File size: 39,643 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
from __future__ import annotations
import re
import typing
from itertools import product
from typing import Any, Callable

import sympy
from sympy import Mul, Add, Pow, Rational, log, exp, sqrt, cos, sin, tan, asin, acos, acot, asec, acsc, sinh, cosh, tanh, asinh, \
    acosh, atanh, acoth, asech, acsch, expand, im, flatten, polylog, cancel, expand_trig, sign, simplify, \
    UnevaluatedExpr, S, atan, atan2, Mod, Max, Min, rf, Ei, Si, Ci, airyai, airyaiprime, airybi, primepi, prime, \
    isprime, cot, sec, csc, csch, sech, coth, Function, I, pi, Tuple, GreaterThan, StrictGreaterThan, StrictLessThan, \
    LessThan, Equality, Or, And, Lambda, Integer, Dummy, symbols
from sympy.core.sympify import sympify, _sympify
from sympy.functions.special.bessel import airybiprime
from sympy.functions.special.error_functions import li
from sympy.utilities.exceptions import sympy_deprecation_warning


def mathematica(s, additional_translations=None):
    sympy_deprecation_warning(
        """The ``mathematica`` function for the Mathematica parser is now
deprecated. Use ``parse_mathematica`` instead.
The parameter ``additional_translation`` can be replaced by SymPy's
.replace( ) or .subs( ) methods on the output expression instead.""",
        deprecated_since_version="1.11",
        active_deprecations_target="mathematica-parser-new",
    )
    parser = MathematicaParser(additional_translations)
    return sympify(parser._parse_old(s))


def parse_mathematica(s):
    """
    Translate a string containing a Wolfram Mathematica expression to a SymPy
    expression.

    If the translator is unable to find a suitable SymPy expression, the
    ``FullForm`` of the Mathematica expression will be output, using SymPy
    ``Function`` objects as nodes of the syntax tree.

    Examples
    ========

    >>> from sympy.parsing.mathematica import parse_mathematica
    >>> parse_mathematica("Sin[x]^2 Tan[y]")
    sin(x)**2*tan(y)
    >>> e = parse_mathematica("F[7,5,3]")
    >>> e
    F(7, 5, 3)
    >>> from sympy import Function, Max, Min
    >>> e.replace(Function("F"), lambda *x: Max(*x)*Min(*x))
    21

    Both standard input form and Mathematica full form are supported:

    >>> parse_mathematica("x*(a + b)")
    x*(a + b)
    >>> parse_mathematica("Times[x, Plus[a, b]]")
    x*(a + b)

    To get a matrix from Wolfram's code:

    >>> m = parse_mathematica("{{a, b}, {c, d}}")
    >>> m
    ((a, b), (c, d))
    >>> from sympy import Matrix
    >>> Matrix(m)
    Matrix([
    [a, b],
    [c, d]])

    If the translation into equivalent SymPy expressions fails, an SymPy
    expression equivalent to Wolfram Mathematica's "FullForm" will be created:

    >>> parse_mathematica("x_.")
    Optional(Pattern(x, Blank()))
    >>> parse_mathematica("Plus @@ {x, y, z}")
    Apply(Plus, (x, y, z))
    >>> parse_mathematica("f[x_, 3] := x^3 /; x > 0")
    SetDelayed(f(Pattern(x, Blank()), 3), Condition(x**3, x > 0))
    """
    parser = MathematicaParser()
    return parser.parse(s)


def _parse_Function(*args):
    if len(args) == 1:
        arg = args[0]
        Slot = Function("Slot")
        slots = arg.atoms(Slot)
        numbers = [a.args[0] for a in slots]
        number_of_arguments = max(numbers)
        if isinstance(number_of_arguments, Integer):
            variables = symbols(f"dummy0:{number_of_arguments}", cls=Dummy)
            return Lambda(variables, arg.xreplace({Slot(i+1): v for i, v in enumerate(variables)}))
        return Lambda((), arg)
    elif len(args) == 2:
        variables = args[0]
        body = args[1]
        return Lambda(variables, body)
    else:
        raise SyntaxError("Function node expects 1 or 2 arguments")


def _deco(cls):
    cls._initialize_class()
    return cls


@_deco
class MathematicaParser:
    """
    An instance of this class converts a string of a Wolfram Mathematica
    expression to a SymPy expression.

    The main parser acts internally in three stages:

    1. tokenizer: tokenizes the Mathematica expression and adds the missing *
        operators. Handled by ``_from_mathematica_to_tokens(...)``
    2. full form list: sort the list of strings output by the tokenizer into a
        syntax tree of nested lists and strings, equivalent to Mathematica's
        ``FullForm`` expression output. This is handled by the function
        ``_from_tokens_to_fullformlist(...)``.
    3. SymPy expression: the syntax tree expressed as full form list is visited
        and the nodes with equivalent classes in SymPy are replaced. Unknown
        syntax tree nodes are cast to SymPy ``Function`` objects. This is
        handled by ``_from_fullformlist_to_sympy(...)``.

