], local_dict: DICT,
                            global_dict: DICT) -> List[TOKEN]:
    """Makes the multiplication operator optional in most cases.

    Use this before :func:`implicit_application`, otherwise expressions like
    ``sin 2x`` will be parsed as ``x * sin(2)`` rather than ``sin(2*x)``.

    Examples
    ========

    >>> from sympy.parsing.sympy_parser import (parse_expr,
    ... standard_transformations, implicit_multiplication)
    >>> transformations = standard_transformations + (implicit_multiplication,)
    >>> parse_expr('3 x y', transformations=transformations)
    3*x*y
    """
    # These are interdependent steps, so we don't expose them separately
    res1 = _group_parentheses(implicit_multiplication)(tokens, local_dict, global_dict)
    res2 = _apply_functions(res1, local_dict, global_dict)
    res3 = _implicit_multiplication(res2, local_dict, global_dict)
    result = _flatten(res3)
    return result


def implicit_application(tokens: List[TOKEN], local_dict: DICT,
                         global_dict: DICT) -> List[TOKEN]:
    """Makes parentheses optional in some cases for function calls.

    Use this after :func:`implicit_multiplication`, otherwise expressions
    like ``sin 2x`` will be parsed as ``x * sin(2)`` rather than
    ``sin(2*x)``.

    Examples
    ========

    >>> from sympy.parsing.sympy_parser import (parse_expr,
    ... standard_transformations, implicit_application)
    >>> transformations = standard_transformations + (implicit_application,)
    >>> parse_expr('cot z + csc z', transformations=transformations)
    cot(z) + csc(z)
    """
    res1 = _group_parentheses(implicit_application)(tokens, local_dict, global_dict)
    res2 = _apply_functions(res1, local_dict, global_dict)
    res3 = _implicit_application(res2, local_dict, global_dict)
    result = _flatten(res3)
    return result


def implicit_multiplication_application(result: List[TOKEN], local_dict: DICT,
                                        global_dict: DICT) -> List[TOKEN]:
    """Allows a slightly relaxed syntax.

    - Parentheses for single-argument method calls are optional.

    - Multiplication is implicit.

    - Symbol names can be split (i.e. spaces are not needed between
      symbols).

    - Functions can be exponentiated.

    Examples
    ========

    >>> from sympy.parsing.sympy_parser import (parse_expr,
    ... standard_transformations, implicit_multiplication_application)
    >>> parse_expr("10sin**2 x**2 + 3xyz + tan theta",
    ... transformations=(standard_transformations +
    ... (implicit_multiplication_application,)))
    3*x*y*z + 10*sin(x**2)**2 + tan(theta)

    """
    for step in (split_symbols, implicit_multiplication,
                 implicit_application, function_exponentiation):
        result = step(result, local_dict, global_dict)

    return result


def auto_symbol(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
    """Inserts calls to ``Symbol``/``Function`` for undefined variables."""
    result: List[TOKEN] = []
    prevTok = (-1, '')

    tokens.append((-1, ''))  # so zip traverses all tokens
    for tok, nextTok in zip(tokens, tokens[1:]):
        tokNum, tokVal = tok
        nextTokNum, nextTokVal = nextTok
        if tokNum == NAME:
            name = tokVal

            if (name in ['True', 'False', 'None']
                    or iskeyword(name)
                    # Don't convert attribute access
                    or (prevTok[0] == OP and prevTok[1] == '.')
                    # Don't convert keyword arguments
                    or (prevTok[0] == OP and prevTok[1] in ('(', ',')
                        and nextTokNum == OP and nextTokVal == '=')
                    # the name has already been defined
                    or name in local_dict and local_dict[name] is not null):
                result.append((NAME, name))
                continue
            elif name in local_dict:
                local_dict.setdefault(null, set()).add(name)
                if nextTokVal == '(':
                    local_dict[name] = Function(name)
                else:
                    local_dict[name] = Symbol(name)
                result.append((NAME, name))
                continue
            elif name in global_dict:
                obj = global_dict[name]
                if isinstance(obj, (AssumptionKeys, Basic, type)) or callable(obj):
                    result.append((NAME, name))
                    continue

            result.extend([
                (NAME, 'Symbol' if nextTokVal != '(' else 'Function'),
                (OP, '('),
                (NAME, repr(str(name))),
                (OP, ')'),
            ])
        else:
            result.append((tokNum, tokVal))

        prevTok = (tokNum, tokVal)

    return result


def lambda_notation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
    """Substitutes "lambda" with its SymPy equivalent Lambda().
    However, the conversion does not take place if only "lambda"
    is passed because that is a syntax error.

