Spaces:
Sleeping
Sleeping
File size: 43,484 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 |
"""Transform a string with Python-like source code into SymPy expression. """
from tokenize import (generate_tokens, untokenize, TokenError,
NUMBER, STRING, NAME, OP, ENDMARKER, ERRORTOKEN, NEWLINE)
from keyword import iskeyword
import ast
import unicodedata
from io import StringIO
import builtins
import types
from typing import Tuple as tTuple, Dict as tDict, Any, Callable, \
List, Optional, Union as tUnion
from sympy.assumptions.ask import AssumptionKeys
from sympy.core.basic import Basic
from sympy.core import Symbol
from sympy.core.function import Function
from sympy.utilities.misc import func_name
from sympy.functions.elementary.miscellaneous import Max, Min
null = ''
TOKEN = tTuple[int, str]
DICT = tDict[str, Any]
TRANS = Callable[[List[TOKEN], DICT, DICT], List[TOKEN]]
def _token_splittable(token_name: str) -> bool:
"""
Predicate for whether a token name can be split into multiple tokens.
A token is splittable if it does not contain an underscore character and
it is not the name of a Greek letter. This is used to implicitly convert
expressions like 'xyz' into 'x*y*z'.
"""
if '_' in token_name:
return False
try:
return not unicodedata.lookup('GREEK SMALL LETTER ' + token_name)
except KeyError:
return len(token_name) > 1
def _token_callable(token: TOKEN, local_dict: DICT, global_dict: DICT, nextToken=None):
"""
Predicate for whether a token name represents a callable function.
Essentially wraps ``callable``, but looks up the token name in the
locals and globals.
"""
func = local_dict.get(token[1])
if not func:
func = global_dict.get(token[1])
return callable(func) and not isinstance(func, Symbol)
def _add_factorial_tokens(name: str, result: List[TOKEN]) -> List[TOKEN]:
if result == [] or result[-1][1] == '(':
raise TokenError()
beginning = [(NAME, name), (OP, '(')]
end = [(OP, ')')]
diff = 0
length = len(result)
for index, token in enumerate(result[::-1]):
toknum, tokval = token
i = length - index - 1
if tokval == ')':
diff += 1
elif tokval == '(':
diff -= 1
if diff == 0:
if i - 1 >= 0 and result[i - 1][0] == NAME:
return result[:i - 1] + beginning + result[i - 1:] + end
else:
return result[:i] + beginning + result[i:] + end
return result
class ParenthesisGroup(List[TOKEN]):
"""List of tokens representing an expression in parentheses."""
pass
class AppliedFunction:
"""
A group of tokens representing a function and its arguments.
`exponent` is for handling the shorthand sin^2, ln^2, etc.
"""
def __init__(self, function: TOKEN, args: ParenthesisGroup, exponent=None):
if exponent is None:
exponent = []
self.function = function
self.args = args
self.exponent = exponent
self.items = ['function', 'args', 'exponent']
def expand(self) -> List[TOKEN]:
"""Return a list of tokens representing the function"""
return [self.function, *self.args]
def __getitem__(self, index):
return getattr(self, self.items[index])
def __repr__(self):
return "AppliedFunction(%s, %s, %s)" % (self.function, self.args,
self.exponent)
def _flatten(result: List[tUnion[TOKEN, AppliedFunction]]):
result2: List[TOKEN] = []
for tok in result:
if isinstance(tok, AppliedFunction):
result2.extend(tok.expand())
else:
result2.append(tok)
return result2
def _group_parentheses(recursor: TRANS):
def _inner(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Group tokens between parentheses with ParenthesisGroup.
Also processes those tokens recursively.
"""
result: List[tUnion[TOKEN, ParenthesisGroup]] = []
stacks: List[ParenthesisGroup] = []
stacklevel = 0
for token in tokens:
if token[0] == OP:
if token[1] == '(':
stacks.append(ParenthesisGroup([]))
stacklevel += 1
elif token[1] == ')':
stacks[-1].append(token)
stack = stacks.pop()
if len(stacks) > 0:
# We don't recurse here since the upper-level stack
# would reprocess these tokens
stacks[-1].extend(stack)
else:
# Recurse here to handle nested parentheses
# Strip off the outer parentheses to avoid an infinite loop
inner = stack[1:-1]
inner = recursor(inner,
local_dict,
global_dict)
parenGroup = [stack[0]] + inner + [stack[-1]]
result.append(ParenthesisGroup(parenGroup))
stacklevel -= 1
continue
if stacklevel:
stacks[-1].append(token)
else:
result.append(token)
if stacklevel:
raise TokenError("Mismatched parentheses")
return result
return _inner
def _apply_functions(tokens: List[tUnion[TOKEN, ParenthesisGroup]], local_dict: DICT, global_dict: DICT):
"""Convert a NAME token + ParenthesisGroup into an AppliedFunction.