    """

    # left: Mathematica, right: SymPy
    CORRESPONDENCES = {
        'Sqrt[x]': 'sqrt(x)',
        'Rational[x,y]': 'Rational(x,y)',
        'Exp[x]': 'exp(x)',
        'Log[x]': 'log(x)',
        'Log[x,y]': 'log(y,x)',
        'Log2[x]': 'log(x,2)',
        'Log10[x]': 'log(x,10)',
        'Mod[x,y]': 'Mod(x,y)',
        'Max[*x]': 'Max(*x)',
        'Min[*x]': 'Min(*x)',
        'Pochhammer[x,y]':'rf(x,y)',
        'ArcTan[x,y]':'atan2(y,x)',
        'ExpIntegralEi[x]': 'Ei(x)',
        'SinIntegral[x]': 'Si(x)',
        'CosIntegral[x]': 'Ci(x)',
        'AiryAi[x]': 'airyai(x)',
        'AiryAiPrime[x]': 'airyaiprime(x)',
        'AiryBi[x]' :'airybi(x)',
        'AiryBiPrime[x]' :'airybiprime(x)',
        'LogIntegral[x]':' li(x)',
        'PrimePi[x]': 'primepi(x)',
        'Prime[x]': 'prime(x)',
        'PrimeQ[x]': 'isprime(x)'
    }

    # trigonometric, e.t.c.
    for arc, tri, h in product(('', 'Arc'), (
            'Sin', 'Cos', 'Tan', 'Cot', 'Sec', 'Csc'), ('', 'h')):
        fm = arc + tri + h + '[x]'
        if arc:  # arc func
            fs = 'a' + tri.lower() + h + '(x)'
        else:    # non-arc func
            fs = tri.lower() + h + '(x)'
        CORRESPONDENCES.update({fm: fs})

    REPLACEMENTS = {
        ' ': '',
        '^': '**',
        '{': '[',
        '}': ']',
    }

    RULES = {
        # a single whitespace to '*'
        'whitespace': (
            re.compile(r'''
                (?:(?<=[a-zA-Z\d])|(?<=\d\.))     # a letter or a number
                \s+                               # any number of whitespaces
                (?:(?=[a-zA-Z\d])|(?=\.\d))       # a letter or a number
                ''', re.VERBOSE),
            '*'),

        # add omitted '*' character
        'add*_1': (
            re.compile(r'''
                (?:(?<=[])\d])|(?<=\d\.))       # ], ) or a number
                                                # ''
                (?=[(a-zA-Z])                   # ( or a single letter
                ''', re.VERBOSE),
            '*'),

        # add omitted '*' character (variable letter preceding)
        'add*_2': (
            re.compile(r'''
                (?<=[a-zA-Z])       # a letter
                \(                  # ( as a character
                (?=.)               # any characters
                ''', re.VERBOSE),
            '*('),

        # convert 'Pi' to 'pi'
        'Pi': (
            re.compile(r'''
                (?:
                \A|(?<=[^a-zA-Z])
                )
                Pi                  # 'Pi' is 3.14159... in Mathematica
                (?=[^a-zA-Z])
                ''', re.VERBOSE),
            'pi'),
    }

    # Mathematica function name pattern
    FM_PATTERN = re.compile(r'''
                (?:
                \A|(?<=[^a-zA-Z])   # at the top or a non-letter
                )
                [A-Z][a-zA-Z\d]*    # Function
                (?=\[)              # [ as a character
                ''', re.VERBOSE)

    # list or matrix pattern (for future usage)
    ARG_MTRX_PATTERN = re.compile(r'''
                \{.*\}
                ''', re.VERBOSE)

    # regex string for function argument pattern
    ARGS_PATTERN_TEMPLATE = r'''
                (?:
                \A|(?<=[^a-zA-Z])
                )
                {arguments}         # model argument like x, y,...
                (?=[^a-zA-Z])
                '''