    """
    result: List[TOKEN] = []
    flag = False
    toknum, tokval = tokens[0]
    tokLen = len(tokens)

    if toknum == NAME and tokval == 'lambda':
        if tokLen == 2 or tokLen == 3 and tokens[1][0] == NEWLINE:
            # In Python 3.6.7+, inputs without a newline get NEWLINE added to
            # the tokens
            result.extend(tokens)
        elif tokLen > 2:
            result.extend([
                (NAME, 'Lambda'),
                (OP, '('),
                (OP, '('),
                (OP, ')'),
                (OP, ')'),
            ])
            for tokNum, tokVal in tokens[1:]:
                if tokNum == OP and tokVal == ':':
                    tokVal = ','
                    flag = True
                if not flag and tokNum == OP and tokVal in ('*', '**'):
                    raise TokenError("Starred arguments in lambda not supported")
                if flag:
                    result.insert(-1, (tokNum, tokVal))
                else:
                    result.insert(-2, (tokNum, tokVal))
    else:
        result.extend(tokens)

    return result


def factorial_notation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
    """Allows standard notation for factorial."""
    result: List[TOKEN] = []
    nfactorial = 0
    for toknum, tokval in tokens:
        if toknum == OP and tokval == "!":
            # In Python 3.12 "!" are OP instead of ERRORTOKEN
            nfactorial += 1
        elif toknum == ERRORTOKEN:
            op = tokval
            if op == '!':
                nfactorial += 1
            else:
                nfactorial = 0
                result.append((OP, op))
        else:
            if nfactorial == 1:
                result = _add_factorial_tokens('factorial', result)
            elif nfactorial == 2:
                result = _add_factorial_tokens('factorial2', result)
            elif nfactorial > 2:
                raise TokenError
            nfactorial = 0
            result.append((toknum, tokval))
    return result


def convert_xor(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
    """Treats XOR, ``^``, as exponentiation, ``**``."""
    result: List[TOKEN] = []
    for toknum, tokval in tokens:
        if toknum == OP:
            if tokval == '^':
                result.append((OP, '**'))
            else:
                result.append((toknum, tokval))
        else:
            result.append((toknum, tokval))

    return result


def repeated_decimals(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
    """
    Allows 0.2[1] notation to represent the repeated decimal 0.2111... (19/90)

    Run this before auto_number.

    """
    result: List[TOKEN] = []

    def is_digit(s):
        return all(i in '0123456789_' for i in s)

    # num will running match any DECIMAL [ INTEGER ]
    num: List[TOKEN] = []
    for toknum, tokval in tokens:
        if toknum == NUMBER:
            if (not num and '.' in tokval and 'e' not in tokval.lower() and
                'j' not in tokval.lower()):
                num.append((toknum, tokval))
            elif is_digit(tokval)and  len(num) == 2:
                num.append((toknum, tokval))
            elif is_digit(tokval) and len(num) == 3 and is_digit(num[-1][1]):
                # Python 2 tokenizes 00123 as '00', '123'
                # Python 3 tokenizes 01289 as '012', '89'
                num.append((toknum, tokval))
            else:
                num = []
        elif toknum == OP:
            if tokval == '[' and len(num) == 1:
                num.append((OP, tokval))
            elif tokval == ']' and len(num) >= 3:
                num.append((OP, tokval))
            elif tokval == '.' and not num:
                # handle .[1]
                num.append((NUMBER, '0.'))
            else:
                num = []
        else:
            num = []

        result.append((toknum, tokval))