Note that ParenthesisGroups, if not applied to any function, are
converted back into lists of tokens.
"""
result: List[tUnion[TOKEN, AppliedFunction]] = []
symbol = None
for tok in tokens:
if isinstance(tok, ParenthesisGroup):
if symbol and _token_callable(symbol, local_dict, global_dict):
result[-1] = AppliedFunction(symbol, tok)
symbol = None
else:
result.extend(tok)
elif tok[0] == NAME:
symbol = tok
result.append(tok)
else:
symbol = None
result.append(tok)
return result
def _implicit_multiplication(tokens: List[tUnion[TOKEN, AppliedFunction]], local_dict: DICT, global_dict: DICT):
"""Implicitly adds '*' tokens.
Cases:
- Two AppliedFunctions next to each other ("sin(x)cos(x)")
- AppliedFunction next to an open parenthesis ("sin x (cos x + 1)")
- A close parenthesis next to an AppliedFunction ("(x+2)sin x")\
- A close parenthesis next to an open parenthesis ("(x+2)(x+3)")
- AppliedFunction next to an implicitly applied function ("sin(x)cos x")
"""
result: List[tUnion[TOKEN, AppliedFunction]] = []
skip = False
for tok, nextTok in zip(tokens, tokens[1:]):
result.append(tok)
if skip:
skip = False
continue
if tok[0] == OP and tok[1] == '.' and nextTok[0] == NAME:
# Dotted name. Do not do implicit multiplication
skip = True
continue
if isinstance(tok, AppliedFunction):
if isinstance(nextTok, AppliedFunction):
result.append((OP, '*'))
elif nextTok == (OP, '('):
# Applied function followed by an open parenthesis
if tok.function[1] == "Function":
tok.function = (tok.function[0], 'Symbol')
result.append((OP, '*'))
elif nextTok[0] == NAME:
# Applied function followed by implicitly applied function
result.append((OP, '*'))
else:
if tok == (OP, ')'):
if isinstance(nextTok, AppliedFunction):
# Close parenthesis followed by an applied function
result.append((OP, '*'))
elif nextTok[0] == NAME:
# Close parenthesis followed by an implicitly applied function
result.append((OP, '*'))
elif nextTok == (OP, '('):
# Close parenthesis followed by an open parenthesis
result.append((OP, '*'))
elif tok[0] == NAME and not _token_callable(tok, local_dict, global_dict):
if isinstance(nextTok, AppliedFunction) or \
(nextTok[0] == NAME and _token_callable(nextTok, local_dict, global_dict)):
# Constant followed by (implicitly applied) function
result.append((OP, '*'))
elif nextTok == (OP, '('):
# Constant followed by parenthesis
result.append((OP, '*'))
elif nextTok[0] == NAME:
# Constant followed by constant
result.append((OP, '*'))
if tokens:
result.append(tokens[-1])
return result
def _implicit_application(tokens: List[tUnion[TOKEN, AppliedFunction]], local_dict: DICT, global_dict: DICT):
"""Adds parentheses as needed after functions."""
result: List[tUnion[TOKEN, AppliedFunction]] = []