    # will contain transformed CORRESPONDENCES dictionary
    TRANSLATIONS: dict[tuple[str, int], dict[str, Any]] = {}

    # cache for a raw users' translation dictionary
    cache_original: dict[tuple[str, int], dict[str, Any]] = {}

    # cache for a compiled users' translation dictionary
    cache_compiled: dict[tuple[str, int], dict[str, Any]] = {}

    @classmethod
    def _initialize_class(cls):
        # get a transformed CORRESPONDENCES dictionary
        d = cls._compile_dictionary(cls.CORRESPONDENCES)
        cls.TRANSLATIONS.update(d)

    def __init__(self, additional_translations=None):
        self.translations = {}

        # update with TRANSLATIONS (class constant)
        self.translations.update(self.TRANSLATIONS)

        if additional_translations is None:
            additional_translations = {}

        # check the latest added translations
        if self.__class__.cache_original != additional_translations:
            if not isinstance(additional_translations, dict):
                raise ValueError('The argument must be dict type')

            # get a transformed additional_translations dictionary
            d = self._compile_dictionary(additional_translations)

            # update cache
            self.__class__.cache_original = additional_translations
            self.__class__.cache_compiled = d

        # merge user's own translations
        self.translations.update(self.__class__.cache_compiled)

    @classmethod
    def _compile_dictionary(cls, dic):
        # for return
        d = {}

        for fm, fs in dic.items():
            # check function form
            cls._check_input(fm)
            cls._check_input(fs)

            # uncover '*' hiding behind a whitespace
            fm = cls._apply_rules(fm, 'whitespace')
            fs = cls._apply_rules(fs, 'whitespace')

            # remove whitespace(s)
            fm = cls._replace(fm, ' ')
            fs = cls._replace(fs, ' ')

            # search Mathematica function name
            m = cls.FM_PATTERN.search(fm)

            # if no-hit
            if m is None:
                err = "'{f}' function form is invalid.".format(f=fm)
                raise ValueError(err)

            # get Mathematica function name like 'Log'
            fm_name = m.group()

            # get arguments of Mathematica function
            args, end = cls._get_args(m)

            # function side check. (e.g.) '2*Func[x]' is invalid.
            if m.start() != 0 or end != len(fm):
                err = "'{f}' function form is invalid.".format(f=fm)
                raise ValueError(err)

            # check the last argument's 1st character
            if args[-1][0] == '*':
                key_arg = '*'
            else:
                key_arg = len(args)

            key = (fm_name, key_arg)

            # convert '*x' to '\\*x' for regex
            re_args = [x if x[0] != '*' else '\\' + x for x in args]

            # for regex. Example: (?:(x|y|z))
            xyz = '(?:(' + '|'.join(re_args) + '))'

            # string for regex compile
            patStr = cls.ARGS_PATTERN_TEMPLATE.format(arguments=xyz)

            pat = re.compile(patStr, re.VERBOSE)

            # update dictionary
            d[key] = {}
            d[key]['fs'] = fs  # SymPy function template
            d[key]['args'] = args  # args are ['x', 'y'] for example
            d[key]['pat'] = pat

        return d

    def _convert_function(self, s):
        '''Parse Mathematica function to SymPy one'''

        # compiled regex object
        pat = self.FM_PATTERN

        scanned = ''                # converted string
        cur = 0                     # position cursor
        while True:
            m = pat.search(s)

            if m is None:
                # append the rest of string
                scanned += s
                break

            # get Mathematica function name
            fm = m.group()

            # get arguments, and the end position of fm function
            args, end = self._get_args(m)

            # the start position of fm function
            bgn = m.start()

            # convert Mathematica function to SymPy one
            s = self._convert_one_function(s, fm, args, bgn, end)

            # update cursor
            cur = bgn

            # append converted part
            scanned += s[:cur]

            # shrink s
            s = s[cur:]

        return scanned

    def _convert_one_function(self, s, fm, args, bgn, end):
        # no variable-length argument
        if (fm, len(args)) in self.translations:
            key = (fm, len(args))

            # x, y,... model arguments
            x_args = self.translations[key]['args']

            # make CORRESPONDENCES between model arguments and actual ones
            d = dict(zip(x_args, args))

        # with variable-length argument
        elif (fm, '*') in self.translations:
            key = (fm, '*')

            # x, y,..*args (model arguments)
            x_args = self.translations[key]['args']

            # make CORRESPONDENCES between model arguments and actual ones
            d = {}
            for i, x in enumerate(x_args):
                if x[0] == '*':
                    d[x] = ','.join(args[i:])
                    break
                d[x] = args[i]

        # out of self.translations
        else:
            err = "'{f}' is out of the whitelist.".format(f=fm)
            raise ValueError(err)

        # template string of converted function
        template = self.translations[key]['fs']

        # regex pattern for x_args
        pat = self.translations[key]['pat']

        scanned = ''
        cur = 0
        while True:
            m = pat.search(template)

            if m is None:
                scanned += template
                break

            # get model argument
            x = m.group()

            # get a start position of the model argument
            xbgn = m.start()

            # add the corresponding actual argument
            scanned += template[:xbgn] + d[x]

            # update cursor to the end of the model argument
            cur = m.end()

            # shrink template
            template = template[cur:]

        # update to swapped string
        s = s[:bgn] + scanned + s[end:]

        return s

    @classmethod
    def _get_args(cls, m):
        '''Get arguments of a Mathematica function'''

        s = m.string                # whole string
        anc = m.end() + 1           # pointing the first letter of arguments
        square, curly = [], []      # stack for brakets
        args = []