        if num and num[-1][1] == ']':
            # pre.post[repetend] = a + b/c + d/e where a = pre, b/c = post,
            # and d/e = repetend
            result = result[:-len(num)]
            pre, post = num[0][1].split('.')
            repetend = num[2][1]
            if len(num) == 5:
                repetend += num[3][1]

            pre = pre.replace('_', '')
            post = post.replace('_', '')
            repetend = repetend.replace('_', '')

            zeros = '0'*len(post)
            post, repetends = [w.lstrip('0') for w in [post, repetend]]
                                        # or else interpreted as octal

            a = pre or '0'
            b, c = post or '0', '1' + zeros
            d, e = repetends, ('9'*len(repetend)) + zeros

            seq = [
                (OP, '('),
                    (NAME, 'Integer'),
                    (OP, '('),
                        (NUMBER, a),
                    (OP, ')'),
                    (OP, '+'),
                    (NAME, 'Rational'),
                    (OP, '('),
                        (NUMBER, b),
                        (OP, ','),
                        (NUMBER, c),
                    (OP, ')'),
                    (OP, '+'),
                    (NAME, 'Rational'),
                    (OP, '('),
                        (NUMBER, d),
                        (OP, ','),
                        (NUMBER, e),
                    (OP, ')'),
                (OP, ')'),
            ]
            result.extend(seq)
            num = []

    return result


def auto_number(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
    """
    Converts numeric literals to use SymPy equivalents.

    Complex numbers use ``I``, integer literals use ``Integer``, and float
    literals use ``Float``.

    """
    result: List[TOKEN] = []

    for toknum, tokval in tokens:
        if toknum == NUMBER:
            number = tokval
            postfix = []

            if number.endswith(('j', 'J')):
                number = number[:-1]
                postfix = [(OP, '*'), (NAME, 'I')]

            if '.' in number or (('e' in number or 'E' in number) and
                    not (number.startswith(('0x', '0X')))):
                seq = [(NAME, 'Float'), (OP, '('),
                    (NUMBER, repr(str(number))), (OP, ')')]
            else:
                seq = [(NAME, 'Integer'), (OP, '('), (
                    NUMBER, number), (OP, ')')]

            result.extend(seq + postfix)
        else:
            result.append((toknum, tokval))

    return result


def rationalize(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
    """Converts floats into ``Rational``. Run AFTER ``auto_number``."""
    result: List[TOKEN] = []
    passed_float = False
    for toknum, tokval in tokens:
        if toknum == NAME:
            if tokval == 'Float':
                passed_float = True
                tokval = 'Rational'
            result.append((toknum, tokval))
        elif passed_float == True and toknum == NUMBER:
            passed_float = False
            result.append((STRING, tokval))
        else:
            result.append((toknum, tokval))

    return result


def _transform_equals_sign(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
    """Transforms the equals sign ``=`` to instances of Eq.

    This is a helper function for ``convert_equals_signs``.
    Works with expressions containing one equals sign and no
    nesting. Expressions like ``(1=2)=False`` will not work with this
    and should be used with ``convert_equals_signs``.

    Examples: 1=2     to Eq(1,2)
              1*2=x   to Eq(1*2, x)

    This does not deal with function arguments yet.

    """
    result: List[TOKEN] = []
    if (OP, "=") in tokens:
        result.append((NAME, "Eq"))
        result.append((OP, "("))
        for token in tokens:
            if token == (OP, "="):
                result.append((OP, ","))
                continue
            result.append(token)
        result.append((OP, ")"))
    else:
        result = tokens
    return result


def convert_equals_signs(tokens: List[TOKEN], local_dict: DICT,
                         global_dict: DICT) -> List[TOKEN]:
    """ Transforms all the equals signs ``=`` to instances of Eq.

    Parses the equals signs in the expression and replaces them with
    appropriate Eq instances. Also works with nested equals signs.

    Does not yet play well with function arguments.
    For example, the expression ``(x=y)`` is ambiguous and can be interpreted
    as x being an argument to a function and ``convert_equals_signs`` will not
    work for this.