appendParen = 0 # number of closing parentheses to add
skip = 0 # number of tokens to delay before adding a ')' (to
# capture **, ^, etc.)
exponentSkip = False # skipping tokens before inserting parentheses to
# work with function exponentiation
for tok, nextTok in zip(tokens, tokens[1:]):
result.append(tok)
if (tok[0] == NAME and nextTok[0] not in [OP, ENDMARKER, NEWLINE]):
if _token_callable(tok, local_dict, global_dict, nextTok): # type: ignore
result.append((OP, '('))
appendParen += 1
# name followed by exponent - function exponentiation
elif (tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**'):
if _token_callable(tok, local_dict, global_dict): # type: ignore
exponentSkip = True
elif exponentSkip:
# if the last token added was an applied function (i.e. the
# power of the function exponent) OR a multiplication (as
# implicit multiplication would have added an extraneous
# multiplication)
if (isinstance(tok, AppliedFunction)
or (tok[0] == OP and tok[1] == '*')):
# don't add anything if the next token is a multiplication
# or if there's already a parenthesis (if parenthesis, still
# stop skipping tokens)
if not (nextTok[0] == OP and nextTok[1] == '*'):
if not(nextTok[0] == OP and nextTok[1] == '('):
result.append((OP, '('))
appendParen += 1
exponentSkip = False
elif appendParen:
if nextTok[0] == OP and nextTok[1] in ('^', '**', '*'):
skip = 1
continue
if skip:
skip -= 1
continue
result.append((OP, ')'))
appendParen -= 1
if tokens:
result.append(tokens[-1])
if appendParen:
result.extend([(OP, ')')] * appendParen)
return result
def function_exponentiation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Allows functions to be exponentiated, e.g. ``cos**2(x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, function_exponentiation)
>>> transformations = standard_transformations + (function_exponentiation,)
>>> parse_expr('sin**4(x)', transformations=transformations)
sin(x)**4
"""
result: List[TOKEN] = []
exponent: List[TOKEN] = []
consuming_exponent = False
level = 0
for tok, nextTok in zip(tokens, tokens[1:]):
if tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**':
if _token_callable(tok, local_dict, global_dict):
consuming_exponent = True
elif consuming_exponent:
if tok[0] == NAME and tok[1] == 'Function':
tok = (NAME, 'Symbol')
exponent.append(tok)
# only want to stop after hitting )
if tok[0] == nextTok[0] == OP and tok[1] == ')' and nextTok[1] == '(':
consuming_exponent = False
# if implicit multiplication was used, we may have )*( instead
if tok[0] == nextTok[0] == OP and tok[1] == '*' and nextTok[1] == '(':
consuming_exponent = False
del exponent[-1]
continue
elif exponent and not consuming_exponent:
if tok[0] == OP:
if tok[1] == '(':
level += 1
elif tok[1] == ')':
level -= 1
if level == 0:
result.append(tok)
result.extend(exponent)
exponent = []
continue
result.append(tok)
if tokens:
result.append(tokens[-1])
if exponent:
result.extend(exponent)
return result
def split_symbols_custom(predicate: Callable[[str], bool]):
"""Creates a transformation that splits symbol names.
``predicate`` should return True if the symbol name is to be split.
For instance, to retain the default behavior but avoid splitting certain
symbol names, a predicate like this would work:
>>> from sympy.parsing.sympy_parser import (parse_expr, _token_splittable,
... standard_transformations, implicit_multiplication,
... split_symbols_custom)
>>> def can_split(symbol):
... if symbol not in ('list', 'of', 'unsplittable', 'names'):
... return _token_splittable(symbol)
... return False
...
>>> transformation = split_symbols_custom(can_split)
>>> parse_expr('unsplittable', transformations=standard_transformations +
... (transformation, implicit_multiplication))
unsplittable
"""
def _split_symbols(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
result: List[TOKEN] = []
split = False
split_previous=False
for tok in tokens:
if split_previous:
# throw out closing parenthesis of Symbol that was split
split_previous=False
continue
split_previous=False
if tok[0] == NAME and tok[1] in ['Symbol', 'Function']:
split = True
elif split and tok[0] == NAME:
symbol = tok[1][1:-1]
if predicate(symbol):
tok_type = result[-2][1] # Symbol or Function
del result[-2:] # Get rid of the call to Symbol
i = 0
while i < len(symbol):
char = symbol[i]
if char in local_dict or char in global_dict:
result.append((NAME, "%s" % char))
elif char.isdigit():
chars = [char]
for i in range(i + 1, len(symbol)):
if not symbol[i].isdigit():
i -= 1
break
chars.append(symbol[i])
char = ''.join(chars)
result.extend([(NAME, 'Number'), (OP, '('),
(NAME, "'%s'" % char), (OP, ')')])
else:
use = tok_type if i == len(symbol) else 'Symbol'
result.extend([(NAME, use), (OP, '('),
(NAME, "'%s'" % char), (OP, ')')])
i += 1
# Set split_previous=True so will skip
# the closing parenthesis of the original Symbol
split = False
split_previous = True
continue
else:
split = False
result.append(tok)
return result
return _split_symbols
#: Splits symbol names for implicit multiplication.
#:
#: Intended to let expressions like ``xyz`` be parsed as ``x*y*z``. Does not
#: split Greek character names, so ``theta`` will *not* become
#: ``t*h*e*t*a``. Generally this should be used with
#: ``implicit_multiplication``.
split_symbols = split_symbols_custom(_token_splittable)
def implicit_multiplication(tokens: List[TOKEN], local_dict: DICT,
global_dict: DICT) -> List[TOKEN]:
"""Makes the multiplication operator optional in most cases.