        # current cursor
        cur = anc
        for i, c in enumerate(s[anc:], anc):
            # extract one argument
            if c == ',' and (not square) and (not curly):
                args.append(s[cur:i])       # add an argument
                cur = i + 1                 # move cursor

            # handle list or matrix (for future usage)
            if c == '{':
                curly.append(c)
            elif c == '}':
                curly.pop()

            # seek corresponding ']' with skipping irrevant ones
            if c == '[':
                square.append(c)
            elif c == ']':
                if square:
                    square.pop()
                else:   # empty stack
                    args.append(s[cur:i])
                    break

        # the next position to ']' bracket (the function end)
        func_end = i + 1

        return args, func_end

    @classmethod
    def _replace(cls, s, bef):
        aft = cls.REPLACEMENTS[bef]
        s = s.replace(bef, aft)
        return s

    @classmethod
    def _apply_rules(cls, s, bef):
        pat, aft = cls.RULES[bef]
        return pat.sub(aft, s)

    @classmethod
    def _check_input(cls, s):
        for bracket in (('[', ']'), ('{', '}'), ('(', ')')):
            if s.count(bracket[0]) != s.count(bracket[1]):
                err = "'{f}' function form is invalid.".format(f=s)
                raise ValueError(err)

        if '{' in s:
            err = "Currently list is not supported."
            raise ValueError(err)

    def _parse_old(self, s):
        # input check
        self._check_input(s)

        # uncover '*' hiding behind a whitespace
        s = self._apply_rules(s, 'whitespace')

        # remove whitespace(s)
        s = self._replace(s, ' ')

        # add omitted '*' character
        s = self._apply_rules(s, 'add*_1')
        s = self._apply_rules(s, 'add*_2')

        # translate function
        s = self._convert_function(s)

        # '^' to '**'
        s = self._replace(s, '^')

        # 'Pi' to 'pi'
        s = self._apply_rules(s, 'Pi')

        # '{', '}' to '[', ']', respectively
#        s = cls._replace(s, '{')   # currently list is not taken into account
#        s = cls._replace(s, '}')

        return s

    def parse(self, s):
        s2 = self._from_mathematica_to_tokens(s)
        s3 = self._from_tokens_to_fullformlist(s2)
        s4 = self._from_fullformlist_to_sympy(s3)
        return s4

    INFIX = "Infix"
    PREFIX = "Prefix"
    POSTFIX = "Postfix"
    FLAT = "Flat"
    RIGHT = "Right"
    LEFT = "Left"

    _mathematica_op_precedence: list[tuple[str, str | None, dict[str, str | Callable]]] = [
        (POSTFIX, None, {";": lambda x: x + ["Null"] if isinstance(x, list) and x and x[0] == "CompoundExpression" else ["CompoundExpression", x, "Null"]}),
        (INFIX, FLAT, {";": "CompoundExpression"}),
        (INFIX, RIGHT, {"=": "Set", ":=": "SetDelayed", "+=": "AddTo", "-=": "SubtractFrom", "*=": "TimesBy", "/=": "DivideBy"}),
        (INFIX, LEFT, {"//": lambda x, y: [x, y]}),
        (POSTFIX, None, {"&": "Function"}),
        (INFIX, LEFT, {"/.": "ReplaceAll"}),
        (INFIX, RIGHT, {"->": "Rule", ":>": "RuleDelayed"}),
        (INFIX, LEFT, {"/;": "Condition"}),
        (INFIX, FLAT, {"|": "Alternatives"}),
        (POSTFIX, None, {"..": "Repeated", "...": "RepeatedNull"}),
        (INFIX, FLAT, {"||": "Or"}),
        (INFIX, FLAT, {"&&": "And"}),
        (PREFIX, None, {"!": "Not"}),
        (INFIX, FLAT, {"===": "SameQ", "=!=": "UnsameQ"}),
        (INFIX, FLAT, {"==": "Equal", "!=": "Unequal", "<=": "LessEqual", "<": "Less", ">=": "GreaterEqual", ">": "Greater"}),
        (INFIX, None, {";;": "Span"}),
        (INFIX, FLAT, {"+": "Plus", "-": "Plus"}),
        (INFIX, FLAT, {"*": "Times", "/": "Times"}),
        (INFIX, FLAT, {".": "Dot"}),
        (PREFIX, None, {"-": lambda x: MathematicaParser._get_neg(x),
                        "+": lambda x: x}),
        (INFIX, RIGHT, {"^": "Power"}),
        (INFIX, RIGHT, {"@@": "Apply", "/@": "Map", "//@": "MapAll", "@@@": lambda x, y: ["Apply", x, y, ["List", "1"]]}),
        (POSTFIX, None, {"'": "Derivative", "!": "Factorial", "!!": "Factorial2", "--": "Decrement"}),
        (INFIX, None, {"[": lambda x, y: [x, *y], "[[": lambda x, y: ["Part", x, *y]}),
        (PREFIX, None, {"{": lambda x: ["List", *x], "(": lambda x: x[0]}),
        (INFIX, None, {"?": "PatternTest"}),
        (POSTFIX, None, {
            "_": lambda x: ["Pattern", x, ["Blank"]],
            "_.": lambda x: ["Optional", ["Pattern", x, ["Blank"]]],
            "__": lambda x: ["Pattern", x, ["BlankSequence"]],
            "___": lambda x: ["Pattern", x, ["BlankNullSequence"]],
        }),
        (INFIX, None, {"_": lambda x, y: ["Pattern", x, ["Blank", y]]}),
        (PREFIX, None, {"#": "Slot", "##": "SlotSequence"}),
    ]