    See also
    ========
    convert_equality_operators

    Examples
    ========

    >>> from sympy.parsing.sympy_parser import (parse_expr,
    ... standard_transformations, convert_equals_signs)
    >>> parse_expr("1*2=x", transformations=(
    ... standard_transformations + (convert_equals_signs,)))
    Eq(2, x)
    >>> parse_expr("(1*2=x)=False", transformations=(
    ... standard_transformations + (convert_equals_signs,)))
    Eq(Eq(2, x), False)

    """
    res1 = _group_parentheses(convert_equals_signs)(tokens, local_dict, global_dict)
    res2 = _apply_functions(res1, local_dict, global_dict)
    res3 = _transform_equals_sign(res2, local_dict, global_dict)
    result = _flatten(res3)
    return result


#: Standard transformations for :func:`parse_expr`.
#: Inserts calls to :class:`~.Symbol`, :class:`~.Integer`, and other SymPy
#: datatypes and allows the use of standard factorial notation (e.g. ``x!``).
standard_transformations: tTuple[TRANS, ...] \
    = (lambda_notation, auto_symbol, repeated_decimals, auto_number,
       factorial_notation)


def stringify_expr(s: str, local_dict: DICT, global_dict: DICT,
        transformations: tTuple[TRANS, ...]) -> str:
    """
    Converts the string ``s`` to Python code, in ``local_dict``

    Generally, ``parse_expr`` should be used.
    """

    tokens = []
    input_code = StringIO(s.strip())
    for toknum, tokval, _, _, _ in generate_tokens(input_code.readline):
        tokens.append((toknum, tokval))

    for transform in transformations:
        tokens = transform(tokens, local_dict, global_dict)

    return untokenize(tokens)


def eval_expr(code, local_dict: DICT, global_dict: DICT):
    """
    Evaluate Python code generated by ``stringify_expr``.

    Generally, ``parse_expr`` should be used.
    """
    expr = eval(
        code, global_dict, local_dict)  # take local objects in preference
    return expr


def parse_expr(s: str, local_dict: Optional[DICT] = None,
               transformations: tUnion[tTuple[TRANS, ...], str] \
                   = standard_transformations,
               global_dict: Optional[DICT] = None, evaluate=True):
    """Converts the string ``s`` to a SymPy expression, in ``local_dict``.

    Parameters
    ==========

    s : str
        The string to parse.

    local_dict : dict, optional
        A dictionary of local variables to use when parsing.

    global_dict : dict, optional
        A dictionary of global variables. By default, this is initialized
        with ``from sympy import *``; provide this parameter to override
        this behavior (for instance, to parse ``"Q & S"``).

    transformations : tuple or str
        A tuple of transformation functions used to modify the tokens of the
        parsed expression before evaluation. The default transformations
        convert numeric literals into their SymPy equivalents, convert
        undefined variables into SymPy symbols, and allow the use of standard
        mathematical factorial notation (e.g. ``x!``). Selection via
        string is available (see below).

    evaluate : bool, optional
        When False, the order of the arguments will remain as they were in the
        string and automatic simplification that would normally occur is
        suppressed. (see examples)

    Examples
    ========

    >>> from sympy.parsing.sympy_parser import parse_expr
    >>> parse_expr("1/2")
    1/2
    >>> type(_)
    <class 'sympy.core.numbers.Half'>
    >>> from sympy.parsing.sympy_parser import standard_transformations,\\
    ... implicit_multiplication_application
    >>> transformations = (standard_transformations +
    ...     (implicit_multiplication_application,))
    >>> parse_expr("2x", transformations=transformations)
    2*x

    When evaluate=False, some automatic simplifications will not occur:

    >>> parse_expr("2**3"), parse_expr("2**3", evaluate=False)
    (8, 2**3)

    In addition the order of the arguments will not be made canonical.
    This feature allows one to tell exactly how the expression was entered:

    >>> a = parse_expr('1 + x', evaluate=False)
    >>> b = parse_expr('x + 1', evaluate=0)
    >>> a == b
    False
    >>> a.args
    (1, x)
    >>> b.args
    (x, 1)

    Note, however, that when these expressions are printed they will
    appear the same:

    >>> assert str(a) == str(b)

    As a convenience, transformations can be seen by printing ``transformations``:

    >>> from sympy.parsing.sympy_parser import transformations

    >>> print(transformations)
    0: lambda_notation
    1: auto_symbol
    2: repeated_decimals
    3: auto_number
    4: factorial_notation
    5: implicit_multiplication_application
    6: convert_xor
    7: implicit_application
    8: implicit_multiplication
    9: convert_equals_signs
    10: function_exponentiation
    11: rationalize

    The ``T`` object provides a way to select these transformations:

    >>> from sympy.parsing.sympy_parser import T

    If you print it, you will see the same list as shown above.