Use this before :func:`implicit_application`, otherwise expressions like
``sin 2x`` will be parsed as ``x * sin(2)`` rather than ``sin(2*x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication)
>>> transformations = standard_transformations + (implicit_multiplication,)
>>> parse_expr('3 x y', transformations=transformations)
3*x*y
"""
# These are interdependent steps, so we don't expose them separately
res1 = _group_parentheses(implicit_multiplication)(tokens, local_dict, global_dict)
res2 = _apply_functions(res1, local_dict, global_dict)
res3 = _implicit_multiplication(res2, local_dict, global_dict)
result = _flatten(res3)
return result
def implicit_application(tokens: List[TOKEN], local_dict: DICT,
global_dict: DICT) -> List[TOKEN]:
"""Makes parentheses optional in some cases for function calls.
Use this after :func:`implicit_multiplication`, otherwise expressions
like ``sin 2x`` will be parsed as ``x * sin(2)`` rather than
``sin(2*x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_application)
>>> transformations = standard_transformations + (implicit_application,)
>>> parse_expr('cot z + csc z', transformations=transformations)
cot(z) + csc(z)
"""
res1 = _group_parentheses(implicit_application)(tokens, local_dict, global_dict)
res2 = _apply_functions(res1, local_dict, global_dict)
res3 = _implicit_application(res2, local_dict, global_dict)
result = _flatten(res3)
return result
def implicit_multiplication_application(result: List[TOKEN], local_dict: DICT,
global_dict: DICT) -> List[TOKEN]:
"""Allows a slightly relaxed syntax.
- Parentheses for single-argument method calls are optional.
- Multiplication is implicit.
- Symbol names can be split (i.e. spaces are not needed between
symbols).
- Functions can be exponentiated.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication_application)
>>> parse_expr("10sin**2 x**2 + 3xyz + tan theta",
... transformations=(standard_transformations +
... (implicit_multiplication_application,)))
3*x*y*z + 10*sin(x**2)**2 + tan(theta)
"""
for step in (split_symbols, implicit_multiplication,
implicit_application, function_exponentiation):
result = step(result, local_dict, global_dict)
return result
def auto_symbol(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Inserts calls to ``Symbol``/``Function`` for undefined variables."""
result: List[TOKEN] = []
prevTok = (-1, '')
tokens.append((-1, '')) # so zip traverses all tokens
for tok, nextTok in zip(tokens, tokens[1:]):
tokNum, tokVal = tok
nextTokNum, nextTokVal = nextTok
if tokNum == NAME:
name = tokVal
if (name in ['True', 'False', 'None']
or iskeyword(name)
# Don't convert attribute access
or (prevTok[0] == OP and prevTok[1] == '.')
# Don't convert keyword arguments
or (prevTok[0] == OP and prevTok[1] in ('(', ',')
and nextTokNum == OP and nextTokVal == '=')
# the name has already been defined
or name in local_dict and local_dict[name] is not null):
result.append((NAME, name))
continue
elif name in local_dict:
local_dict.setdefault(null, set()).add(name)
if nextTokVal == '(':
local_dict[name] = Function(name)
else:
local_dict[name] = Symbol(name)
result.append((NAME, name))
continue
elif name in global_dict:
obj = global_dict[name]
if isinstance(obj, (AssumptionKeys, Basic, type)) or callable(obj):
result.append((NAME, name))
continue
result.extend([
(NAME, 'Symbol' if nextTokVal != '(' else 'Function'),
(OP, '('),
(NAME, repr(str(name))),
(OP, ')'),
])
else:
result.append((tokNum, tokVal))
prevTok = (tokNum, tokVal)
return result
def lambda_notation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Substitutes "lambda" with its SymPy equivalent Lambda().
However, the conversion does not take place if only "lambda"
is passed because that is a syntax error.