    _missing_arguments_default = {
        "#": lambda: ["Slot", "1"],
        "##": lambda: ["SlotSequence", "1"],
    }

    _literal = r"[A-Za-z][A-Za-z0-9]*"
    _number = r"(?:[0-9]+(?:\.[0-9]*)?|\.[0-9]+)"

    _enclosure_open = ["(", "[", "[[", "{"]
    _enclosure_close = [")", "]", "]]", "}"]

    @classmethod
    def _get_neg(cls, x):
        return f"-{x}" if isinstance(x, str) and re.match(MathematicaParser._number, x) else ["Times", "-1", x]

    @classmethod
    def _get_inv(cls, x):
        return ["Power", x, "-1"]

    _regex_tokenizer = None

    def _get_tokenizer(self):
        if self._regex_tokenizer is not None:
            # Check if the regular expression has already been compiled:
            return self._regex_tokenizer
        tokens = [self._literal, self._number]
        tokens_escape = self._enclosure_open[:] + self._enclosure_close[:]
        for typ, strat, symdict in self._mathematica_op_precedence:
            for k in symdict:
                tokens_escape.append(k)
        tokens_escape.sort(key=lambda x: -len(x))
        tokens.extend(map(re.escape, tokens_escape))
        tokens.append(",")
        tokens.append("\n")
        tokenizer = re.compile("(" + "|".join(tokens) + ")")
        self._regex_tokenizer = tokenizer
        return self._regex_tokenizer

    def _from_mathematica_to_tokens(self, code: str):
        tokenizer = self._get_tokenizer()

        # Find strings:
        code_splits: list[str | list] = []
        while True:
            string_start = code.find("\"")
            if string_start == -1:
                if len(code) > 0:
                    code_splits.append(code)
                break
            match_end = re.search(r'(?<!\\)"', code[string_start+1:])
            if match_end is None:
                raise SyntaxError('mismatch in string "  " expression')
            string_end = string_start + match_end.start() + 1
            if string_start > 0:
                code_splits.append(code[:string_start])
            code_splits.append(["_Str", code[string_start+1:string_end].replace('\\"', '"')])
            code = code[string_end+1:]

        # Remove comments:
        for i, code_split in enumerate(code_splits):
            if isinstance(code_split, list):
                continue
            while True:
                pos_comment_start = code_split.find("(*")
                if pos_comment_start == -1:
                    break
                pos_comment_end = code_split.find("*)")
                if pos_comment_end == -1 or pos_comment_end < pos_comment_start:
                    raise SyntaxError("mismatch in comment (*  *) code")
                code_split = code_split[:pos_comment_start] + code_split[pos_comment_end+2:]
            code_splits[i] = code_split

        # Tokenize the input strings with a regular expression:
        token_lists = [tokenizer.findall(i) if isinstance(i, str) and i.isascii() else [i] for i in code_splits]
        tokens = [j for i in token_lists for j in i]