    >>> str(T) == str(transformations)
    True

    Standard slicing will return a tuple of transformations:

    >>> T[:5] == standard_transformations
    True

    So ``T`` can be used to specify the parsing transformations:

    >>> parse_expr("2x", transformations=T[:5])
    Traceback (most recent call last):
    ...
    SyntaxError: invalid syntax
    >>> parse_expr("2x", transformations=T[:6])
    2*x
    >>> parse_expr('.3', transformations=T[3, 11])
    3/10
    >>> parse_expr('.3x', transformations=T[:])
    3*x/10

    As a further convenience, strings 'implicit' and 'all' can be used
    to select 0-5 and all the transformations, respectively.

    >>> parse_expr('.3x', transformations='all')
    3*x/10

    See Also
    ========

    stringify_expr, eval_expr, standard_transformations,
    implicit_multiplication_application

    """

    if local_dict is None:
        local_dict = {}
    elif not isinstance(local_dict, dict):
        raise TypeError('expecting local_dict to be a dict')
    elif null in local_dict:
        raise ValueError('cannot use "" in local_dict')

    if global_dict is None:
        global_dict = {}
        exec('from sympy import *', global_dict)

        builtins_dict = vars(builtins)
        for name, obj in builtins_dict.items():
            if isinstance(obj, types.BuiltinFunctionType):
                global_dict[name] = obj
        global_dict['max'] = Max
        global_dict['min'] = Min

    elif not isinstance(global_dict, dict):
        raise TypeError('expecting global_dict to be a dict')

    transformations = transformations or ()
    if isinstance(transformations, str):
        if transformations == 'all':
            _transformations = T[:]
        elif transformations == 'implicit':
            _transformations = T[:6]
        else:
            raise ValueError('unknown transformation group name')
    else:
        _transformations = transformations

    code = stringify_expr(s, local_dict, global_dict, _transformations)

    if not evaluate:
        code = compile(evaluateFalse(code), '<string>', 'eval') # type: ignore

    try:
        rv = eval_expr(code, local_dict, global_dict)
        # restore neutral definitions for names
        for i in local_dict.pop(null, ()):
            local_dict[i] = null
        return rv
    except Exception as e:
        # restore neutral definitions for names
        for i in local_dict.pop(null, ()):
            local_dict[i] = null
        raise e from ValueError(f"Error from parse_expr with transformed code: {code!r}")


def evaluateFalse(s: str):
    """
    Replaces operators with the SymPy equivalent and sets evaluate=False.
    """
    node = ast.parse(s)
    transformed_node = EvaluateFalseTransformer().visit(node)
    # node is a Module, we want an Expression
    transformed_node = ast.Expression(transformed_node.body[0].value)

    return ast.fix_missing_locations(transformed_node)


class EvaluateFalseTransformer(ast.NodeTransformer):
    operators = {
        ast.Add: 'Add',
        ast.Mult: 'Mul',
        ast.Pow: 'Pow',
        ast.Sub: 'Add',
        ast.Div: 'Mul',
        ast.BitOr: 'Or',
        ast.BitAnd: 'And',
        ast.BitXor: 'Not',
    }
    functions = (
        'Abs', 'im', 're', 'sign', 'arg', 'conjugate',
        'acos', 'acot', 'acsc', 'asec', 'asin', 'atan',
        'acosh', 'acoth', 'acsch', 'asech', 'asinh', 'atanh',
        'cos', 'cot', 'csc', 'sec', 'sin', 'tan',
        'cosh', 'coth', 'csch', 'sech', 'sinh', 'tanh',
        'exp', 'ln', 'log', 'sqrt', 'cbrt',
    )