"""
result: List[TOKEN] = []
flag = False
toknum, tokval = tokens[0]
tokLen = len(tokens)
if toknum == NAME and tokval == 'lambda':
if tokLen == 2 or tokLen == 3 and tokens[1][0] == NEWLINE:
# In Python 3.6.7+, inputs without a newline get NEWLINE added to
# the tokens
result.extend(tokens)
elif tokLen > 2:
result.extend([
(NAME, 'Lambda'),
(OP, '('),
(OP, '('),
(OP, ')'),
(OP, ')'),
])
for tokNum, tokVal in tokens[1:]:
if tokNum == OP and tokVal == ':':
tokVal = ','
flag = True
if not flag and tokNum == OP and tokVal in ('*', '**'):
raise TokenError("Starred arguments in lambda not supported")
if flag:
result.insert(-1, (tokNum, tokVal))
else:
result.insert(-2, (tokNum, tokVal))
else:
result.extend(tokens)
return result
def factorial_notation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Allows standard notation for factorial."""
result: List[TOKEN] = []
nfactorial = 0
for toknum, tokval in tokens:
if toknum == OP and tokval == "!":
# In Python 3.12 "!" are OP instead of ERRORTOKEN
nfactorial += 1
elif toknum == ERRORTOKEN:
op = tokval
if op == '!':
nfactorial += 1
else:
nfactorial = 0
result.append((OP, op))
else:
if nfactorial == 1:
result = _add_factorial_tokens('factorial', result)
elif nfactorial == 2:
result = _add_factorial_tokens('factorial2', result)
elif nfactorial > 2:
raise TokenError
nfactorial = 0
result.append((toknum, tokval))
return result
def convert_xor(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Treats XOR, ``^``, as exponentiation, ``**``."""
result: List[TOKEN] = []
for toknum, tokval in tokens:
if toknum == OP:
if tokval == '^':
result.append((OP, '**'))
else:
result.append((toknum, tokval))
else:
result.append((toknum, tokval))
return result
def repeated_decimals(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""
Allows 0.2[1] notation to represent the repeated decimal 0.2111... (19/90)
Run this before auto_number.
"""
result: List[TOKEN] = []
def is_digit(s):
return all(i in '0123456789_' for i in s)
# num will running match any DECIMAL [ INTEGER ]
num: List[TOKEN] = []
for toknum, tokval in tokens:
if toknum == NUMBER:
if (not num and '.' in tokval and 'e' not in tokval.lower() and
'j' not in tokval.lower()):
num.append((toknum, tokval))
elif is_digit(tokval)and len(num) == 2:
num.append((toknum, tokval))
elif is_digit(tokval) and len(num) == 3 and is_digit(num[-1][1]):
# Python 2 tokenizes 00123 as '00', '123'
# Python 3 tokenizes 01289 as '012', '89'
num.append((toknum, tokval))
else:
num = []
elif toknum == OP:
if tokval == '[' and len(num) == 1:
num.append((OP, tokval))
elif tokval == ']' and len(num) >= 3:
num.append((OP, tokval))
elif tokval == '.' and not num:
# handle .[1]
num.append((NUMBER, '0.'))
else:
num = []
else:
num = []
result.append((toknum, tokval))
if num and num[-1][1] == ']':
# pre.post[repetend] = a + b/c + d/e where a = pre, b/c = post,
# and d/e = repetend
result = result[:-len(num)]
pre, post = num[0][1].split('.')
repetend = num[2][1]
if len(num) == 5:
repetend += num[3][1]
pre = pre.replace('_', '')
post = post.replace('_', '')
repetend = repetend.replace('_', '')
zeros = '0'*len(post)
post, repetends = [w.lstrip('0') for w in [post, repetend]]
# or else interpreted as octal
a = pre or '0'
b, c = post or '0', '1' + zeros
d, e = repetends, ('9'*len(repetend)) + zeros
seq = [
(OP, '('),
(NAME, 'Integer'),
(OP, '('),
(NUMBER, a),
(OP, ')'),
(OP, '+'),
(NAME, 'Rational'),
(OP, '('),
(NUMBER, b),
(OP, ','),
(NUMBER, c),
(OP, ')'),
(OP, '+'),
(NAME, 'Rational'),
(OP, '('),
(NUMBER, d),
(OP, ','),
(NUMBER, e),
(OP, ')'),
(OP, ')'),
]
result.extend(seq)
num = []
return result
def auto_number(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""
Converts numeric literals to use SymPy equivalents.
Complex numbers use ``I``, integer literals use ``Integer``, and float
literals use ``Float``.