        # Remove newlines at the beginning
        while tokens and tokens[0] == "\n":
            tokens.pop(0)
        # Remove newlines at the end
        while tokens and tokens[-1] == "\n":
            tokens.pop(-1)

        return tokens

    def _is_op(self, token: str | list) -> bool:
        if isinstance(token, list):
            return False
        if re.match(self._literal, token):
            return False
        if re.match("-?" + self._number, token):
            return False
        return True

    def _is_valid_star1(self, token: str | list) -> bool:
        if token in (")", "}"):
            return True
        return not self._is_op(token)

    def _is_valid_star2(self, token: str | list) -> bool:
        if token in ("(", "{"):
            return True
        return not self._is_op(token)

    def _from_tokens_to_fullformlist(self, tokens: list):
        stack: list[list] = [[]]
        open_seq = []
        pointer: int = 0
        while pointer < len(tokens):
            token = tokens[pointer]
            if token in self._enclosure_open:
                stack[-1].append(token)
                open_seq.append(token)
                stack.append([])
            elif token == ",":
                if len(stack[-1]) == 0 and stack[-2][-1] == open_seq[-1]:
                    raise SyntaxError("%s cannot be followed by comma ," % open_seq[-1])
                stack[-1] = self._parse_after_braces(stack[-1])
                stack.append([])
            elif token in self._enclosure_close:
                ind = self._enclosure_close.index(token)
                if self._enclosure_open[ind] != open_seq[-1]:
                    unmatched_enclosure = SyntaxError("unmatched enclosure")
                    if token == "]]" and open_seq[-1] == "[":
                        if open_seq[-2] == "[":
                            # These two lines would be logically correct, but are
                            # unnecessary:
                            # token = "]"
                            # tokens[pointer] = "]"
                            tokens.insert(pointer+1, "]")
                        elif open_seq[-2] == "[[":
                            if tokens[pointer+1] == "]":
                                tokens[pointer+1] = "]]"
                            elif tokens[pointer+1] == "]]":
                                tokens[pointer+1] = "]]"
                                tokens.insert(pointer+2, "]")
                            else:
                                raise unmatched_enclosure
                    else:
                        raise unmatched_enclosure
                if len(stack[-1]) == 0 and stack[-2][-1] == "(":
                    raise SyntaxError("( ) not valid syntax")
                last_stack = self._parse_after_braces(stack[-1], True)
                stack[-1] = last_stack
                new_stack_element = []
                while stack[-1][-1] != open_seq[-1]:
                    new_stack_element.append(stack.pop())
                new_stack_element.reverse()
                if open_seq[-1] == "(" and len(new_stack_element) != 1:
                    raise SyntaxError("( must be followed by one expression, %i detected" % len(new_stack_element))
                stack[-1].append(new_stack_element)
                open_seq.pop(-1)
            else:
                stack[-1].append(token)
            pointer += 1
        if len(stack) != 1:
            raise RuntimeError("Stack should have only one element")
        return self._parse_after_braces(stack[0])

    def _util_remove_newlines(self, lines: list, tokens: list, inside_enclosure: bool):
        pointer = 0
        size = len(tokens)
        while pointer < size:
            token = tokens[pointer]
            if token == "\n":
                if inside_enclosure:
                    # Ignore newlines inside enclosures
                    tokens.pop(pointer)
                    size -= 1
                    continue
                if pointer == 0:
                    tokens.pop(0)
                    size -= 1
                    continue
                if pointer > 1:
                    try:
                        prev_expr = self._parse_after_braces(tokens[:pointer], inside_enclosure)
                    except SyntaxError:
                        tokens.pop(pointer)
                        size -= 1
                        continue
                else:
                    prev_expr = tokens[0]
                if len(prev_expr) > 0 and prev_expr[0] == "CompoundExpression":
                    lines.extend(prev_expr[1:])
                else:
                    lines.append(prev_expr)
                for i in range(pointer):
                    tokens.pop(0)
                size -= pointer
                pointer = 0
                continue
            pointer += 1

    def _util_add_missing_asterisks(self, tokens: list):
        size: int = len(tokens)
        pointer: int = 0
        while pointer < size:
            if (pointer > 0 and
                    self._is_valid_star1(tokens[pointer - 1]) and
                    self._is_valid_star2(tokens[pointer])):
                # This is a trick to add missing * operators in the expression,
                # `"*" in op_dict` makes sure the precedence level is the same as "*",
                # while `not self._is_op( ... )` makes sure this and the previous
                # expression are not operators.
                if tokens[pointer] == "(":
                    # ( has already been processed by now, replace:
                    tokens[pointer] = "*"
                    tokens[pointer + 1] = tokens[pointer + 1][0]
                else:
                    tokens.insert(pointer, "*")
                    pointer += 1
                    size += 1
            pointer += 1

    def _parse_after_braces(self, tokens: list, inside_enclosure: bool = False):
        op_dict: dict
        changed: bool = False
        lines: list = []

        self._util_remove_newlines(lines, tokens, inside_enclosure)