    relational_operators = {
        ast.NotEq: 'Ne',
        ast.Lt: 'Lt',
        ast.LtE: 'Le',
        ast.Gt: 'Gt',
        ast.GtE: 'Ge',
        ast.Eq: 'Eq'
    }
    def visit_Compare(self, node):
        if node.ops[0].__class__ in self.relational_operators:
            sympy_class = self.relational_operators[node.ops[0].__class__]
            right = self.visit(node.comparators[0])
            left = self.visit(node.left)
            new_node = ast.Call(
                func=ast.Name(id=sympy_class, ctx=ast.Load()),
                args=[left, right],
                keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
            )
            return new_node
        return node

    def flatten(self, args, func):
        result = []
        for arg in args:
            if isinstance(arg, ast.Call):
                arg_func = arg.func
                if isinstance(arg_func, ast.Call):
                    arg_func = arg_func.func
                if arg_func.id == func:
                    result.extend(self.flatten(arg.args, func))
                else:
                    result.append(arg)
            else:
                result.append(arg)
        return result

    def visit_BinOp(self, node):
        if node.op.__class__ in self.operators:
            sympy_class = self.operators[node.op.__class__]
            right = self.visit(node.right)
            left = self.visit(node.left)

            rev = False
            if isinstance(node.op, ast.Sub):
                right = ast.Call(
                    func=ast.Name(id='Mul', ctx=ast.Load()),
                    args=[ast.UnaryOp(op=ast.USub(), operand=ast.Constant(1)), right],
                    keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
                )
            elif isinstance(node.op, ast.Div):
                if isinstance(node.left, ast.UnaryOp):
                    left, right = right, left
                    rev = True
                    left = ast.Call(
                    func=ast.Name(id='Pow', ctx=ast.Load()),
                    args=[left, ast.UnaryOp(op=ast.USub(), operand=ast.Constant(1))],
                    keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
                )
                else:
                    right = ast.Call(
                    func=ast.Name(id='Pow', ctx=ast.Load()),
                    args=[right, ast.UnaryOp(op=ast.USub(), operand=ast.Constant(1))],
                    keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
                )

            if rev:  # undo reversal
                left, right = right, left
            new_node = ast.Call(
                func=ast.Name(id=sympy_class, ctx=ast.Load()),
                args=[left, right],
                keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
            )

            if sympy_class in ('Add', 'Mul'):
                # Denest Add or Mul as appropriate
                new_node.args = self.flatten(new_node.args, sympy_class)

            return new_node
        return node

    def visit_Call(self, node):
        new_node = self.generic_visit(node)
        if isinstance(node.func, ast.Name) and node.func.id in self.functions:
            new_node.keywords.append(ast.keyword(arg='evaluate', value=ast.Constant(value=False)))
        return new_node


_transformation = {  # items can be added but never re-ordered
0: lambda_notation,
1: auto_symbol,
2: repeated_decimals,
3: auto_number,
4: factorial_notation,
5: implicit_multiplication_application,
6: convert_xor,
7: implicit_application,
8: implicit_multiplication,
9: convert_equals_signs,
10: function_exponentiation,
11: rationalize}

transformations = '\n'.join('%s: %s' % (i, func_name(f)) for i, f in _transformation.items())


class _T():
    """class to retrieve transformations from a given slice

    EXAMPLES
    ========

    >>> from sympy.parsing.sympy_parser import T, standard_transformations
    >>> assert T[:5] == standard_transformations
    """
    def __init__(self):
        self.N = len(_transformation)

    def __str__(self):
        return transformations

    def __getitem__(self, t):
        if not type(t) is tuple:
            t = (t,)
        i = []
        for ti in t:
            if type(ti) is int:
                i.append(range(self.N)[ti])
            elif type(ti) is slice:
                i.extend(range(*ti.indices(self.N)))
            else:
                raise TypeError('unexpected slice arg')
        return tuple([_transformation[_] for _ in i])

T = _T()