"""
result: List[TOKEN] = []
for toknum, tokval in tokens:
if toknum == NUMBER:
number = tokval
postfix = []
if number.endswith(('j', 'J')):
number = number[:-1]
postfix = [(OP, '*'), (NAME, 'I')]
if '.' in number or (('e' in number or 'E' in number) and
not (number.startswith(('0x', '0X')))):
seq = [(NAME, 'Float'), (OP, '('),
(NUMBER, repr(str(number))), (OP, ')')]
else:
seq = [(NAME, 'Integer'), (OP, '('), (
NUMBER, number), (OP, ')')]
result.extend(seq + postfix)
else:
result.append((toknum, tokval))
return result
def rationalize(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Converts floats into ``Rational``. Run AFTER ``auto_number``."""
result: List[TOKEN] = []
passed_float = False
for toknum, tokval in tokens:
if toknum == NAME:
if tokval == 'Float':
passed_float = True
tokval = 'Rational'
result.append((toknum, tokval))
elif passed_float == True and toknum == NUMBER:
passed_float = False
result.append((STRING, tokval))
else:
result.append((toknum, tokval))
return result
def _transform_equals_sign(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Transforms the equals sign ``=`` to instances of Eq.
This is a helper function for ``convert_equals_signs``.
Works with expressions containing one equals sign and no
nesting. Expressions like ``(1=2)=False`` will not work with this
and should be used with ``convert_equals_signs``.
Examples: 1=2 to Eq(1,2)
1*2=x to Eq(1*2, x)
This does not deal with function arguments yet.
"""
result: List[TOKEN] = []
if (OP, "=") in tokens:
result.append((NAME, "Eq"))
result.append((OP, "("))
for token in tokens:
if token == (OP, "="):
result.append((OP, ","))
continue
result.append(token)
result.append((OP, ")"))
else:
result = tokens
return result
def convert_equals_signs(tokens: List[TOKEN], local_dict: DICT,
global_dict: DICT) -> List[TOKEN]:
""" Transforms all the equals signs ``=`` to instances of Eq.
Parses the equals signs in the expression and replaces them with
appropriate Eq instances. Also works with nested equals signs.
Does not yet play well with function arguments.
For example, the expression ``(x=y)`` is ambiguous and can be interpreted
as x being an argument to a function and ``convert_equals_signs`` will not
work for this.
See also
========
convert_equality_operators
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, convert_equals_signs)
>>> parse_expr("1*2=x", transformations=(
... standard_transformations + (convert_equals_signs,)))
Eq(2, x)
>>> parse_expr("(1*2=x)=False", transformations=(
... standard_transformations + (convert_equals_signs,)))
Eq(Eq(2, x), False)
"""
res1 = _group_parentheses(convert_equals_signs)(tokens, local_dict, global_dict)
res2 = _apply_functions(res1, local_dict, global_dict)
res3 = _transform_equals_sign(res2, local_dict, global_dict)
result = _flatten(res3)
return result
#: Standard transformations for :func:`parse_expr`.
#: Inserts calls to :class:`~.Symbol`, :class:`~.Integer`, and other SymPy
#: datatypes and allows the use of standard factorial notation (e.g. ``x!``).
standard_transformations: tTuple[TRANS, ...] \
= (lambda_notation, auto_symbol, repeated_decimals, auto_number,
factorial_notation)
def stringify_expr(s: str, local_dict: DICT, global_dict: DICT,
transformations: tTuple[TRANS, ...]) -> str:
"""
Converts the string ``s`` to Python code, in ``local_dict``
Generally, ``parse_expr`` should be used.
"""
tokens = []
input_code = StringIO(s.strip())
for toknum, tokval, _, _, _ in generate_tokens(input_code.readline):
tokens.append((toknum, tokval))
for transform in transformations:
tokens = transform(tokens, local_dict, global_dict)
return untokenize(tokens)
def eval_expr(code, local_dict: DICT, global_dict: DICT):
"""
Evaluate Python code generated by ``stringify_expr``.
Generally, ``parse_expr`` should be used.
"""
expr = eval(
code, global_dict, local_dict) # take local objects in preference
return expr
def parse_expr(s: str, local_dict: Optional[DICT] = None,
transformations: tUnion[tTuple[TRANS, ...], str] \
= standard_transformations,
global_dict: Optional[DICT] = None, evaluate=True):
"""Converts the string ``s`` to a SymPy expression, in ``local_dict``.