        for op_type, grouping_strat, op_dict in reversed(self._mathematica_op_precedence):
            if "*" in op_dict:
                self._util_add_missing_asterisks(tokens)
            size: int = len(tokens)
            pointer: int = 0
            while pointer < size:
                token = tokens[pointer]
                if isinstance(token, str) and token in op_dict:
                    op_name: str | Callable = op_dict[token]
                    node: list
                    first_index: int
                    if isinstance(op_name, str):
                        node = [op_name]
                        first_index = 1
                    else:
                        node = []
                        first_index = 0
                    if token in ("+", "-") and op_type == self.PREFIX and pointer > 0 and not self._is_op(tokens[pointer - 1]):
                        # Make sure that PREFIX + - don't match expressions like a + b or a - b,
                        # the INFIX + - are supposed to match that expression:
                        pointer += 1
                        continue
                    if op_type == self.INFIX:
                        if pointer == 0 or pointer == size - 1 or self._is_op(tokens[pointer - 1]) or self._is_op(tokens[pointer + 1]):
                            pointer += 1
                            continue
                    changed = True
                    tokens[pointer] = node
                    if op_type == self.INFIX:
                        arg1 = tokens.pop(pointer-1)
                        arg2 = tokens.pop(pointer)
                        if token == "/":
                            arg2 = self._get_inv(arg2)
                        elif token == "-":
                            arg2 = self._get_neg(arg2)
                        pointer -= 1
                        size -= 2
                        node.append(arg1)
                        node_p = node
                        if grouping_strat == self.FLAT:
                            while pointer + 2 < size and self._check_op_compatible(tokens[pointer+1], token):
                                node_p.append(arg2)
                                other_op = tokens.pop(pointer+1)
                                arg2 = tokens.pop(pointer+1)
                                if other_op == "/":
                                    arg2 = self._get_inv(arg2)
                                elif other_op == "-":
                                    arg2 = self._get_neg(arg2)
                                size -= 2
                            node_p.append(arg2)
                        elif grouping_strat == self.RIGHT:
                            while pointer + 2 < size and tokens[pointer+1] == token:
                                node_p.append([op_name, arg2])
                                node_p = node_p[-1]
                                tokens.pop(pointer+1)
                                arg2 = tokens.pop(pointer+1)
                                size -= 2
                            node_p.append(arg2)
                        elif grouping_strat == self.LEFT:
                            while pointer + 1 < size and tokens[pointer+1] == token:
                                if isinstance(op_name, str):
                                    node_p[first_index] = [op_name, node_p[first_index], arg2]
                                else:
                                    node_p[first_index] = op_name(node_p[first_index], arg2)
                                tokens.pop(pointer+1)
                                arg2 = tokens.pop(pointer+1)
                                size -= 2
                            node_p.append(arg2)
                        else:
                            node.append(arg2)
                    elif op_type == self.PREFIX:
                        if grouping_strat is not None:
                            raise TypeError("'Prefix' op_type should not have a grouping strat")
                        if pointer == size - 1 or self._is_op(tokens[pointer + 1]):
                            tokens[pointer] = self._missing_arguments_default[token]()
                        else:
                            node.append(tokens.pop(pointer+1))
                            size -= 1
                    elif op_type == self.POSTFIX:
                        if grouping_strat is not None:
                            raise TypeError("'Prefix' op_type should not have a grouping strat")
                        if pointer == 0 or self._is_op(tokens[pointer - 1]):
                            tokens[pointer] = self._missing_arguments_default[token]()
                        else:
                            node.append(tokens.pop(pointer-1))
                            pointer -= 1
                            size -= 1
                    if isinstance(op_name, Callable):  # type: ignore
                        op_call: Callable = typing.cast(Callable, op_name)
                        new_node = op_call(*node)
                        node.clear()
                        if isinstance(new_node, list):
                            node.extend(new_node)
                        else:
                            tokens[pointer] = new_node
                pointer += 1
        if len(tokens) > 1 or (len(lines) == 0 and len(tokens) == 0):
            if changed:
                # Trick to deal with cases in which an operator with lower
                # precedence should be transformed before an operator of higher
                # precedence. Such as in the case of `#&[x]` (that is
                # equivalent to `Lambda(d_, d_)(x)` in SymPy). In this case the
                # operator `&` has lower precedence than `[`, but needs to be
                # evaluated first because otherwise `# (&[x])` is not a valid
                # expression:
                return self._parse_after_braces(tokens, inside_enclosure)
            raise SyntaxError("unable to create a single AST for the expression")
        if len(lines) > 0:
            if tokens[0] and tokens[0][0] == "CompoundExpression":
                tokens = tokens[0][1:]
            compound_expression = ["CompoundExpression", *lines, *tokens]
            return compound_expression
        return tokens[0]

    def _check_op_compatible(self, op1: str, op2: str):
        if op1 == op2:
            return True
        muldiv = {"*", "/"}
        addsub = {"+", "-"}
        if op1 in muldiv and op2 in muldiv:
            return True
        if op1 in addsub and op2 in addsub:
            return True
        return False

    def _from_fullform_to_fullformlist(self, wmexpr: str):
        """
        Parses FullForm[Downvalues[]] generated by Mathematica
        """
        out: list = []
        stack = [out]
        generator = re.finditer(r'[\[\],]', wmexpr)
        last_pos = 0
        for match in generator:
            if match is None:
                break
            position = match.start()
            last_expr = wmexpr[last_pos:position].replace(',', '').replace(']', '').replace('[', '').strip()

            if match.group() == ',':
                if last_expr != '':
                    stack[-1].append(last_expr)
            elif match.group() == ']':
                if last_expr != '':
                    stack[-1].append(last_expr)
                stack.pop()
            elif match.group() == '[':
                stack[-1].append([last_expr])
                stack.append(stack[-1][-1])
            last_pos = match.end()
        return out[0]

    def _from_fullformlist_to_fullformsympy(self, pylist: list):
        from sympy import Function, Symbol

        def converter(expr):
            if isinstance(expr, list):
                if len(expr) > 0:
                    head = expr[0]
                    args = [converter(arg) for arg in expr[1:]]
                    return Function(head)(*args)
                else:
                    raise ValueError("Empty list of expressions")
            elif isinstance(expr, str):
                return Symbol(expr)
            else:
                return _sympify(expr)

        return converter(pylist)

    _node_conversions = {
        "Times": Mul,
        "Plus": Add,
        "Power": Pow,
        "Rational": Rational,
        "Log": lambda *a: log(*reversed(a)),
        "Log2": lambda x: log(x, 2),
        "Log10": lambda x: log(x, 10),
        "Rational": Rational,
        "Exp": exp,
        "Sqrt": sqrt,

        "Sin": sin,
        "Cos": cos,
        "Tan": tan,
        "Cot": cot,
        "Sec": sec,
        "Csc": csc,

        "ArcSin": asin,
        "ArcCos": acos,
        "ArcTan": lambda *a: atan2(*reversed(a)) if len(a) == 2 else atan(*a),
        "ArcCot": acot,
        "ArcSec": asec,
        "ArcCsc": acsc,

        "Sinh": sinh,
        "Cosh": cosh,
        "Tanh": tanh,
        "Coth": coth,
        "Sech": sech,
        "Csch": csch,

        "ArcSinh": asinh,
        "ArcCosh": acosh,
        "ArcTanh": atanh,
        "ArcCoth": acoth,
        "ArcSech": asech,
        "ArcCsch": acsch,

        "Expand": expand,
        "Im": im,
        "Re": sympy.re,
        "Flatten": flatten,
        "Polylog": polylog,
        "Cancel": cancel,
        # Gamma=gamma,
        "TrigExpand": expand_trig,
        "Sign": sign,
        "Simplify": simplify,
        "Defer": UnevaluatedExpr,
        "Identity": S,
        # Sum=Sum_doit,
        # Module=With,
        # Block=With,
        "Null": lambda *a: S.Zero,
        "Mod": Mod,
        "Max": Max,
        "Min": Min,
        "Pochhammer": rf,
        "ExpIntegralEi": Ei,
        "SinIntegral": Si,
        "CosIntegral": Ci,
        "AiryAi": airyai,
        "AiryAiPrime": airyaiprime,
        "AiryBi": airybi,
        "AiryBiPrime": airybiprime,
        "LogIntegral": li,
        "PrimePi": primepi,
        "Prime": prime,
        "PrimeQ": isprime,

        "List": Tuple,
        "Greater": StrictGreaterThan,
        "GreaterEqual": GreaterThan,
        "Less": StrictLessThan,
        "LessEqual": LessThan,
        "Equal": Equality,
        "Or": Or,
        "And": And,

        "Function": _parse_Function,
    }

    _atom_conversions = {
        "I": I,
        "Pi": pi,
    }

    def _from_fullformlist_to_sympy(self, full_form_list):

        def recurse(expr):
            if isinstance(expr, list):
                if isinstance(expr[0], list):
                    head = recurse(expr[0])
                else:
                    head = self._node_conversions.get(expr[0], Function(expr[0]))
                return head(*[recurse(arg) for arg in expr[1:]])
            else:
                return self._atom_conversions.get(expr, sympify(expr))

        return recurse(full_form_list)

    def _from_fullformsympy_to_sympy(self, mform):

        expr = mform
        for mma_form, sympy_node in self._node_conversions.items():
            expr = expr.replace(Function(mma_form), sympy_node)
        return expr