Parameters
==========
s : str
The string to parse.
local_dict : dict, optional
A dictionary of local variables to use when parsing.
global_dict : dict, optional
A dictionary of global variables. By default, this is initialized
with ``from sympy import *``; provide this parameter to override
this behavior (for instance, to parse ``"Q & S"``).
transformations : tuple or str
A tuple of transformation functions used to modify the tokens of the
parsed expression before evaluation. The default transformations
convert numeric literals into their SymPy equivalents, convert
undefined variables into SymPy symbols, and allow the use of standard
mathematical factorial notation (e.g. ``x!``). Selection via
string is available (see below).
evaluate : bool, optional
When False, the order of the arguments will remain as they were in the
string and automatic simplification that would normally occur is
suppressed. (see examples)
Examples
========
>>> from sympy.parsing.sympy_parser import parse_expr
>>> parse_expr("1/2")
1/2
>>> type(_)
<class 'sympy.core.numbers.Half'>
>>> from sympy.parsing.sympy_parser import standard_transformations,\\
... implicit_multiplication_application
>>> transformations = (standard_transformations +
... (implicit_multiplication_application,))
>>> parse_expr("2x", transformations=transformations)
2*x
When evaluate=False, some automatic simplifications will not occur:
>>> parse_expr("2**3"), parse_expr("2**3", evaluate=False)
(8, 2**3)
In addition the order of the arguments will not be made canonical.
This feature allows one to tell exactly how the expression was entered:
>>> a = parse_expr('1 + x', evaluate=False)
>>> b = parse_expr('x + 1', evaluate=0)
>>> a == b
False
>>> a.args
(1, x)
>>> b.args
(x, 1)
Note, however, that when these expressions are printed they will
appear the same:
>>> assert str(a) == str(b)
As a convenience, transformations can be seen by printing ``transformations``:
>>> from sympy.parsing.sympy_parser import transformations
>>> print(transformations)
0: lambda_notation
1: auto_symbol
2: repeated_decimals
3: auto_number
4: factorial_notation
5: implicit_multiplication_application
6: convert_xor
7: implicit_application
8: implicit_multiplication
9: convert_equals_signs
10: function_exponentiation
11: rationalize
The ``T`` object provides a way to select these transformations:
>>> from sympy.parsing.sympy_parser import T
If you print it, you will see the same list as shown above.
>>> str(T) == str(transformations)
True
Standard slicing will return a tuple of transformations:
>>> T[:5] == standard_transformations
True
So ``T`` can be used to specify the parsing transformations:
>>> parse_expr("2x", transformations=T[:5])
Traceback (most recent call last):
...
SyntaxError: invalid syntax
>>> parse_expr("2x", transformations=T[:6])
2*x
>>> parse_expr('.3', transformations=T[3, 11])
3/10
>>> parse_expr('.3x', transformations=T[:])
3*x/10
As a further convenience, strings 'implicit' and 'all' can be used
to select 0-5 and all the transformations, respectively.
>>> parse_expr('.3x', transformations='all')
3*x/10
See Also
========
stringify_expr, eval_expr, standard_transformations,
implicit_multiplication_application
"""
if local_dict is None:
local_dict = {}
elif not isinstance(local_dict, dict):
raise TypeError('expecting local_dict to be a dict')
elif null in local_dict:
raise ValueError('cannot use "" in local_dict')
if global_dict is None:
global_dict = {}
exec('from sympy import *', global_dict)
builtins_dict = vars(builtins)
for name, obj in builtins_dict.items():
if isinstance(obj, types.BuiltinFunctionType):
global_dict[name] = obj
global_dict['max'] = Max
global_dict['min'] = Min
elif not isinstance(global_dict, dict):
raise TypeError('expecting global_dict to be a dict')
transformations = transformations or ()
if isinstance(transformations, str):
if transformations == 'all':
_transformations = T[:]
elif transformations == 'implicit':
_transformations = T[:6]
else:
raise ValueError('unknown transformation group name')
else:
_transformations = transformations
code = stringify_expr(s, local_dict, global_dict, _transformations)
if not evaluate:
code = compile(evaluateFalse(code), '<string>', 'eval') # type: ignore
try:
rv = eval_expr(code, local_dict, global_dict)
# restore neutral definitions for names
for i in local_dict.pop(null, ()):
local_dict[i] = null
return rv
except Exception as e:
# restore neutral definitions for names
for i in local_dict.pop(null, ()):
local_dict[i] = null
raise e from ValueError(f"Error from parse_expr with transformed code: {code!r}")
def evaluateFalse(s: str):
"""
Replaces operators with the SymPy equivalent and sets evaluate=False.
"""
node = ast.parse(s)
transformed_node = EvaluateFalseTransformer().visit(node)
# node is a Module, we want an Expression
transformed_node = ast.Expression(transformed_node.body[0].value)
return ast.fix_missing_locations(transformed_node)
class EvaluateFalseTransformer(ast.NodeTransformer):
operators = {
ast.Add: 'Add',
ast.Mult: 'Mul',
ast.Pow: 'Pow',
ast.Sub: 'Add',
ast.Div: 'Mul',
ast.BitOr: 'Or',
ast.BitAnd: 'And',
ast.BitXor: 'Not',
}
functions = (
'Abs', 'im', 're', 'sign', 'arg', 'conjugate',
'acos', 'acot', 'acsc', 'asec', 'asin', 'atan',
'acosh', 'acoth', 'acsch', 'asech', 'asinh', 'atanh',
'cos', 'cot', 'csc', 'sec', 'sin', 'tan',
'cosh', 'coth', 'csch', 'sech', 'sinh', 'tanh',
'exp', 'ln', 'log', 'sqrt', 'cbrt',
)
relational_operators = {
ast.NotEq: 'Ne',
ast.Lt: 'Lt',
ast.LtE: 'Le',
ast.Gt: 'Gt',
ast.GtE: 'Ge',
ast.Eq: 'Eq'
}
def visit_Compare(self, node):
if node.ops[0].__class__ in self.relational_operators:
sympy_class = self.relational_operators[node.ops[0].__class__]
right = self.visit(node.comparators[0])
left = self.visit(node.left)
new_node = ast.Call(
func=ast.Name(id=sympy_class, ctx=ast.Load()),
args=[left, right],
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
)
return new_node
return node
def flatten(self, args, func):
result = []
for arg in args:
if isinstance(arg, ast.Call):
arg_func = arg.func
if isinstance(arg_func, ast.Call):
arg_func = arg_func.func
if arg_func.id == func:
result.extend(self.flatten(arg.args, func))
else:
result.append(arg)
else:
result.append(arg)
return result
def visit_BinOp(self, node):
if node.op.__class__ in self.operators:
sympy_class = self.operators[node.op.__class__]
right = self.visit(node.right)
left = self.visit(node.left)
rev = False
if isinstance(node.op, ast.Sub):
right = ast.Call(
func=ast.Name(id='Mul', ctx=ast.Load()),
args=[ast.UnaryOp(op=ast.USub(), operand=ast.Constant(1)), right],
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
)
elif isinstance(node.op, ast.Div):
if isinstance(node.left, ast.UnaryOp):
left, right = right, left
rev = True
left = ast.Call(
func=ast.Name(id='Pow', ctx=ast.Load()),
args=[left, ast.UnaryOp(op=ast.USub(), operand=ast.Constant(1))],
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
)
else:
right = ast.Call(
func=ast.Name(id='Pow', ctx=ast.Load()),
args=[right, ast.UnaryOp(op=ast.USub(), operand=ast.Constant(1))],
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
)
if rev: # undo reversal
left, right = right, left
new_node = ast.Call(
func=ast.Name(id=sympy_class, ctx=ast.Load()),
args=[left, right],
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
)
if sympy_class in ('Add', 'Mul'):
# Denest Add or Mul as appropriate
new_node.args = self.flatten(new_node.args, sympy_class)
return new_node
return node
def visit_Call(self, node):
new_node = self.generic_visit(node)
if isinstance(node.func, ast.Name) and node.func.id in self.functions:
new_node.keywords.append(ast.keyword(arg='evaluate', value=ast.Constant(value=False)))
return new_node
_transformation = { # items can be added but never re-ordered
0: lambda_notation,
1: auto_symbol,
2: repeated_decimals,
3: auto_number,
4: factorial_notation,
5: implicit_multiplication_application,
6: convert_xor,
7: implicit_application,
8: implicit_multiplication,
9: convert_equals_signs,
10: function_exponentiation,
11: rationalize}
transformations = '\n'.join('%s: %s' % (i, func_name(f)) for i, f in _transformation.items())
class _T():
"""class to retrieve transformations from a given slice
EXAMPLES
========
>>> from sympy.parsing.sympy_parser import T, standard_transformations
>>> assert T[:5] == standard_transformations
"""
def __init__(self):
self.N = len(_transformation)
def __str__(self):
return transformations
def __getitem__(self, t):
if not type(t) is tuple:
t = (t,)
i = []
for ti in t:
if type(ti) is int:
i.append(range(self.N)[ti])
elif type(ti) is slice:
i.extend(range(*ti.indices(self.N)))
else:
raise TypeError('unexpected slice arg')
return tuple([_transformation[_] for _ in i])
T = _T()
|